

The Office of Environmental Health Hazard Assessment's (OEHHA) Reproductive and Cancer Hazard Assessment Branch (RCHAB) was responsible for the preparation of this document.

RCHAB Authors

Kate Li, Ph.D. Staff Toxicologist

Karin Ricker, Ph.D. Staff Toxicologist

Gwendolyn Osborne, MD, MPH Associate Toxicologist

Rose Cendak, M.S. Research Scientist

Meng Sun, Ph.D. Associate Toxicologist

Rajpal S. Tomar, Ph.D. Staff Toxicologist

Internal OEHHA Reviewers

John Budroe, Ph.D. Chief, Cancer Toxicology and Epidemiology Section, RCHAB

Martha S. Sandy, Ph.D. Chief, RCHAB

Lauren Zeise, Ph.D. Deputy Director for Scientific Affairs

Allan Hirsch Chief Deputy Director

OEHHA Director

George A. Alexeeff, Ph.D., D.A.B.T.

PREFACE

Proposition 65¹ requires the publication of a list of chemicals "known to the state" to cause cancer or reproductive toxicity. It specifies that "a chemical is known to the state to cause cancer ... if in the opinion of the state's qualified experts the chemical has been clearly shown through scientifically valid testing according to generally accepted principles to cause cancer ..." The "state's qualified experts" regarding findings of carcinogenicity are the members of the Carcinogen Identification Committee (CIC) of the OEHHA Science Advisory Board².

The lead agency for implementing Proposition 65 is the Office of Environmental Health Hazard Assessment (OEHHA) of the California Environmental Protection Agency. In 2011 OEHHA brought N-nitrosomethyl-n-alkylamines (NMAs) to the CIC for prioritization and ranking for future listing consideration. OEHHA subsequently selected NMAs for consideration for listing by the CIC. Upon selection, the public was given the opportunity to submit information relevant to the assessment of the evidence on their carcinogenicity. No information was submitted.

OEHHA developed this document with information on the evidence on the carcinogenicity of NMAs to assist the CIC in its deliberations on whether or not NMAs as a group, or chemicals within the group, should be added to the Proposition 65 list as causing cancer. The original papers discussed in the document are also provided to the CIC as part of the hazard identification materials. In addition, comments on this hazard identification document received during the public comment period also form part of the hazard identification materials, and are provided to the CIC members prior to their formal deliberations.

On November 19, 2014, the CIC is scheduled to deliberate on the carcinogenicity of NMAs as a group, and individual chemicals within the group. The CIC may choose to list under Proposition 65 the group, or individual chemicals within the group that are not already on the list. Two NMAs, N-nitrosodimethylamine and N-nitrosomethylethylamine are already on the Proposition 65 list, so committee deliberations and listing decisions will not affect the status of these two chemicals. A transcript of the meeting will be available at www.oehha.ca.gov after the meeting.

¹ The Safe Drinking Water and Toxic Enforcement Act of 1986 (California Health and Safety Code 25249.5 *et seq.*) ² Title 27 Cal. Code of Regs. §25302

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY	1
2. INTRODUCTION	2
2.1 Identity of N-nitrosomethyl-n-alkylamines (NMAs)	2
2.2 Occurrence and Use	
3. DATA ON CARCINOGENICITY	8
3.1 Carcinogenicity Studies in Humans	
3.2 Carcinogenicity Studies in Animals	8
3.2.1 Oral Studies in Rats and Hamsters Comparing Several NMAs	12
3.2.2 Additional Studies on NMAs	33
3.3 Other Relevant Data	60
3.3.1 Genotoxicity	60
3.3.2 In Vitro Cell Transformation Assays	66
3.3.3 Pharmacokinetics and Metabolism	67
3.3.3.1 Absorption and Distribution	67
3.3.3.2 Metabolism	68
3.3.3.4 Summary	
3.3.4 Animal Tumor Pathology	
3.3.5 Structure – Activity Comparisons	
4. Mechanisms	
5. REVIEWS BY OTHER AGENCIES	91
6. SUMMARY AND CONCLUSION	92
6.1 Summary of Evidence	92
6.2 Conclusion	96
7. REFERENCES	97
Appendix A: Parameters for Literature Searches on the Carcinogenicity of "N-	
Nitrosomethyl-n-alkylamines"	A-1

LIST OF TABLES

Table 1	, , , , , , , , , , , , , , , , , , ,
	alkylamines (NMAs)3
Table 2	5 ,
Table 3	
	by gavage twice/week for 30 weeks (Lijinsky et al., 1981)
Table 4	Overview of rare or significantly increased tumor sites in gavage studies
	in male Fischer F344 rats (Lijinsky et al., 1981)13
Table 5	Tumor incidence in male Fischer 344 rats administered NMA-C8 by gavage
	twice/week for 30 weeks and observed for life (Lijinsky et al., 1981) 14
Table 6	` · · · · · · · · · · · · · · · · · · ·
	twice/week for 30 weeks and observed for life (Lijinsky et al., 1981)
Table 7	
	twice/week for 30 weeks and observed for life (Lijinsky et al., 1981)
Table 8	· • • • • • • • • • • • • • • • • • • •
	twice/week for 30 weeks and observed for life (Lijinsky et al., 1981)
Table 9	` · · · · · · · · · · · · · · · · · · ·
	twice/week for 30 weeks and observed for life (Lijinsky et al., 1981)
Table 1	D. Dose received and survival of male Syrian golden hamsters administered
	NMAs by gavage once/week for 23-50 weeks
	(Lijinsky and Kovatch, 1988)
Table 1	1. Dose received and survival of female Syrian golden hamsters administered
	NMAs by gavage once/week for 23-50 weeks
	(Lijinsky and Kovatch, 1988)19
Table 1	2. Overview of rare or significantly increased tumor sites in gavage studies in
	male and female Syrian golden hamsters (Lijinsky and Kovatch, 1988) 20
Table 1	3. Tumor incidence in male Syrian golden hamsters administered NMA-C3 by
	gavage once/week for 23 - 30 weeks and observed for life (Lijinsky and
	Kovatch, 1988)21
Table 1	4. Tumor incidence in female Syrian golden hamsters administered NMA-C3 by
	gavage once/week for 23 - 30 weeks and observed for life (Lijinsky and
	Kovatch, 1988)22
Table 1	5. Tumor incidence in male Syrian golden hamsters administered NMA-C4 by
	gavage once/week for 23 - 30 weeks and observed for life (Lijinsky and
	Kovatch, 1988)23
Table 1	6. Tumor incidence in female Syrian golden hamsters administered NMA-C4 by
	gavage once/week for 23 - 30 weeks and observed for life (Lijinsky and
	Kovatch, 1988)24
Table 1	7. Tumor incidence in male Syrian golden hamsters administered NMA-C5 by
	gavage once/week for 23 - 30 weeks and observed for life (Lijinsky and
	Kovatch, 1988)25
Table 1	3. Tumor incidence in female Syrian golden hamsters administered NMA-C5 by
	gavage once/week for 23 - 30 weeks and observed for life (Lijinsky and
	Kovatch, 1988)26

Table 19.	Tumor incidence in male Syrian golden hamsters administered NMA-C6 by	
	gavage once/week for 50 weeks and observed for life	7
Table 20	(Lijinsky and Kovatch, 1988)	
rable 20.	Tumor incidence in female Syrian golden hamsters administered NMA-C6 by	
	gavage once/week for 50 weeks and observed for life	0
Table 24	(Lijinsky and Kovatch, 1988)	0
rable 21.	Tumor incidence in male Syrian golden hamsters administered NMA-C7 by	
	gavage once/week for 40 weeks and observed for life	· ^
Table 22	(Lijinsky and Kovatch, 1988)	
rable 22.	Tumor incidence in female Syrian golden hamsters administered NMA-C7 by	
	gavage once/week for 40 weeks and observed for life	^
Table 00	(Lijinsky and Kovatch, 1988)	U
rable 23.	Tumor incidence in male Syrian golden hamsters administered NMA-C8 by	
	gavage once/week for 40 weeks and observed for life	
Table 04	(Lijinsky and Kovatch, 1988)	
rable 24.	Tumor incidence in female Syrian golden hamsters administered NMA-C8 by	
	gavage once/week for 40 weeks and observed for life	_
T.I.I. 05	(Lijinsky and Kovatch, 1988)	2
	Summary of animal carcinogenicity studies of NMA-C3	
	Summary of animal carcinogenicity studies of NMA-C4	
	Summary of animal carcinogenicity studies of NMA-C54	
	Summary of animal carcinogenicity studies of NMA-C65	
	Summary of animal carcinogenicity studies of NMA-C75	
	Summary of animal carcinogenicity studies of NMA-C115	
	Summary of animal carcinogenicity studies of NMA-C125	
	Bacterial gene mutation assays6	
	In vitro mammalian genotoxicity tests	
	Nucleic acid and protein adducts formed by NMAs6	
	Metabolism studies of NMAs7	
	Tumor sites in rats treated with NMAs of various alkyl chain lengths7	
	Tumor sites in hamsters treated with NMAs of various alkyl chain lengths 8	
	Tumor sites in mice treated with NMAs of various alkyl chain lengths 8	5
	NMAs and related structures8	
	Structure Activity Comparisons: Target tumor sites in rats8	
	Structure Activity Comparisons: Target tumor sites in hamsters	0
Table 42.	Observations of statistically significant tumor sites and increased rare tumor	
	sites in rats, hamsters, mice and guinea pigs ¹ exposed to NMAs9	4
	LIST OF FIGURES	
Figure 1	Proposed routes of N-nitrosomethyl-n-butylamine metabolism in rats	
i iguit 1.	(adapted from Huang <i>et al.</i> , 1993)6	a
	(adapted from Fidding of an, 1000)	J

1. EXECUTIVE SUMMARY

This document summarizes the evidence of carcinogenicity for the chemical group "N-nitrosomethyl-n-alkylamines (NMAs)." Two NMAs, N-nitrosodimethylamine (NMA-C1) and N-nitrosomethylethylamine (NMA-C2), have been listed under Proposition 65 as causing cancer since October 1, 1987 and October 1, 1989, respectively. This document summarizes direct evidence of carcinogenicity for eleven other NMAs that are not on the Proposition 65 list.

NMAs are nitrosamines containing a second nitrogen to which a methyl and an alkyl group are attached. NMAs have been detected in personal care products, such as shampoos and conditioners, and household cleaning products, such as dishwashing liquids and surface cleaners. NMAs are not intentionally added to these products, but may form as a result of the reaction of nitrite with amine compounds.

The evidence for the carcinogenicity of NMAs as a group comes primarily from more than 90 experiments in animals with positive tumor findings. These studies were conducted in rats, hamsters, mice, and guinea pigs by various routes of exposure. Thirteen of the NMAs have been tested for carcinogenicity in animals, including the two NMAs currently listed under Proposition 65 (NMA-C1 and NMA-C2). Tumors were observed following treatment with each of the thirteen NMA compounds in at least one species. Many of the observed tumors are rare, including tumors of the nasal cavity, tongue, oropharynx, esophagus, forestomach, kidney, and bladder in rats; and tumors of the nasal cavity, lung, liver, and bladder in hamsters.

Positive findings from genotoxicity and DNA adduct studies indicate that NMAs are likely to operate through genotoxic mechanisms, and that metabolic activation by cytochrome P450 enzymes is required for activity. All twelve NMAs tested for the ability to alkylate DNA form DNA adducts in rats in vivo, all eleven NMAs tested for the ability to induce mutations in bacteria are mutagenic, and all three NMAs tested for the ability to induce mutations in mammalian cells in vitro are mutagenic. The most extensively tested NMA, NMA-C1, has been demonstrated to be mutagenic and clastogenic in multiple in vitro and in vivo assay systems.

NMAs are metabolized in a similar manner across chemicals and species, and common metabolites have been observed amongst all NMAs. Two of these common metabolites are listed under Proposition 65 as causing cancer, and are genotoxic (N-nitrososarcosine and formaldehyde). Three others are genotoxic and induce tumors in animals (i.e., N-nitrosomethyl-3-carboxypropylamine, 4-hydroxy-nitrosomethyl-*n*-butylamine, and Nmethyl-nitroso-2-oxopropylamine [MOP]). The NMAs and three structurally similar carcinogenic N-nitroso-dialkylamines listed under Proposition 65 share target tumor sites amongst species and chemicals, as well as positive findings of genotoxicity.

2. INTRODUCTION

This document summarizes the evidence of carcinogenicity for the chemical group "N-nitrosomethyl-*n*-alkylamines (NMAs)." Two NMAs, N-nitrosodimethylamine (NMA-C1) and N-nitrosomethylethylamine (NMA-C2), have been listed under Proposition 65 as causing cancer since October 1, 1987 and October 1, 1989, respectively. This document summarizes direct evidence of carcinogenicity for eleven other NMAs that are not on the Proposition 65 list. These other NMAs are:

- N-nitrosomethyl-*n*-propylamine (NMA-C3),
- N-nitrosomethyl-*n*-butylamine (NMA-C4),
- N-nitrosomethyl-*n*-pentylamine (NMA-C5),
- N-nitrosomethyl-*n*-hexylamine (NMA-C6),
- N-nitrosomethyl-*n*-heptylamine (NMA-C7),
- N-nitrosomethyl-*n*-octylamine (NMA-C8),
- N-nitrosomethyl-*n*-nonylamine (NMA-C9),
- N-nitrosomethyl-*n*-decylamine (NMA-C10),
- N-nitrosomethyl-*n*-undecylamine (NMA-C11),
- N-nitrosomethyl-n-dodecylamine (NMA-C12), and
- N-nitrosomethyl-n-tetradecylamine (NMA-C14).

For these specific NMAs, OEHHA found animal carcinogenicity studies in the literature. Before describing these studies and the results in Section 3, the identity, chemical and physical properties and occurrence and use of these compounds are briefly outlined.

2.1 Identity of N-nitrosomethyl-n-alkylamines (NMAs)

N-Nitrosomethyl-*n*-alkylamines (NMAs) are tertiary amines with two nitrogen atoms connected by a single bond, a nitroso group attached to the second nitrogen, and a methyl and an alkyl group attached to the second nitrogen. The identity and systematic name of the individual NMA is based on the actual alkyl chain attached to the second nitrogen (see Table 1).

The structures and some chemical and physical properties of these NMAs are presented in Table 1. These data indicate that with increasing chain length of the NMA alkyl group, water solubility and volatility decrease, and the boiling point increases.

Table 1. Identity and chemical characteristics of several N-nitrosomethyl-*n*-alkylamines (NMAs)

Alkyl Chain length (No. Car- bons)	NMA Chemical name & Synonyms	Molecular Formula & Structure	Molecular Weight [Da]	CAS Registry Number	Boiling Point (°C at 760 mmHg)	Vapor Pressure (mmHg at 25 °C)	Log P / Octanol- water co- efficient
С3	N-Nitrosomethyl- <i>n</i> -propylamine (NMA-C3) N-Methyl-N-nitroso-1- propanamine Methyl-n-propylnitrosamine Methylpropylnitrosamine Methylpropylnitrosoamine N-Methyl-N-propylnitrosamine N-Nitrosomethyl(N- propyl)amine N-Nitrosomethylpropylamine Nitrosomethylpropylamine	C4-H10-N2-O O N CH ₃ CH ₃	102	924-46-9	173.9	1.7	0.42
C4	N-Nitrosomethyl-n-butylamine (NMA-C4) N-Methyl-N-nitroso-1-butanamine Butylmethylnitrosamine MBNA, NMBA Methyl-butyl-nitrosamin Methyl-n-butylnitrosamine Methylbutylnitrosamine Methylbutylnitrosamine N-Butyl-N-methylnitrosamine N-Methyl-N-nitrosobutylamine N-Nitroso-N-methyl-N-n-butylamine N-Nitrosomethyl-N-butylamine Nitrosomethyl-n-butylamine	C5-H12-N2-O O N CH ₃	116	7068-83-9	193.6	0.6	0.95

Table 1 (cont'd). Identity and chemical characteristics of NMAs

C5	N-Nitrosomethyl-n-pentylamine (NMA-C5) N-Methyl-N-nitroso-1-pentanamine Methyl-N-amylnitrosamine Methyl-N-pentylnitrosamine Methylamylnitrosamin Methylamylnitrosamine N-Amyl-N-methylnitrosamine N-Methyl-N- nitrosopentylamine N-Methyl-N-pentylnitrosamine N-Nitroso-N-methyl-n- amylamine Nitrosomethyl-n-amylamine	C6-H14-N2-O O N CH ₃	130	13256-07-0	213.0	0.2	1.49
C6	Nitrosomethyl-n-pentylamine N-Nitrosomethyl-n-hexylamine (NMA-C6) N-Methyl-N-nitroso-1-hexanamine N-Methyl-N-nitroso-hexylamine Nitroso-n-hexylmethylamine Nitrosomethyl-n-hexylamine	C7-H16-N2-O O N CH ₃	144	28538-70-7	232.0	0.092	2.05
C7	N-Nitrosomethyl-n- heptylamine (NMA-C7) N-Methyl-N-nitroso-1- heptanamine Heptylmethylnitrosamine Methylheptylnitrosamin Methylheptylnitrosamine N-Methyl-N- nitrosoheptylamine N-Nitroso-N- methylheptylamine N-Nitrosomethylheptylamine Nitrosomethyl-n-heptylamine Nitrosomethyl-n-heptylamine	C8-H18-N2-O O N CH ₃ CH ₃	158	16338-99-1	250.0	0.034	2.5

Table 1 (cont'd). Identity and chemical characteristics of NMAs

C8	N-Nitrosomethyl- <i>n</i> -octylamine (NMA-C8) N-Methyl-N-nitroso-1-octanamine N-Methyl-N-nitrosooctylamine Nitroso-N-methyl-n-octylamine Nitrosomethyl-n-octylamine	C9-H20-N2-O O N CH ₃	172	34423-54-6	268.5	0.013	3.07
C9	N-Nitrosomethyl- <i>n</i> - nonylamine (NMA-C9) N-Methyl-N-nitroso-1- nonanamine Nitroso-N-methyl-n- nonylamine Nitrosomethyl-n-nonylamine	C10-H22-N2-O O CH ₃ CH ₃	186	75881-19-5	286.0	0.004	3.58
C10	N-Nitrosomethyl- <i>n</i> -decylamine (NMA-C10) N-Methyl-N-nitroso-1-decanamine N-Methyl-N-nitrosodecylamine Nitrosomethyl-n-decylamine	C11 H24-N2-O OH3 CH3	200	75881-22-0	303	0.002	4.09
C11	N-Nitrosomethyl- <i>n</i> -undecylamine (NMA-C11) N-Methyl-N-nitroso-1-undecanamine N-Methyl-N-nitrosoundecylamine Nitrosomethylundecylamine	C12-H26-N2-O OH3 CH3	214	68107-26-6	319.5	0	4.67

Table 1 (cont'd). Identity and chemical characteristics of NMAs

C12	N-Nitrosomethyl-n-dodecylamine (NMA-C12) N-Methyl-N-nitroso-1-dodecanamine Laurylamine N-methyl-N-nitroso- N-Dodecyl-N-methylnitrosamine N-Methyl-N-nitrosolaurylamine N-Nitroso-N-methyl-N-dodecylamin Nitrosomethyl-n-dodecylamine NMDA	C13-H28-N2-O O CH ₃	228	55090-44-3	335.6	0	5.2
C14	N-Nitrosomethyl- <i>n</i> -tetradecylamine (NMA-C14)	C15-H32-N2-O					
	N-Methyl-N-nitroso-1- tetradecanamine N-Nitroso-N-methyl-n- tetradecylamine	CH ₃	256	75881-20-8	366.6	0	6.12

a Data at http://www.chemspider.com/

2.2 Occurrence and Use

No information on past or present commercial production of NMAs was identified, and no commercial uses of NMAs were identified. NMAs, including NMA -C12, -C14, -C16, and -C18 have been detected in personal care products, such as shampoos and conditioners, and household cleaning products, such as dishwashing liquids and surface cleaners (Morrison and Hecht, 1982; Hecht *et al.*, 1982, Kamp and Eisenbrand, 1991). NMAs are not intentionally added to these products, but may form as a result of the reaction of nitrite with amine compounds (Hecht *et al.*, 1982; Morrison and Hecht, 1982; Kamp and Eisenbrand, 1991; Eisenbrand *et al.*, 1996). For example, NMAs can be derived from fatty amine oxide precursors, such as C12 or C14 dimethylamine oxides or corresponding tertiary or secondary amines (Hecht *et al.*, 1982; Ikeda and Migliorese, 1990). Fatty amine oxide precursors are used in consumer products as emulsifiers, detergents and thickening agents, and may be nitrosated by nitrite, the preservatives bronopol and bronidox, as well as environmental nitrogen oxides (Kamp and Eisenbrand, 1991).

Data published in 1982 (Morrison and Hecht, 1982; Hecht *et al.*, 1982) indicate that four out of twelve liquid dishwashing detergents and one out of four household surface cleaners tested contained NMA-C12 and NMA-C14. Similarly, four out of six shampoos, one out of one hair conditioner, three out of four hair rinse products and two out of two hot oil treatments also contained NMA-C12 and NMA-C14. Levels of NMA-C12 in analyzed products ranged from 254 to 471 ppb in liquid dishwashing detergent, 16 to 203 ppb in shampoo, 11 to 83 ppb in hair rinse products, 604 to 873 in a hot oil treatment product, 112 ppb in a surface cleaner, and 11 ppb in a hair conditioner. Levels of NMA-C14 ranged from 67 to 108 ppb in liquid dishwashing detergent, 8 to 76 ppb in shampoo, 22 to 25 ppb in hair rinse products, 218 to 254 ppb in a hot oil treatment product, 46 ppb in a surface cleaner and 9 ppb in a hair conditioner.

Another study published in 1996 (Eisenbrand *et al.*, 1996) analyzed 86 cosmetic products available on the German market and 45 products available on the U.S. and Japanese markets. Only one of the 86 German market products was contaminated with NMA-C12 (120 ppb), NMA-C14 (50 ppb), and NMA-C16 (20 ppb). Four out of 45 U.S. and Japanese market products analyzed contained levels of NMAs (combined) in the range of 150-250 ppb.

3. DATA ON CARCINOGENICITY

The parameters used in conducting literature searches on the carcinogenicity of NMAs are summarized in Appendix A.

3.1 Carcinogenicity Studies in Humans

No data on the long-term carcinogenic effects of human exposure to NMAs were found in a recent literature search conducted by OEHHA.

3.2 Carcinogenicity Studies in Animals

The carcinogenicity of numerous individual NMAs not already listed under Proposition 65 has been studied in a variety of species, including rats, hamsters, mice, and guinea pigs. These studies are listed in Table 2. Study data from Lijinsky *et al.* (1981) using rats and Lijinsky and Kovatch (1988) using hamsters are presented in detail in Section 3.2.1. These two publications each contain carcinogenicity data for several NMAs, which enables comparisons between NMAs in the same set of studies. As indicated in Table 2, a substantial number of additional NMA carcinogenicity studies have also been reported. Findings from these other studies, along with information on key study design elements, are presented in tabular form in Section 3.2.2

Table 2. Overview of animal carcinogenicity studies of NMAs

Study No.	Species	Strain	Sex	Route	Reference
NMA-C3	3				
1	Rat	Fischer 344	F	drinking water	Lijinsky <i>et al.</i> , 1983a
2	Rat	Sprague	M	s.c. injection	Reznik <i>et al.</i> , 1975
3	Nat	Dawley	F	3.6. Injection	Nezriik et al., 1913
4	Hamster	Syrian golden	M	gavage	Lijinsky and Kovatch,1988
5	Tiamster	Syriair golden	F	gavage	Lijirisky and Novateri, 1900
6			M (F1)	in utero	Althoff and Grandjean,
7	Hamster	Syrian golden	F (F1)	iii dtero	1979
8			F (pregnant)	s.c. injection	1373
9	Hamster	Syrian golden	M&F	s.c. injection	Pour <i>et al.</i> , 1974; 1975
11	Mouse	NMRI	F	s.c. injection	Dickhaus et al., 1977
NMA-C4	!				
12	Rat	Fischer 344	M	drinking water	Lijinsky <i>et al.</i> , 1980; 1983b
13	Rai		F	drinking water	Lijinsky <i>et al.</i> , 1980; 1983a
16	Rat	Fischer 344	M	drinking water	Koreeda <i>et al.</i> , 1999
17	Rat	Fischer 344	M	govogo	Lijingky of al. 1092h
18	Nai	FISCHEL 344	F	gavage	Lijinsky <i>et al.</i> , 1983b
19				gavage	
20	Rat	Fischer 344	F	Intravesicular in- jection in bladder	Lijinsky <i>et al.</i> , 1991a
21	Hamster	Syrian golden	M	navane	Lijinsky and Kovatch,1988
22	Tamsiel	Syriair golderi	F	gavage	Lijirisky ariu Kovateri, 1900

Table 2 (continued). Overview of animal carcinogenicity studies of NMAs

Study No.	Species	Strain	Sex	Route	Reference
NMA-C5					
23	Rat	BD	Not Specified	drinking water	Druckery et al., 1967
24	Rat	Wistar	M	drinking water	Matsufuji <i>et al.</i> , 1987
25	Rat	Wistar	M	drinking water	Sasajima <i>et al.</i> , 1982
26			M (4- to 6- week old) 180-day study		
27	Rat	Donyu	M (4- to 6- week old) 322-day study	drinking water	lizuka <i>et al.</i> , 1980
28			M (8- to 9- week old)		
29			F (4- to 5- week old)		
30	Rat	Sprague Dawley	M	drinking water	Kuwayama and Eastwood, 1988
31	Rat	Sprague Dawley	M	drinking water	Kondoh <i>et al.</i> , 1990
32			M & F (newborn)		
33	Rat	MRC-Wistar	M & F (3-day- old)	i.p. injection	Mirvish et al., 1996
34			M & F (6- to 8-week-old)		
35	Rat	MRC-Wistar	M	i.p. injection	Mirvish et al., 1994a
36			M (1 injection)		
37			M (2 injections)		
38			M (6 injections)		
39	Rat	MRC-Wistar	M (12 injections)	<i>i.p.</i> injection	Bulay and Mirvish, 1979
40			F (1 injection)	į. j .	,
41			F (2 injections)		
42			F (6 injections)		
43			F (12 injections)		
44	Rat	MRC-Wistar	M	<i>i.p.</i> injection	Mirvish et al., 1985a
45	Rat	Wistar	M	<i>i.p</i> . injection	Tanaka <i>et al.</i> , 1997
46	Rat	Fischer 344	M	i.p. injection	Yamaguchi et al., 1989
47	Rat	Sprague Dawley	M	i.p. injection	Attwood et al., 1992
48	Rat	Wistar	M&F	intramuscular	Luo <i>et al.</i> , 1987

Table 2 (continued). Overview of animal carcinogenicity studies of NMAs

Study No.	Species	Strain	Sex	Route	Reference	
49	Rat	Wistar	М	s.c. injection	Seto et al., 1991	
50	Rat	BD	NS	s.c. injection	Druckery et al., 1967	
51	Hamster	Cyrian goldon	М	govogo	Lijingky and Kayatah 1000	
52	пашые	Syrian golden	F	gavage	Lijinsky and Kovatch,1988	
53			M & F (newborn)			
54	Hamster	Syrian golden	M & F (3-day- old)	<i>i.p.</i> injection	Mirvish <i>et al.</i> , 1996	
55	Tiamstei	Syrian golden	M & F (38- day-old)	<i>i.p</i> . injection	Will Visit <i>et al.</i> , 1990	
56			M & F (46- to 49-day-old)			
57		101/N				
58	Mouse	STX/Le	M & F	drinking water	Kurooka <i>et al.</i> , 1998	
59	Mouse	BXH-8	IVI & F	diliking water	Kulooka <i>et al.</i> , 1996	
60		C57BL/6J				
61		Brca1 Δ11/Δ11				
01	Mouse	p53+/-	F	drinking water	Cao <i>et al.</i> , 2007	
62		Brca1+/Δ11		aga.e.	0 40 01 4, 2001	
		p53+/-				
	C57BL/6 p53+/+ wild					
63		type				
		15-week study				
		C57BL/6				
64		p53+/-				
04		heterozygote				
		15-week study				
0.5	Maria	C57BL/6 p53-/-	N.4	daintin aatau	Chirai at al. 2002a, 2002b	
65	Mouse	knockout	М	drinking water	Shirai et al., 2002a; 2002b	
		15-week study C57BL/6				
		p53+/+ wild				
66		type				
		25-week study				
		C57BL/6				
67		p53+/-				
07		heterozygote				
		25-week study				
68	Mouse	Swiss	M&F	i.p. injection	Mirvish et al., 1996	
NMA-C6		I				
69	Rat	Fischer 344	М	drinking water	Lijinsky <i>et al.</i> , 1983b	
70	···at	1 1001101 044		gavage	Ziji.15.Ky 5t di.1, 10005	
70	Hamster	Syrian golden	М	gavage	Lijinsky and Kovatch,1988	
72		37a goldon	F	3~.~30		

Table 2 (continued). Overview of animal carcinogenicity studies of NMAs

Study No.	Species	Strain	Sex	Route	Reference
NMA-C7	7				
73	Rat	Fischer 344	М	drinking water	Lijinsky <i>et al.</i> , 1983b
74				gavage	
75	Rat	BD	NS	s.c. injection	Druckery et al., 1967
76 77	Hamster	Syrian golden	M F	gavage	Lijinsky and Kovatch,1988
78	Hamster	Syrian golden	М	gavage	Rehm and Lijinsky,1994
NMA-C8	3				
79	Rat	Fischer 344	М	gavage	Lijinsky <i>et al.</i> , 1981
80	Hamster	Syrian golden	M	gavage	Lijinsky and Kovatch,1988
81		, ,	F		
NMA-C9					1 100
82	Rat	Fischer 344	M	gavage	Lijinsky <i>et al.</i> , 1981
NMA-C1					
83	Rat	Fischer 344	M	gavage	Lijinsky <i>et al.</i> , 1981
NMA-C1					
84	Rat	Fischer 344	M	gavage	Lijinsky <i>et al.</i> , 1978
NMA-C1					
85	Rat	Fischer 344	M	gavage	Lijinsky <i>et al.</i> , 1981
86	Rat	Sprague	M	gavage	Lijinsky and Taylor, 1975
87		Dawley	F	99-	
88		Sprague	<u>M</u>		
89	Rat	Dawley	F	gavage	Lijinsky and Taylor, 1978
90 91		Fischer 344	<u>М</u> F		
92	Rat	Fischer 344	<u>г</u> F	navane	Lijinsky <i>et al.</i> , 1983c
93	Nat	1 ISCHEL 344	<u>'</u> М	gavage	Lijiiisky et al., 1900C
	Hamster	Syrian golden		gavage	Althoff and Lijinsky, 1977
94			F		
95	Hamster	European Mhh:EPH	M F	s.c. injection	Ketkar et al., 1981
96	Guinea				
97	Pig	Strain 2	M	gavage	Cardy and Lijinsky, 1980
NMA-C1	4				
98	Rat	Fischer 344	M	gavage	Lijinsky et al., 1981

3.2.1 Oral Studies in Rats and Hamsters Comparing Several NMAs

Gavage studies of five NMAs in male Fischer F344 rats (Lijinsky et al., 1981)

NMA-C8, -C9, -C10, -C12, and -C14 were administered by gavage to groups of 20 male Fischer 344 rats twice a week (0.2 ml in corn oil) for 30 weeks at specific doses (Table 3). The untreated control group consisted of 20 animals. Animals were allowed to die naturally or were killed when moribund. In the treated groups, survival at 50 weeks was poor for animals treated with NMA-C8 and -C9, but all animals in other treatment groups survived to week 50 (Table 3). In the controls, 17 animals were alive at 80 weeks, and 12 animals were alive at 110 weeks. Eight survivors were killed at 126 weeks.

Table 3. Dose received and survival of male Fischer 344 rats administered NMAs by gavage twice/week for 30 weeks (Lijinsky *et al.*, 1981)

Compound	Concentration (mg/ml)	Administered dose each occasion (mg) ¹	Total dose (mg)	Survival by week 40	Survival by week 50
NMA-C8	93	18.6	1120	5/20	0/20
NMA-C9	100	20	1200	11/20	1/20
NMA-C10	108	21.6	1300	20/20	20/20
NMA-C12	60	12	720	20/20	20/20
NMA-C14	140	28	1680	20/20	20/20
Untreated controls				20/20	20/20

¹ Calculated by OEHHA

Significant increases in tumors of various types were seen for each of the tested NMAs, as shown in Table 4. None of the control animals were observed with any of these tumor types. The only tumor seen in the control animals was interstitial cell lung tumors, which occurred in two control rats. No lung interstitial cell tumors were observed in any of the animals treated with NMAs.

Table 4. Overview of rare or significantly increased tumor sites in gavage studies in male Fischer F344 rats (Lijinsky et al., 1981)

Tumor site	Tumor type ¹	NMA-C8	NMA-C9	NMA-C10	NMA-C12	NMA-C14
Nacal agyity	Papilloma (r)	+	+			
Nasal cavity	Carcinoma (r)	+*	+	+		
Trachea	Papilloma (r)	+*				
	Adenoma					
Lung	Adenocarcinoma (r)	+*	+*	+*	+	+
_	Squamous cell carcinoma (r)		+			
Forestomach	Papilloma (r)			+	+	
Forestomach	Carcinoma (r)			+	+*	
	Hepatocellular carcinoma	+*	+*			
Liver	Cholangiocarcinoma (r)		+*			
	Hemangiosarcoma (r)	+				
Pancreas	Islet cell carcinoma				+*	
Kidney	Carcinoma (r)					+
Bladder	Transitional cell carcinoma (r)	+*		+*	+*	+*

^{*} Statistically significant (p < 0.05) increases of tumor incidence by Fisher pairwise comparison (conducted by OEHHA)

1 (r) = rare

Tumors of the nasal cavity, lung, forestomach, liver and bladder were seen in treatment groups for at least two different NMAs. Nasal cavity papillomas and carcinomas, lung adenocarcinomas and squamous cell carcinomas, forestomach papillomas and carcinomas, and bladder transitional cell carcinomas are rare in male Fischer 344 (F344) rats (Frith et al., 1995, Frantz et al., 1991; Schwartz et al., 1994; Haseman et al., 1998; Boorman et al., 1990). Significant increases in tracheal papilloma were seen after treatment with NMA-C8, and in pancreatic islet cell carcinoma after treatment with NMA-C12. Tracheal papillomas are also rare in male F344 rats (Schwartz et al., 1994; Frith et al., 1995; Frantz et al., 1991; Haseman et al., 1998). Rare liver hemangiosarcomas and kidney carcinomas (Boorman et al., 1990) were seen with NMA-C8 treatment, and rare cholangiocarcinomas (Boorman et al., 1990) were seen following treatment with NMA-C9.

Incidences of the tumors seen in the Lijinsky et al. (1981) studies are presented separately below for each of the NMA treatment groups. The tumors that are rare are denoted by "r" in the tables.

NMA-C8 treatment resulted in the observation of tumors at multiple sites, including nasal cavity (papillomas and carcinomas), trachea (papillomas), lung (adenomas and adenocarcinomas), liver (hepatocellular carcinomas and hemangiosarcomas), and bladder (transitional cell carcinomas) (Table 5). There was a statistically significant increase by pairwise comparison with the control group of nasal cavity carcinomas, tracheal papillomas, lung adenocarcinomas, hepatocellular carcinomas, and urinary bladder transitional cell carcinomas.

Table 5. Tumor incidence in male Fischer 344 rats administered NMA-C8 by gavage twice/week for 30 weeks and observed for life (Lijinsky et al., 1981)

Tumor	Tumor Site and Type		Total dose: 1120 mg/animal ¹
Negal Cavity	Papilloma (r)	0/20	3/20
Nasal Cavity	Carcinoma (r)	0/20	14/20***
Trachea	Papilloma (r)	0/20	5/20*
	Adenoma	0/20	4/20
Lung	Adenocarcinoma (r)	0/20 ²	8/20**
Liver	Hepatocellular carcinoma	0/20	13/20***
	Hemangiosarcoma (r)	0/20	4/20
Bladder	Transitional cell carcinoma (r)	0/20	14/20***

¹ Treated group tumor incidences with asterisks indicate significant results from Fisher pairwise comparison with controls (performed by OEHHA)
² Two lung interstitial cell carcinomas observed in controls

^{*} p < 0.05; ** p < 0.01; *** p < 0.001. (r) denotes a rare tumor. See text for details.

NMA-C9 treatment resulted in the observation of tumors at multiple sites, including the nasal cavity, lung, and liver. Nasal tumors observed included papillomas and carcinomas; lung tumors included adenomas, adenocarcinomas, and squamous cell carcinomas; and liver tumors included hepatocellular carcinomas and cholangiocarcinomas (Table 6). Treated animals had statistically significant increases for lung adenocarcinomas, hepatocellular carcinomas, and liver cholangiocarcinomas.

Table 6. Tumor incidence in male Fischer 344 rats administered NMA-C9 by gavage twice/week for 30 weeks and observed for life (Lijinsky et al., 1981)

Tumor Site and Type		Control	Total dose: 1200 mg/animal ¹
Nasal	Papilloma (r)	0/20	4/20
Cavity	Carcinoma (r)	0/20	4/20
	Adenoma	0/20	1/20
Lung	Adenocarcinoma (r)	0/20 ²	9/20***
Lang	Squamous cell Carcinoma (r)	0/20	2/20
Liver	Hepatocellular carcinoma	0/20	14/20***
Livei	Cholangiocarcinoma (r)	0/20	6/20**

¹ Treatment group tumor incidences with asterisks indicate significant results from Fisher pairwise comparison with controls (performed by OEHHA)
² Two lung interstitial cell carcinomas observed in controls

^{*} p < 0.05; *** p < 0.01; *** p < 0.001. (r) denotes a rare tumor. See text for details.

NMA-C10 treatment resulted in the observation of tumors at multiple sites, including the nasal cavity (carcinomas), lung (adenomas and adenocarcinomas), forestomach (papillomas and carcinomas), liver (hepatocellular carcinomas), and bladder (transitional cell carcinomas) (Table 7). Statistically significant increases were observed for adenocarcinomas of the lung and transitional cell carcinomas of the bladder. Additional tumors observed in treated animals but not presented in table 7 include two sebaceous gland carcinomas, one spleen hemangiosarcoma, one heart sarcoma, one carcinoma of the head, and one leiomyosarcoma of the ear. Both spleen hemangiosarcoma and sebaceous gland carcinoma are rare in male F344 rats (Haseman *et al.*, 1998).

Table 7. Tumor incidence in male Fischer 344 rats administered NMA-C10 by gavage twice/week for 30 weeks and observed for life (Lijinsky *et al.*, 1981)

Tumor Site and Type		Control	Total dose: 1300 mg/animal ¹
Nasal Cavity	Carcinoma (r)	0/20	1/20
Luna	Adenoma	0/20	3/20
Lung	Adenocarcinoma (r)	$0/20^{2}$	5/20*
Forestomach	Papilloma (r)	0/20	1/20
Forestomach	Carcinoma (r)	0/20	1/20
Liver	Hepatocellular carcinoma	0/20	2/20
Bladder	Transitional cell carcinoma (r)	0/20	17/20***

¹ Treatment group tumor incidences with asterisks indicate significant results from Fisher pairwise comparison with controls (performed by OEHHA)

² Two lung interstitial cell carcinomas observed in controls

^{*} p < 0.05; ** p < 0.01; *** p < 0.001. (r) denotes a rare tumor. See text for details.

For NMA-C12, the primary target organ was the bladder, where transitional cell carcinomas were observed in all but one animal. Other tumor sites included the lung, forestomach, liver, and pancreas (Table 8). Statistically significant increases by pairwise comparison with controls were observed for forestomach carcinomas, pancreatic islet cell carcinomas, and bladder transitional cell carcinomas.

Table 8. Tumor incidence in male Fischer 344 rats administered NMA-C12 by gavage twice/week for 30 weeks and observed for life (Lijinsky et al., 1981)

Tumor Site and Type		Control	Total dose: 720 mg/animal ¹
Adenoma		0/20	1/20
Lung	Adenocarcinoma (r)	0/20 ²	4/20
Forestomach	Papilloma (r)	0/20	2/20
Forestoniach	Carcinoma (r)	0/20	5/20*
Liver	Liver Hepatocellular carcinoma		3/20
Pancreas Islet cell carcinoma		3/20	10/20*
Bladder	Transitional cell carcinoma (r)	0/20	19/20***

¹ Treatment group tumor incidences with asterisks indicate significant results from Fisher pairwise comparison with controls (performed by OEHHA)
² Two lung interstitial cell carcinomas observed in controls

For NMA-C14, the primary target organ was also the bladder, where 100 percent (20/20) tumor incidence was observed. The tumors were described as transitional cell carcinomas and were invasive. Two adenomas and one adenocarcinoma of the lung and two kidney carcinomas were also observed in treated rats (Table 9).

Table 9. Tumor incidence in male Fischer 344 rats administered NMA-C14 by gavage twice/week for 30 weeks and observed for life (Lijinsky et al., 1981)

Tumor Site and Type		Control	Total dose: 1680 mg/animal ¹
Lung	Adenoma	0/20	2/20
Lung	Adenocarcinoma (r)	0/20 ²	1/20
Kidney	Carcinoma (r)	0/20	2/20
Bladder	Transitional cell carcinoma (r)	0/20	20/20***

¹ Treatment group tumor incidences with asterisks indicate significant results from Fisher pairwise comparison with controls (performed by OEHHA)

^{*} p < 0.05; ** p < 0.01; *** p < 0.001. (r) denotes a rare tumor. See text for details.

Two lung interstitial cell carcinomas observed in controls

^{*} p < 0.05; ** p < 0.01; *** p < 0.001. (r) denotes a rare tumor. See text for details.

Gavage studies of six NMAs in male and female Syrian golden hamsters (Lijinsky and Kovatch, 1988)

NMA-C3, -C4, -C5, -C6, -C7, and -C8 were administered in 0.2 ml of ethyl acetate:corn oil (1:2) by gavage once a week to groups of male and female Syrian golden hamsters. The dosing regimens for studies in males are presented in Table 10, and for studies in females in Table 11. Treatment group size was 12 animals/sex/group, including the vehicle controls, except for the study of NMA-C6 in females, where 20 animals were in the treatment group. Treatment duration varied for the different groups, as shown in Tables 10 and 11. Controls were given the vehicle for 75 weeks. Animals were allowed to live until natural death occurred or until moribund. Average survival times for treated animals are also presented in Table 10 (males) and Table 11 (females).

Table 10. Dose received and survival of male Syrian golden hamsters administered NMAs by gavage once/week for 23–50 weeks (Lijinsky and Kovatch, 1988)

Compound	Treatment duration (weeks)	Administered dose (mg/week)	Total dose (mmol [mg ¹])	Average sur- vival (weeks)
NMA-C3	23-30	2.1	0.6 [61.2]	49
NMA-C4	23-30	2.5	0.65 [75.4]	49
INIVIA-C4	23-30	5.0	1.0 [116]	27
NMA-C5	23-30	5.6	1.1 [143]	34
NMA-C6	50	6.2	2.1 [302]	51
NMA-C7	40	6.8	2.1 [332]	52
NMA-C8	40	7.4	2.1 [361]	53
Vehicle control	75	0	0	100

Converted by OEHHA (total mmol dose provided by authors)

Table 11. Dose received and survival of female Syrian golden hamsters administered NMAs by gavage once/week for 23–50 weeks (Lijinsky and Kovatch, 1988)

Compound	Treatment duration (weeks)	Administered dose (mg/week)	Total dose (mmol [mg¹])	Average sur- vival (weeks)
NMA-C3	23-30	2.1	0.6 [61.2]	44
NMA-C4	23-30	2.5	0.65 [75.4]	37
INIVIA-C4	23-30	5.0	1.0 [116]	25
NMA-C5	23-30	5.6	1.1 [143]	38
NMA-C6	50	6.2	2.1 [302]	57
NMA-C7	40	6.8	2.1 [332]	57
NMA-C8	40	7.4	2.1 [361]	54
Control	75	0	0	87

¹ Converted by OEHHA (total mmol dose provided by authors)

Significant increases in tumors of various types were seen for each of the tested NMAs in male and female hamsters, as shown in Table 12. No tumors were reported in the male or female vehicle controls, with the exception of one liver cholangioma in each. Liver cholangiomas were observed in several animals of each sex treated with NMAs.

Table 12. Overview of rare or significantly increased tumor sites in gavage studies in male and female Syrian golden hamsters (Lijinsky and Kovatch, 1988)

Tumor site	Tumor type ¹	NMA-C3	NMA-C4 ²	NMA-C5	NMA-C6	NMA-C7	NMA-C8
Nasal mucosa	Adenoma (r)	M^3	M*,F*	F ⁴	M	M*,F	M,F
Nasai illucosa	Carcinoma (r)	M*,F*	M*,F*	M,F*	М	M,F	
	Alveolar/bronchial adenoma (r)	М	M,F*	M,F*	M*,F*	M*,F*	M*,F*
Lung	Alveolar/bronchial carcinoma (r)		М		F*	M*,F*	M,F
Lung	Squamous cell carcinoma (r)		M	М	М		
	Adenosquamous carcinoma (r)			F	F	M, F	
Ferestemash	Squamous cell papilloma		M*,F*	F*	M*	F*	M*,F*
Forestomach	Squamous cell carcinoma (r, M)		M*	M*, F*	M*,F*	M*	M*
	Hepatocellular adenoma (r)	M*,F*	M*,F*	M, F	М	M, F	M*,F*
	Hepatocellular carcinoma (r)		М			M	M, F
Liver	Hemangiosarcoma (r)	M*,F*	M*		М	M*	M
	Cholangioma				F*	M*,F*	
	Cholangiocarcinoma (r)			M		M	
	Transitional cell papilloma (r)				M,F		М
	Transitional cell carcinoma (r)				M,F		
Bladder	Hemangioma (r)						М
	Hemangiosarcoma (r)						М
	Undifferentiated sarcoma (r)						M, F

^{*} Statistically significant (p < 0.05) increases of tumor incidence by Fisher pairwise comparison (conducted by OEHHA)

¹ (r) = rare

² Results for low and high dose are not distinguished here

³ M = Male

⁴ F= Female

Tumors of the nasal mucosa, lung, forestomach, liver and bladder were observed in treatment groups for at least two different NMAs. Nasal mucosa tumors, lung tumors, hepatocellular adenomas and carcinomas, liver cholangiocarcinomas, liver hemangiomas and hemangiosarcomas, and urinary bladder tumors are rare in Syrian golden hamsters (IARC, 1996; Pour *et al.*, 1976a; 1976b). Forestomach squamous cell carcinomas are rare in male (but not female) Syrian golden hamsters (IARC, 1996).

Incidences of the tumors seen in the Lijinsky and Kovatch (1988) studies are presented separately below for each of the NMA treatment groups. The tumors which are rare are denoted by "r" in the tables.

NMA-C3 treatment of male hamsters resulted in the observation of tumors at multiple sites. Tumors observed included nasal mucosa (adenomas and carcinomas), lung (alveolar/bronchial adenomas), and liver (hepatocellular adenomas, hemangiosarcomas, one cholangioma) (Table 13). Statistically significant increases were observed in nasal mucosa carcinomas and liver hepatocellular adenomas and hemangiosarcomas compared to controls.

Table 13. Tumor incidence in male Syrian golden hamsters administered NMA-C3 by gavage once/week for 23 - 30 weeks and observed for life (Lijinsky and Kovatch, 1988)

Tumor site and type		Vehicle Controls	2.1 mg/week Total dose: 0.6 mmol ¹ (61.2 mg)
Nasal	Adenoma (r)	0/12	3/12
mucosa	Carcinoma (r)	0/12	10/12***
Lung	Alveolar/bronchial adenoma (r)	0/12	2/12
Liver	Hepatocellular adenoma (r)	0/12	6/12**
Liver	Hemangiosarcoma (r)	0/12	10/12***

¹ Treatment group tumor incidences with asterisks indicate significant results from Fisher pairwise comparison with controls (performed by OEHHA)

^{*} p < 0.05; ** p < 0.01; *** p < 0.001. (r) denotes a rare tumor. See text for details.

Tumor sites observed in the study of female hamsters exposed to NMA-C3 included the nasal mucosa (carcinomas) and the liver (hepatocellular adenomas, hemangiosarcomas) (Table 14). The incidences of each of these tumors were statistically significant by pairwise comparison with the controls.

Table 14. Tumor incidence in female Syrian golden hamsters administered NMA-C3 by gavage once/week for 23 - 30 weeks and observed for life (Lijinsky and Kovatch, 1988)

Tumor site and type		Vehicle Controls	2.1 mg/week Total dose: 0.6 mmol ¹ (61.2 mg)
Nasal mucosa Carcinoma (r)		0/12	10/12***
Liver	Hepatocellular adenoma (r)	0/12	4/12*
Liver	Hemangiosarcoma (r)	0/12	4/12*

Treatment group tumor incidences with asterisks indicate significant results from Fisher pairwise comparison with controls (performed by OEHHA)

^{*} p < 0.05; ** p < 0.01; *** p < 0.001. (r) denotes a rare tumor. See text for details.

NMA-C4 was tested at two doses in male hamsters, and tumors were observed at multiple sites in the treated groups. Tumor sites observed included nasal mucosa (adenomas and carcinomas), lung (alveolar/bronchial adenomas and carcinomas, and one squamous cell carcinoma), forestomach (squamous cell papillomas and carcinomas) and liver (hepatocellular adenomas and carcinomas, cholangiomas, hemangiosarcomas, and one hemangioma) (Table 15). Statistically significant increases by pairwise comparisons with controls were observed for nasal mucosa adenomas (low-dose group) and carcinomas (both low-dose and high-dose groups), forestomach squamous cell papillomas (low-dose and high-dose groups) and carcinomas (high-dose group), hepatocellular adenomas (low-dose group), and liver hemangiosarcomas (both low- and high-dose groups). Statistically significant increases by trend were observed for nasal mucosa carcinomas, forestomach squamous cell papillomas and carcinomas, and liver hepatocellular adenomas and hemangiosarcomas.

Table 15. Tumor incidence in male Syrian golden hamsters administered NMA-C4 by gavage once/week for 23 - 30 weeks and observed for life (Lijinsky and Kovatch, 1988)

Tumor site and type		Vehicle Controls ¹	2.5 mg/week Total dose: 0.65 mmol ² (75.4 mg)	5.0 mg/week Total dose: 1.0 mmol ² (116 mg)
Nasal	Adenoma (r)	0/12	4/12*	0/12
mucosa	Carcinoma (r)	0/12**	5/12*	6/12**
	Alveolar/bronchial ad- enoma (r)	0/12	3/12	3/12
Lung	Alveolar/bronchial carcinoma (r)	0/12	0/12	1/12
	Squamous cell carcinoma (r)	0/12	0/12	1/12
Fore-	Squamous cell papilloma	0/12**	5/12*	5/12*
stomach	Squamous cell carcinoma (r)	0/12*	2/12	4/12*
	Hepatocellular adenoma (r)	0/12*	5/12*	3/12
Liver	Hepatocellular carcinoma (r)	0/12	1/12	1/12
	Hemangioma (r)	0/12	0/12	1/12
	Hemangiosarcoma (r)	0/12*	5/12*	4/12*

¹ Control incidences with asterisks indicate significant results from exact trend test (performed by OEHHA)

² Treatment group tumor incidences with asterisks indicate significant results from Fisher pairwise comparison with controls (performed by OEHHA)

^{*} p < 0.05; ** p < 0.01; *** p < 0.001. (r) denotes a rare tumor. See text for details.

NMA-C4 was tested at two doses in female hamsters, and tumors were observed in the nasal mucosa (carcinomas, adenomas, and one undifferentiated sarcoma), lung (alveolar/bronchial adenomas), forestomach (squamous cell papillomas and carcinomas), and liver (hepatocellular adenomas, one cholangioma, one hemangiosarcoma, and one hemangioma) (Table 16). Significant increases by pairwise comparisons with the control were observed for nasal carcinomas (low- and high-dose groups) and nasal adenomas (low-dose group), lung alveolar/bronchial adenomas (high-dose group), forestomach squamous cell papillomas (low-dose group), and hepatocellular adenomas (low-dose group). A statistically significant dose-response was noted for nasal mucosa carcinomas, lung alveolar/bronchial adenomas, and forestomach squamous cell papillomas and carcinomas.

Table 16. Tumor incidence in female Syrian golden hamsters administered NMA-C4 by gavage once/week for 23 - 30 weeks and observed for life (Lijinsky and Kovatch, 1988)

Tumor site and type		Vehicle Controls ¹	2.5 mg/week Total dose: 0.65 mmol ² (75.4 mg)	5.0 mg/week Total dose: 1.0 mmol ² (116 mg)
	Adenoma (r)	0/12	4/12*	1/12
Nasal	Carcinoma (r)	0/12***	7/12**	9/12***
mucosa	Undifferentiated sarcoma	0/12	1/12	0/12
Lung	Alveolar/bronchial adenoma (r)	0/12*	2/12	4/12*
Fore-	Squamous cell papilloma	0/12*	5/12*	3/12
stomach	Squamous cell carcinoma	0/12*	0/12	3/12
Liver	Hepatocellular adenoma (r)	0/12	4/12*	1/12

Control incidences with asterisks indicate significant results from exact trend test (performed by OEHHA)

² Treatment group tumor incidences with asterisks indicate significant results from Fisher pairwise comparison with controls (performed by OEHHA)

^{*} p < 0.05; ** p < 0.01; *** p < 0.001. (r) denotes a rare tumor. See text for details.

NMA-C5 treatment of male hamsters resulted in the observation of tumors in the nasal mucosa (carcinomas), lung (alveolar/bronchial adenomas, squamous cell carcinomas), forestomach (squamous cell carcinomas and papillomas), and liver (hepatocellular adenomas, cholangiocarcinomas, one cholangioma, and two hemangiosarcomas) (Table 17). Tumor incidences for forestomach squamous cell carcinomas were statistically significantly increased by pairwise comparison with controls.

Table 17. Tumor incidence in male Syrian golden hamsters administered NMA-C5 by gavage once/week for 23 - 30 weeks and observed for life (Lijinsky and Kovatch, 1988)

Tu	mor site and type	Vehicle Controls	5.6 mg/week Total dose: 1.1 mmol ¹ (143 mg)
Nasal mucosa	Carcinoma (r)	0/12	3/12
Lung	Alveolar/bronchial adenoma (r)	0/12	3/12
	Squamous cell carcinoma (r)	0/12	1/12
Forestomach	Squamous cell papilloma	0/12	2/12
	Squamous cell carcinoma (r)	0/12	7/12**
Liver	Hepatocellular adenoma (r)	0/12	3/12
	Cholangiocarcinoma (r)	0/12	1/12

¹ Treatment group tumor incidences with asterisks indicate significant results from Fisher pairwise comparison with controls (performed by OEHHA)

^{*} p < 0.05; ** p < 0.01; *** p < 0.001. (r) denotes a rare tumor. See text for details.

In the study of female hamsters exposed to NMA-C5, tumors were observed at multiple sites, including the nasal mucosa (adenoma and carcinoma), lung (alveolar/bronchial adenoma and carcinoma), forestomach (squamous cell papilloma and carcinoma), and liver (one hepatocellular adenoma, two cholangiomas, one hemangioma, and one hemangiosarcoma) (Table 18). Statistically significant incidence increases by pairwise comparison with controls were noted for nasal mucosa carcinomas, lung alveolar/bronchial adenomas, and forestomach squamous cell carcinomas and papillomas.

Table 18. Tumor incidence in female Syrian golden hamsters administered NMA-C5 by gavage once/week for 23 - 30 weeks and observed for life (Lijinsky and Kovatch, 1988)

Tu	mor site and type	Vehicle Controls	5.6 mg/week Total dose: 1.1 mmol ¹ (143 mg)
Nasal mucosa	Adenoma (r)	0/12	3/12
	Carcinoma (r)	0/12	8/12***
Lung	Alveolar/bronchial adenoma (r)	0/12	8/12***
	Adenosquamous carcinoma (r)	0/12	1/12
Forestomach	Squamous cell papilloma	0/12	6/12**
	Squamous cell carcinoma	0/12	6/12**
Liver	Hepatocellular adenoma (r)	0/12	1/12

Treatment group tumor incidences with asterisks indicate significant results from Fisher pairwise comparison with controls (performed by OEHHA)

^{*} p < 0.05; ** p < 0.01; *** p < 0.001. (r) denotes a rare tumor. See text for details.

NMA-C6 treatment of male hamsters resulted in the observation of tumors at multiple sites, including nasal mucosa (carcinoma and adenoma), lung (alveolar/bronchial adenomas and squamous cell carcinoma), forestomach (squamous cell carcinomas and papillomas), liver (hepatocellular adenomas, cholanigoma, one hemangioma, and hemangiosarcomas), and urinary bladder (transitional cell carcinoma and papillomas) (Table 19). Tumor incidences were significantly increased by pairwise comparison with controls for alveolar/bronchial adenomas and forestomach squamous cell carcinomas and papillomas.

Table 19. Tumor incidence in male Syrian golden hamsters administered NMA-C6 by gavage once/week for 50 weeks and observed for life (Lijinsky and Kovatch, 1988)

Tumor Site and Type		Vehicle Controls	6.2 mg/week Total dose: 2.1 mmol ¹ (302 mg)
Nasal mucosa	Adenoma (r)	0/12	3/12
	Carcinoma (r)	0/12	2/12
Lung	Alveolar/bronchial adenoma (r)	0/12	5/12*
	Squamous cell carcinoma (r)	0/12	1/12
Forestomach	Squamous cell papilloma	0/12	4/12*
Forestomach	Squamous cell carcinoma (r)	0/12	7/12**
Liver	Hepatocellular adenoma (r)	0/12	2/12
	Cholangioma	1/12	4/12
	Hemangioma (r)	0/12	1/12
	Hemangiosarcoma (r)	0/12	2/12
Urinary	Transitional cell papilloma (r)	0/12	3/12
bladder	Transitional cell carcinoma (r)	0/12	1/12

¹ Treatment group tumor incidences with asterisks indicate significant results from Fisher pairwise comparison with controls (performed by OEHHA)

^{**} p < 0.05; ** p < 0.01; *** p < 0.001. (r) denotes a rare tumor. See text for details.

In the study of female hamsters exposed to NMA-C6, tumors were observed at multiple sites, including lung (alveolar/bronchial carcinomas and adenomas, and one adenosquamous carcinoma), forestomach (squamous cell carcinomas and papillomas), liver (cholangiomas), and urinary bladder (transitional cell carcinomas and papillomas) (see Table 20). Tumor incidences were significantly increased by pairwise comparison with controls for alveolar/bronchial adenomas and carcinomas, forestomach squamous cell carcinomas, as well as liver cholangiomas.

Table 20. Tumor incidence in female Syrian golden hamsters administered NMA-C6 by gavage once/week for 50 weeks and observed for life (Lijinsky and Kovatch, 1988)

Tumor Site and Type		Vehicle Controls	6.2 mg/week Total dose: 2.1 mmol ¹ (302 mg)
Lung	Alveolar/bronchial adenoma (r)	0/12	6/20*
	Alveolar/bronchial carcinoma (r)	0/12	9/20**
	Adenosquamous carcinoma (r)	0/12	1/20
Forestomach	Squamous cell papilloma	0/12	2/20
	Squamous cell carcinoma	0/12	18/20***
Liver	Cholangioma	1/12	12/20**
Urinary bladder	Transitional cell papilloma (r)	0/12	2/20
	Transitional cell carcinoma (r)	0/12	3/20

¹ Treatment group tumor incidences with asterisks indicate significant results from Fisher pairwise comparison with controls (performed by OEHHA)

^{*} p < 0.05; ** p < 0.01; *** p < 0.001. (r) denotes a rare tumor. See text for details.

NMA-C7 treatment of male hamsters resulted in observations of tumors at multiple sites, including nasal mucosa (adenomas and carcinomas), lung (alveolar/bronchial adenomas and carcinomas, and adenosquamous carcinomas), forestomach (squamous cell papillomas and carcinomas), and liver (hepatocellular adenomas and carcinomas, hemangiosarcomas, cholangiomas, and one cholangiocarcinoma) (Table 21). Tumor incidences were significantly increased by pairwise comparison with controls for nasal adenomas, alveolar/bronchial adenomas and carcinomas, forestomach squamous cell carcinomas, and liver cholangiomas and hemangiosarcomas.

Table 21. Tumor incidence in male Syrian golden hamsters administered NMA-C7 by gavage once/week for 40 weeks and observed for life (Lijinsky and Kovatch, 1988)

Tu	mor Site and Type	Vehicle Controls	6.8 mg/week Total dose: 2.1 mmol ¹ (332 mg)
Nasal	Adenoma (r)	0/12	5/12*
mucosa	Carcinoma (r)	0/12	3/12
Lung	Alveolar/bronchial adenoma (r)	0/12	9/12***
	Alveolar/bronchial carcinoma (r)	0/12	4/12*
	Adenosquamous carcinoma (r)	0/12	2/12
Forestomach	Squamous cell papilloma	0/12	2/12
	Squamous cell carcinoma (r)	0/12	6/12**
Liver	Hepatocellular adenoma (r)	0/12	1/12
	Hepatocellular carcinoma (r)	0/12	1/12
	Hemangiosarcoma (r)	0/12	5/12*
	Cholangioma	1/12	10/12***
	Cholangiocarcinoma (r)	0/12	1/12

¹ Treatment group tumor incidences with asterisks indicate significant results from Fisher pairwise comparison with controls (performed by OEHHA)

^{*} p < 0.05; ** p < 0.01; *** p < 0.001. (r) denotes a rare tumor. See text for details.

Tumors were observed at multiple sites in female hamsters treated with NMA-C7, including nasal mucosa (adenomas and carcinomas), lung (alveolar/bronchial adenomas and carcinomas, adenosquamous carcinomas), forestomach (squamous cell papillomas), and liver (one hepatocellular adenoma, cholangiomas) (Table 22). Tumor incidences were significantly increased by pairwise comparison with controls for alveolar/bronchial adenomas and carcinomas, forestomach squamous cell papillomas, and liver cholangiomas.

Table 22. Tumor incidence in female Syrian golden hamsters administered NMA-C7 by gavage once/week for 40 weeks and observed for life (Lijinsky and Kovatch, 1988)

Tumor Site and Type		Vehicle Controls	6.8 mg/kg/week Total dose: 2.1 mmol ¹ (332 mg)
Nasal mucosa	Adenoma (r)	0/12	2/12
	Carcinoma (r)	0/12	3/12
Lung	Alveolar/bronchial adenoma (r)	0/12	8/12***
	Alveolar/bronchial carcinoma (r)	0/12	5/12*
	Adenosquamous carcinoma (r)	0/12	2/12
Forestomach	Squamous cell papilloma	0/12	7/12**
Liver	Hepatocellular adenoma (r)	0/12	1/12
	Cholangioma	1/12	9/12**

¹ Treatment group tumor incidences with asterisks indicate significant results from Fisher pairwise comparison with controls (performed by OEHHA)

^{*} p < 0.05; ** p < 0.01; *** p < 0.001. (r) denotes a rare tumor. See text for details.

NMA-C8 treatment of male hamsters resulted in observations of tumors at multiple sites, including nasal mucosa (adenomas), lung (alveolar/bronchial adenomas and one carcinoma), forestomach (squamous cell papillomas and carcinomas), liver (hepatocellular adenomas and one carcinoma, cholangiomas, and hemangiosarcomas), and urinary bladder (transitional cell papillomas, hemangiomas, one hemangiosarcoma, and one undifferentiated sarcoma) (Table 23). Tumor incidences were significantly increased by pairwise comparison with controls for alveolar/bronchial adenomas, forestomach squamous cell papillomas and carcinomas, and hepatocellular adenomas.

Table 23. Tumor incidence in male Syrian golden hamsters administered NMA-C8 by gavage once/week for 40 weeks and observed for life (Lijinsky and Kovatch, 1988)

Tu	mor Site and Type	Vehicle Controls	7.4 mg/week Total dose: 2.1 mmol ¹ (361 mg)
Nasal mucosa	Adenoma (r)	0/12	2/12
Luna	Alveolar/bronchial adenoma (r)	0/12	6/12**
Lung	Alveolar/bronchial carcinoma (r)	0/12	1/12
Forestomach	Squamous cell papilloma	0/12	5/12*
Forestomach	Squamous cell carcinoma (r)	0/12	6/12**
	Hepatocellular adenoma (r)	0/12	5/12*
Liver	Hepatocellular carcinoma (r)	0/12	1/12
Livei	Cholangioma	1/12	4/12
	Hemangiosarcoma (r)	0/12	3/12
	Transitional cell papilloma (r)	0/12	2/12
Urinary	Hemangioma (r)	0/12	2/12
bladder	Hemangiosarcoma (r)	0/12	1/12
	Undifferentiated sarcoma (r)	0/12	1/12

¹ Treatment group tumor incidences with asterisks indicate significant results from Fisher pairwise comparison with controls (performed by OEHHA)

^{*} p < 0.05; ** p < 0.01; *** p < 0.001. (r) denotes a rare tumor. See text for details.

In the study of female hamsters exposed to NMA-C8, tumors were observed at multiple sites, including nasal mucosa (adenomas), lung (alveolar/bronchial adenomas and one carcinoma), forestomach (squamous cell papillomas), liver (hepatocellular adenomas and one carcinoma, one cholangioma, and one histiocytic sarcoma), and urinary bladder (undifferentiated sarcomas) (Table 24). Tumor incidences were significantly increased by pairwise comparison with controls for alveolar/bronchial adenomas, forestomach squamous cell papillomas, and liver adenomas.

Table 24. Tumor incidence in female Syrian golden hamsters administered NMA-C8 by gavage once/week for 40 weeks and observed for life (Lijinsky and Kovatch, 1988)

Tur	mor Site and Type	Vehicle Controls	7.4 mg/ week Total dose: 2.1 mmol ¹ (361 mg)
Nasal mucosa	Adenoma (r)	0/12	3/12
Luna	Alveolar/bronchial adenoma (r)	0/12	7/12**
Lung	Alveolar/bronchial carcinoma (r)	0/12	1/12
Forestomach	Squamous cell papilloma	0/12	6/12**
	Hepatocellular adenoma (r)	0/12	8/12***
Liver	Hepatocellular carcinoma (r)	0/12	1/12
	Histiocytic sarcoma	0/12	1/12
Urinary bladder	Undifferentiated sarcoma (r)	0/12	3/12

¹ Treatment group tumor incidences with asterisks indicate significant results from Fisher pairwise comparison with controls (performed by OEHHA)

^{*} p < 0.05; ** p < 0.01; *** p < 0.001. (r) denotes a rare tumor. See text for details.

3.2.2 Additional Studies on NMAs

NMA-C3

The carcinogenicity of NMA-C3 was studied in rats, hamsters and mice. These studies are presented briefly below, with the exception of the two oral gavage studies conducted in male and female Syrian golden hamsters by Lijinsky and Kovatch (1988), discussed in Section 3.2.1 above.

Table 25. Summary of animal carcinogenicity studies of NMA-C3

Species, Strain	Sex	Route	Dose and Duration	Tumor Site/Tumor type ¹	Incidence ²	Refer- ence
Rat, Fischer 344	Female	Drinking water	14 mg/liter in 20 ml water 5 days per week for 23 weeks; total dose: 0.3 mmol. Animals were observed until death. All animals died by 40 weeks and mean survival time was not reported. No concurrent controls	Nasal cavity: Carcinoma (r) Tongue: Carcinoma (r) Papilloma or carcinoma (r) Epiglottis: Carcinoma (r) Papilloma or carcinoma (r) Oropharynx: Carcinoma (r) Papilloma or carcinoma (r) Esophagus: Carcinoma (r) Papilloma or carcinoma (r)	N/A, 1/20 N/A, 2/20 N/A, 3/20 N/A, 2/20 N/A, 3/20 N/A, 5/20 N/A, 7/20 N/A, 18/20 N/A, 19/20	Lijinsky et al., 1983a ³
				Forestomach: Papilloma (r)	N/A, 7/20	

Rare tumor type denoted by (r); combined incidence of tumors denoted by "or" as in: "malignant or benign"

Incidence listed first for control, then for treated groups in order of increasing dose; treatment group incidences with asterisks indicate significant results from Fisher pairwise comparison with controls; control incidences with asterisks indicate significant results from exact trend test (performed by OEHHA): * p < 0.05; ** p < 0.01; *** p < 0.001; N/A = not available

³ While Lijinsky *et al.* (1983a) did not have concurrent controls, the tumors types tabulated here were not seen in a continuous series of untreated control animal groups from the same animal colony maintained at the same facility.

Table 25 (cont'd). NMA-C3 animal carcinogenicity studies

Species, Strain	Sex	Route	Dose and Duration	Tumor Site/Tumor type ¹	Incidence ²	Refer- ence		
		once weekly for life. Animals killed when moribund Low dose: 5.3 mg/kg Total dose: 222 mg/kg. Average survival: 41.9 weeks. Mid-dose: 10.6 mg/kg Total dose: 373 mg/kg. Average survival: 35.2 weeks. High dose: 21.2 mg/kg Total dose: 568 mg/kg. Average survival: 77.2 weeks. Vehicle control: Average survival: 77.2 weeks. All groups in 5 ml 0.9% NaCl once weekly for life. Animals killed when moribund Low dose: 5.3 mg/kg Total dose: 260 mg/kg. Average survival: 49.0 weeks. Female Female Mid-dose: 10.6 mg/kg Total dose: 387 mg/kg. Average survival: 36.1 weeks. High dose: 21.2 mg/kg Total dose: 585 mg/kg. Average survival: 27.6 weeks. Vehicle control:			killed when moribund Low dose: 5.3 mg/kg Total dose: 222 mg/kg. Average survival: 41.9 weeks.	Nasal cavity/sinuses: Maxilloturbinals, nasal turbinals, maxillary sinuses: Squamous cell carcinoma (r) Squamous cell papilloma or carcinoma (r)	0/10, 0/10, 2/10, 1/9 1/10**, 4/10, 6/10*, 6/9*	
	Male		Esophagus: Squamous cell carcinoma (r) Squamous cell papilloma or carcinoma (r)	0/10, 1/10, 2/10, 1/9 0/10***, 9/10***, 10/10***, 8/9***				
Rat, Sprague			Average survival: 26.8 weeks. Vehicle control: Average survival: 77.2 weeks.	Liver: Malignant hemangioendothelioma (r)	0/10***, 3/10, 9/10***, 6/9**	Reznik et al.,		
Dawley	Female		once weekly for life. Animals killed when moribund Low dose: 5.3 mg/kg Total dose: 260 mg/kg. Average survival: 49.0 weeks. Mid-dose:10.6 mg/kg Total dose: 387 mg/kg.	Nasal cavity/sinuses: Maxilloturbinals, nasal turbinals, maxillary sinuses: Squamous cell carcinoma (r) Squamous cell papilloma or carcinoma (r) Endoturbinals: Malignant tumor (r)	0/10, 1/9, 0/8, 0/10 1/10, 6/9*, 5/8*, 3/10 0/10, 1/9, 1/8, 0/10	1975		
				High dose: 21.2 mg/kg Total dose: 585 mg/kg.	Esophagus: Squamous cell carcinoma (r) Squamous cell papilloma or carcinoma (r)	0/10, 3/9, 0/8, 1/10 0/10***, 7/9***, 6/8**, 7/10**		
			Vehicle control:	Liver: Malignant hemangioendothelioma (r)	0/10**, 3/9, 6/8**, 5/10*			

Table 25 (cont'd). NMA-C3 animal carcinogenicity studies

Species, Strain	Sex	Route	Dose and Duration	Tumor Site/Tumor type ¹	Incidence ²	Refer- ence			
					(inje was	was not reported) by single injection on GD 8, 10, 12, 14, or	Nasal cavity: Adenocarcinoma (r)	0/21, 2/19	
	Preg- nant females	S.C.	15. Animals were observed for life. Average survival 58 weeks.	Trachea: Adenocarcinoma	0/21, 1/19				
			Control: average survival 69 weeks.	Lung: Bronchiogenic adenoma or adenocarcinoma (r)	1/21, 3/19				
		Male In utero	F ₁ animals from one-time maternal dosing (see above). Animals were observed for life with average survival of 68 weeks. Control: average survival 72 weeks.	Nasal cavity: Adenocarcinoma (r)	0/100, 2/88				
Hamster, Syrian				<i>Trachea:</i> Adenocarcinoma	0/100, 1/88	Althoff & Grand-			
golden	F₁ Male			Lung: Bronchiogenic adenoma or adenocarcinoma (r)	0/100, 3/88	jean, 1979 ⁴			
				Endocrine: Thyroid tumors	12/100, 21/88*				
			F ₁ animals from one-time maternal dosing (see above).						
	F₁ Female	male	Animals were observed for life with average survival of 60 weeks.	Digestive: Combined	3/113, 14/89***				
			Control: average survival 66 weeks.						

⁴ Althoff and Grandjean (1979) reported incidences as a percentage; OEHHA converted these to number of tumor bearing animals/total number of animals

Table 25 (cont'd). NMA-C3 animal carcinogenicity studies

Species, Strain	Sex	Route	Dose and Duration	Tumor Site/Tumor type ¹	Incidence ²	Refer- ence		
				In olive oil (volume not reported) once weekly for life Low dose: 12.5 mg/kg Total dose: 425 mg/kg. Average survival: 34 weeks.	Nasal cavity: Carcinoma (r) Benign (epidermoid, mucoepidermoid and polypous) and carcinoma combined (r)	0/27***, 17/19***, 15/17***,18/19*** 0/27***, 18/19***, 15/17***, 18/19***		
Hamster, Syrian	Male and	s.c.	Mid-dose: 25 mg/kg s.c. Total dose: 750 mg/kg.	Laryngo-tracheo-bronchial tract: Papillomas	0/27***, 15/19***, 14/17***,17/19***	Pour <i>et al.</i> ,1974;		
golden	Female		Average survival: 30 weeks. High dose: 50 mg/kg	Lung: Adenoma or carcinoma (r)	0/27, N/A, N/A, 10/19***	1975		
					Total dose: 1200 mg/kg. Average survival: 24 weeks. Vehicle Control: Average survival: 49 weeks.	Liver: Hemangioendothelioma, cholangioma, or hepatocellular carcinoma (r)	0/27***, 1/19, 3/17, 17/19***	
		In 0.9% NaCl (volume not reported) once weekly for life.		Nasolacrimal duct: Malignant Benign or malignant	0/14, 2/15, 0/13, 1/14 0/14*, 9/15***, 6/13**, 5/14*			
		Low dose: 3.9 mg/kg; Total dose: 187 mg/kg. Ave survival 48±9 weeks (±SD). Mid-dose: 7.7 mg/kg Total dose: 331 mg/kg. Ave survival: 43±9 weeks. High dose: 15.4 mg/kg Total dose: 508 mg/kg.		Low dose: 3.9 mg/kg;	Naso- and Maxilloturbinal: Malignant Benign or malignant	0/14*, 3/15, 2/13, 4/14* 0/14***, 8/15**, 10/13***, 9/14***		
			survival 48 <u>+</u> 9 weeks (<u>+</u> SD).	Endo- and ectoturbinal: Malignant Benign or malignant	0/14, 3/15, 3/13, 3/14 0/14*, 3/15, 3/13, 4/14*	Dick-		
Mouse, NMRI	Female		Total dose: 331 mg/kg. Average survival: 43±9 weeks. High dose: 15.4 mg/kg Total dose: 508 mg/kg. Average survival 33±5 weeks.	Larynx-trachea-bronchial tract: Malignant Benign or malignant	0/14*, 2/15, 1/13, 4/14* 0/14***, 5/15*, 4/13*, 8/14***	haus <i>et</i> <i>al.</i> , 1977		
				Total dose: 508 mg/kg. Average survival 33 <u>+</u> 5 weeks.	Lung: Malignant Benign or malignant	3/14, 2/15, 2/13, 1/14 3/14, 15/15***, 11/13**, 5/14		
				Liver: Malignant Benign or malignant	0/14**, 0/15, 2/13, 5/14* 0/14***, 0/15, 2/13, 6/14**			

The carcinogenicity of NMA-C4 was studied in rats and hamsters. These studies are presented briefly below, with the exception of the two oral gavage studies conducted in male and female Syrian golden hamsters by Lijinsky and Kovatch (1988), discussed in Section 3.2.1 above (see Table 15 and Table 16).

Table 26. Summary of animal carcinogenicity studies of NMA-C4

Species, Strain	Sex	Route	Dose and Duration	Tumor Site/Tumor type ¹	Incidence ²	Reference
Rat, Fischer 344	Male	Drinking water	Water consumption rate: 20 ml/day/rat. Low Dose: 6.25 mg/liter 5 days/week for 23 weeks; total dose: 0.12 mmol. All animals died by 45 weeks. High Dose: 16 mg/liter for 20 weeks; total dose: 0.28 mmol. All animals died by 35 weeks. No concurrent controls ³	Tongue: Carcinoma (r) Papilloma or carcinoma (r) Oropharynx: Carcinoma (r) Papilloma or carcinoma (r) Esophagus: Basal cell (BC) carcinoma (r) BC papilloma or carcinoma (r) Forestomach: Carcinoma (r) Papilloma and carcinoma (r)	N/A, N/R, 3/20 N/A, 5/20, 8/20 N/A, N/R, 2/20 N/A, 3/20, 3/20 N/A, N/R, 18/20 N/A, 20/20, 18/20 N/A, N/R, 3/20 N/A, 5/20, 7/20	Lijinsky <i>et</i> al., 1980; 1983b ³
	Female		Water consumption rate: 20 ml/day/rat. 16 mg/liter 5 days/week for 20 weeks; total dose: 0.3 mmol. All animals died by 40 weeks. No concurrent controls ³	Tongue: Carcinoma (r) Oropharynx: Carcinoma (r) Papilloma and carcinoma (r) Esophagus: Carcinoma (r) Papilloma or carcinoma(r) Forestomach: Carcinoma (r) Papilloma or carcinoma (r)	N/A, 2/20 N/A, 5/20 N/A, 8/20 N/A, 13/20 N/A, 15/20 N/A, 4/20 N/A, 7/20	Lijinsky <i>et</i> al., 1980; 1983a ³

¹ Rare tumor type denoted by (r); combined incidence of tumors denoted by "or" as in: "papilloma or carcinoma"; ² Incidence listed first for control, then for treated groups in order of increasing dose; treatment group incidences with asterisks indicate significant results from Fisher pairwise comparison with controls; control incidences with asterisks indicate significant results from exact trend test (performed by OEHHA): *p < 0.05, **p < 0.01, ***p < 0.001; N/A: not available; N/R: not reported in the publication; ³While Lijinsky *et al.* did not include concurrent controls, the tumor types tabulated here were not seen in a continuous series of untreated control animal groups from the same animal colony maintained at the same facility

Table 26 (cont'd). NMA-C4 animal carcinogenicity studies

Species, Strain	Sex	Route	Dose and Duration	Tumor Site/Tumor type ¹	Incidence ²	Reference
Rat, Fischer 344	Male	Drinking water	15 mg/liter in water (volume not reported) daily: for 17 weeks, then sacrificed; total dose: 0.4 mmol ⁴ . for 21 weeks, then sacrificed; total dose: 0.5 mmol ⁴ . No untreated controls.	Esophagus: Papilloma (r) Carcinoma (r)	N/A, 27/27, 20/20 N/A, 24/27, 19/20	Koreeda <i>et</i> <i>al.</i> , 1999
				Nasal cavity: Carcinoma (r)	N/A, 8/20	_
	Male	Male Gavage	In 0.2 ml corn oil twice per week for 20 weeks,	Tongue: Carcinoma (r) Papilloma or carcinoma (r)	N/A, 1/20 N/A, 5/20	
			12 mg/ml; total dose 0.82 mmol.	Oropharynx: Carcinoma (r) Papilloma or carcinoma (r)	N/A, 1/20 N/A, 4/20	
			All animals died by 35 weeks. No concurrent controls ³ .	Esophagus: Carcinoma (r) Papilloma or carcinoma (r)	N/A, 15/20 N/A, 16/20	
Rat, Fischer 344			No concurrent controls .	Forestomach: Carcinoma (r) Papilloma or carcinoma (r)	N/A, 3/20 N/A, 8/20	Lijinsky <i>et</i> <i>al</i> ., 1983b ³
			In 0.2 ml corn oil twice per week for	Nasal cavity: Carcinoma (r)	N/A, 3/20]
			20 weeks,	Oropharynx: Carcinoma (r) Papilloma or carcinoma (r)	N/A, 1/20 N/A, 2/20	
	Female	nale	12 mg/ml; total dose 0.82 mmol. Animals were observed until death; all animals died by 30 weeks.	Esophagus: Carcinoma (r) Papilloma or carcinoma (r)	N/A, 7/20 N/A, 12/20	
			No concurrent controls ³ .	Forestomach: Carcinoma (r) Papilloma or carcinoma (r)	N/A, 0/20 N/A, 2/20	

³While Lijinsky *et al.* did not include concurrent controls, the tumor types tabulated here were not seen in a continuous series of untreated control animal groups from the same animal colony maintained at the same facility

NMAs 38 August 2014 OEHHA

⁴ Total NMA-C4 dose estimated by OEHHA assuming the daily water intake volume of 25 ml for male rats used for the Carcinogenic Potency Database (CPDB) (http://toxnet.nlm.nih.gov/cpdb/) (Gold *et al.*, 1997)

Table 26 (cont'd). NMA-C4 animal carcinogenicity studies

Species, Strain	Sex	Route	Dose and Duration	Tumor Site/Tumor type ¹	Incidence ²	Reference
Rat, Fischer	Female	Gavage	In 0.2 ml 25% ethanol twice per week for 17 weeks: 3 mg; total dose 0.8 mmol. Animals were then observed until death. All treated animals died by 20 weeks. Vehicle control: mean survival 96 weeks.	Esophagus: Tumors (not otherwise specified) (r)	0/12, 7/12**	Lijinsky <i>et</i> • <i>al</i> ., 1991a ⁵
344		Intrave- sicular	In 0.2 ml 25% ethanol in deionized water twice per week for 17 weeks: 3 mg; total dose 0.9 mmol. Animals were observed until death.	Esophagus: Tumors (not otherwise specified) (r)	0/12, 12/12***	ai., 1991a
		injection into bladder	All treated animals died by 22 weeks. Vehicle control: mean survival 102 weeks.	Liver: Tumors (not otherwise specified)	0/12, 3/12	

⁵ Lijinsky et al. presented the incidence as a percentage; OEHHA converted these to number of tumor bearing animals/total number of animals

The carcinogenicity of NMA-C5 was studied in rats, hamsters and mice. These studies are presented briefly below, with the exception of the two oral gavage studies conducted in male and female Syrian golden hamsters by Lijinsky and Kovatch (1988), discussed in Section 3.2.1 above (see Table 17 and Table 18).

Table 27. Summary of animal carcinogenicity studies of NMA-C5

Species, Strain	Sex	Route	Dose and Duration	Tumor Site/ Tumor type ¹	Incidence ²	Reference
Rat, BD	Not specified	Drinking water	Low dose: 1.5 mg/kg daily until death. High dose: 3 mg/kg daily until death. No controls. Study duration unknown.	Esophagus: Papilloma (r) Carcinoma (r)	N/A, 3/12, N/A N/A, 12/15, 6/6	Druckery et al., 1967
Rat, Wistar	Male	Drinking water	0.003% in tap water daily Low dose: for 2 weeks; total dose: 22 mg. Mid-dose: for 4 weeks; total dose: 36.6 mg. High dose: for 12 weeks; total dose: 138.8 mg. All animals, including untreated controls were observed for 28 weeks.	Esophagus: Papilloma (r) Carcinoma (r)	0/16***, 1/16, 10/16***, 15/16*** 0/16***, 0/16, 2/16, 15/16***	Matsufuji <i>et</i> al., 1987 ³
Rat, Wistar	Male	Drinking water	0.003% daily for 8 weeks and observed for up to week 25. Starting at week 1, three animals were killed per week and the tongue, pharynx, esophagus and stomach were examined. No controls.	Esophagus: Squamous cell papilloma (r) Squamous carcinoma (r)	N/A, 47/75 N/A, 18/75	Sasajima et al., 1982

¹ Rare tumor type denoted by (r); combined incidence of tumors denoted by "or" as in: "papilloma or carcinoma"

² Incidence listed first for control, then for treated groups in order of increasing dose; treatment group incidences with asterisks indicate significant results from Fisher pairwise comparison with controls; control incidences with asterisks indicate significant results from exact trend test (performed by OEHHA): * p < 0.05; ** p < 0.01; *** p < 0.001; N/A: not available; N/R: not reported in the publication Matsufuji *et al.* (1987) presented the incidence as a percentage; OEHHA converted these to number of tumor bearing animals/total number of animals

Table 27 (cont'd). NMA-C5 animal carcinogenicity studies

Species, Strain	Sex	Route	Dose and Duration	Tumor Site/ Tumor type ¹	Incidence ²	Reference
Rat, Donryu	Male (4- to 6- week-old)	Drinking water	Dose 1 (study group 6): 0.003% for 14 days. Dose 2 (study group 7): 0.003% for 28 days. Dose 3 (study group 8): 0.003% for 56 days. Dose 4 (study group 9): 0.003% for 84 days. Five animals per dose group were killed at the end of dosing period, and remaining five animals per dose group were killed at 180 days. No controls. Dose 1 (study group 4): 0.0015% for 90 days; total dose: 48 mg. Dose 2 (study group 3): 0.003% for 60 days; total dose: 60 mg. Dose 3 (study group 1): 0.003% for 90 days; total dose: 97 mg. Surviving rats were killed at 322 days. No controls.	Esophagus: Papilloma (r) Carcinoma (r) Esophagus: Papilloma (r) Carcinoma (r)	N/A, 0/10, 1/8, 7/8, 5/10 N/A, 0/10, 0/8, 1/8, 5/10 N/A, 3/14, 2/10, 21/49 N/A, 11/14, 8/10, 28/49	lizuka <i>et</i> <i>al</i> ., 1980
	Male (8- to 9- week-old)		(Study group 2): 0.003% for 90 days; total dose: 124 mg. Surviving rats were killed at 322 days. No controls.	Esophagus: Papilloma (r) Carcinoma (r)	N/A, 0/12 N/A, 12/12	
	Female (4- to 5- week-old)		(Study group 5): 0.003% for 90 days; total dose: 72 mg. Surviving rats were killed at 322 days. No controls.	Esophagus: Papilloma (r) Carcinoma (r)	N/A, 5/11 N/A, 5/11	

Table 27 (cont'd). NMA-C5 animal carcinogenicity studies

Species, Strain	Sex	Route	Dose and Duration	Tumor Site/ Tumor type ¹	Incidence ²	Reference
Rat, Sprague Dawley		Drinking water	Experiment duration: 12 weeks 0.0015% for 12 weeks; animals were terminated at the end of dosing; total dose: 0.03 mmol ⁴ . Untreated controls received tap water for 12 weeks and were terminated at the same time as the treated group.	Esophagus: Papilloma (r) Carcinoma (r) Papilloma or carcinoma (r)	0/16, 8/10*** 0/16, 1/10 0/16, 8/10***	
	Male		Experiment duration: 16 weeks 0.0015% for 12 weeks; animals were terminated at 4 weeks after dosing; total dose: 0.03 mmol ⁴ . Untreated controls received tap water for 16 weeks and were terminated at the same time as the treated group.	Esophagus: Papilloma (r) Carcinoma (r) Papilloma or carcinoma (r)	0/16, 8/10*** 0/16, 4/10* 0/16, 8/10***	Kuwayama & Eastwood, 1988
			Experiment duration: 20 weeks 0.0015% for 12 weeks; animals were terminated at 8 weeks after dosing; total dose: 0.03 mmol ⁴ . Untreated controls received tap water for 20 weeks and were terminated at the same time as the treated group.	Esophagus: Papilloma (r) Carcinoma (r) Papilloma or carcinoma (r)	0/16, 9/10*** 0/16, 1/10 0/16, 9/10***	
Rat, Sprague Dawley	Male	Drinking water	0.003% for 10 weeks in groups of castrated and intact animals; total dose: 0.045 mmol ⁴ . Animals were killed at 20 weeks. No controls for either treatment group.	Esophagus: Papilloma or carcinoma (r)	N/A, 6/6 (intact) N/A, 3/6 (castrated)	Kondoh <i>et</i> <i>al.</i> , 1990 ⁵

⁴ Total NMA-C5 dose estimated by OEHHA assuming the daily water intake volume of 25 ml for male rats used for the Carcinogenic Potency Database (CPDB) (http://toxnet.nlm.nih.gov/cpdb/) (Gold *et al.*, 1997)

⁵ Reported as a meeting abstract

Table 27 (cont'd). NMA-C5 animal carcinogenicity studies

Species, Strain	Sex	Route	Dose and Duration	Tumor Site/ Tumor type ¹	Incidence ²	Reference
	Male and female (newborn)		6 mg/kg in 0.9% NaCl (injection volume was not reported) by single injection. Mean survival 82±13 weeks. Control: mean survival 72±11 weeks.	Forestomach: Papilloma (r)	0/25, 2/20	
MRC-Wistar fe da	Male and female (3-	Intraper- itoneal		Esophagus: Papilloma (r) Carcinoma (r)	1/25, 1/21 0/25, 1/21	Mirvish <i>et</i>
	day-old)	(i.p.)	Control: mean survival 72±11 weeks.	Forestomach: Papilloma (r) Carcinoma (r)	0/25, 1/21 0/25, 1/21	al., 1996
	Male and female (6- to 8-week-old)		50-70 mg/kg in 0.9% NaCl (injection volume was not reported) by single injection ⁶ . Mean survival was 63±27 weeks. Control: mean survival 72+11 weeks.	Esophagus: Papilloma (r) Carcinoma (r)	1/25, 2/19 0/25, 14/19***	
		Male i.p.	25 mg/kg in 5 ml water per rat once weekly for 3 weeks; total dose: 75 mg/kg. Animals were observed until death.	Nasal cavity: Papilloma (r) Carcinoma (r) Papilloma or carcinoma (r)	0/9, 9/39 0/9, 15/39* 0/9, 20/39**	
Rat, MRC-Wistar	Male		Mean survival for animals exhibiting esophagus tumors was 51-60 weeks, for nasal cavity or tongue tumors was 50-70 weeks, and for thyroid tumors was 54-59 weeks.	Tongue: Papilloma (r) Esophagus: Papilloma (r) Carcinoma (r) Papilloma or carcinoma (r)	0/9, 3/39 0/9, 27/39*** 0/9, 7/39 0/9, 28/39***	Mirvish <i>et al.</i> , 1994a
			Control: mean survival 45 weeks.	Thyroid: Adenoma	3/9, 17/39	

⁶ Mirvish *et al.* (1996) injected doses of NM-C5 to 42- to 50-day-old MRC-Wistar rats (10 males and 9 females) as follows: 50 mg/kg of to 7 females; 60 mg/kg to 2 females; and 70 mg/kg to 10 males

Table 27 (cont'd). NMA-C5 animal carcinogenicity studies

Species, Strain	Sex	Route	Dose and Duration	Tumor Site/ Tumor type ¹	Incidence ²	Reference
		i.p.	Animals were ip injected in 10 ml water/kg bodyweight, and killed when moribund. Controls received 12 weekly water injections (10 ml/kg-bw), had a mean survival of 84 wks. Single Injection: Low dose: 50 mg/kg. Mean survival: 75 wks. High dose: 85 mg/kg. Mean survival: 43 wks	Nasal cavity: Papilloma (r) Carcinoma (r) Esophagus: Papilloma (r) Carcinoma (r) Papilloma or carcinoma (r)	0/20, 1/17, 0/4 0/20, 2/17, 0/4 0/20, 1/17, 1/4 0/20**, 1/17, 2/4* 0/20**, 2/17, 2/4*	
			Two injections: Treated group: 50 mg/kg once per week for 2 weeks; Total dose: 100 mg/kg. Mean survival was 67 weeks Tight dose: 100 mg/kg once per week for 2 makes Nasal cavity: Papilloma (r) Carcinoma (r) Esophagus: Papilloma (r)	Papilloma (r) Carcinoma (r) Esophagus:	0/20, 1/18 0/20, 2/18 0/20, 3/18 0/20, 3/18	
Rat, MRC-Wistar	Male		Six injections: Treated group: 25 mg/kg once per week total dose: 150 mg/kg. Mean survival was 42 weeks.	Nasal cavity: Papilloma (r) Carcinoma (r) Esophagus: Papilloma (r) Carcinoma (r) Papilloma or carcinoma (r)	0/20, 5/20* 0/20, 3/20 0/20, 20/20*** 0/20, 11/20*** 0/20, 20/20***	– Bulay & Mirvish, 1979
				Twelve injections: Low dose: 12.5 mg/kg once per week total dose: 150 mg/kg. Mean survival was 28 weeks. High dose: 25 mg/kg once per week total dose: 300 mg/kg. Mean survival was 25 weeks.	Nasal cavity: Papilloma (r) Carcinoma (r) Trachea: Papilloma (r) Carcinoma (r) Esophagus: Papilloma (r) Carcinoma (r) Papilloma (r)	0/20*, 4/20, 5/20* 0/20, 3/20, 2/20 0/20**, 1/20, 5/20* 0/20, 2/20, 1/20 0/20***, 20/20***, 17/20*** 0/20***, 13 /20***, 13/20*** 0/20***, 20/20***, 18/20***

Table 27 (cont'd). NMA-C5 animal carcinogenicity studies

Species, Strain	Sex	Route	Dose and Duration	Tumor Site/ Tumor type ¹	Incidence ²	Reference
			Animals were ip injected in 10 ml water/kg bodyweight, and killed when moribund. Controls received 12 weekly water injections	Nasal cavity: Carcinomas (r)	0/22, 2/18, 0/3	
			(10 ml/kg-bw), had a mean survival of 98 wks. Single injection: Low dose: 50 mg/kg, Mean survival: 77 wks. High dose: 85 mg/kg, Mean survival 32 wks.	Esophagus: Papilloma (r) Carcinoma (r) Papilloma or carcinoma (r)	0/22***, 1/18, 3/3*** 0/22***, 2/18, 3/3*** 0/22***, 3/18, 3/3***	
			Two injections: 50 mg/kg in 10 ml water per kg bw once per week for 2 weeks; total dose: 100 mg/kg. Mean survival was 68 weeks. Six injections: 25 mg/kg once per week total dose: 150 mg/kg. Mean survival was 50 weeks.	Nasal cavity: Carcinomas (r)	0/22, 3/20	
				Esophagus: Papilloma (r) Carcinoma (r) Papilloma or carcinoma (r)	0/22, 2/20 0/22, 1/20 0/22, 2/20	Bulay & - Mirvish, 1979
Rat, MRC-		male <i>i.p.</i>		Nasal cavity: Papilloma (r) Carcinoma (r)	0/22, 5/20* 0/22, 5/20*	
Wistar				Esophagus: Papilloma (r) Carcinoma (r) Papilloma or carcinoma (r)	0/22, 19/20*** 0/22, 8/20** 0/22, 19/20***	
			Twelve injections:	Nasal cavity: Papilloma (r) Carcinoma (r)	0/22, 7/20**, 1/19 0/22, 2/20, 3/19	
			Low dose: 12.5 mg/kg once per week total dose: 150 mg/kg. Mean survival was 31 weeks. High dose: 25 mg/kg bw once per week total dose: 300 mg/kg. Mean survival was 30 weeks.	Trachea: Papilloma (r) Carcinoma (r)	0/22*, 0/20, 3/19 0/22, 1/20, 1/19	
				Esophagus: Papilloma (r) Carcinoma (r)	0/22***, 19/20***, 19/19*** 0/22***, 13/20***,	
				Papilloma or carcinoma (r)	11/19*** 0/22***, 19/20***, 19/19***	

Table 27 (cont'd). NMA-C5 animal carcinogenicity studies

Species, Strain	Sex	Route	Dose and Duration	Tumor Site/ Tumor type ¹	Incidence ²	Reference
			25 mg/kg in 5 ml water per kg bw once per week for 3 weeks; total dose 75 mg/kg.	Nasal cavity: Papilloma (r) Carcinoma (r)	0/30, 6/58 0/30, 12/58**	
Rat, MRC- Wistar	Male	i.p.	Untreated controls. 5 rats were killed 28-30 weeks after the start of treatment, 12 rats were killed after 52 weeks, some died at intermediate times, and	Esophagus: Papilloma (r) Carcinoma (r) Papilloma or carcinoma (r)	0/30, 40/58*** 0/30, 14/58** 0/30, 45/58***	Mirvish <i>et al.</i> , 1985a ⁷
			the remaining animals were killed at 70 weeks.	Forestomach: Papilloma or carcinoma (r)	0/30, 2/58	
Rat,			12.5 mg/kg in dimethyl sulfoxide (12.5 mg/kg bw/injection) weekly for 12 weeks; total dose: 150 mg/kg.	Tongue: Papilloma (r) Carcinoma (r) Papilloma or carcinoma (r)	0/8, 4/12 0/8, 2/12 0/8, 6/12*	Tanaka <i>et</i>
Wistar	Male	i.p.	Untreated controls. Study terminated at 20 weeks.	Esophagus: Papilloma (r) Carcinoma (r) Papilloma or carcinoma (r)	0/8, 12/12*** 0/8, 9/12** 0/8, 12/12***	al., 1997 ⁷
			25 mg/kg once per week for 3 weeks, injection volume and solvent were not reported; total dose: 75 mg/kg.	Nasal cavity: Papilloma (r)	N/R ⁸ , 3/11	
Rat, Fischer 344	Male	i.p.	All surviving animals were sacrificed at 52	Tongue: Papilloma (r)	N/R ⁸ , 1/11	Yamaguchi et al., 1989
			weeks.	Esophagus: Papilloma (r)	N/R ⁸ , 2/11	

⁷ Mirvish *et al.* (1985a) and Tanaka *et al.* (1997) presented the incidences as a percentage; OEHHA converted these to number of tumor bearing animals/total number of animals

⁸ N/R = not reported; the authors did not report on the presence or absence of any tumors in the control group, noting only that the incidence of forestomach hyperplasia in untreated controls was 0%

Table 27 (cont'd). NMA-C5 animal carcinogenicity studies

Species, Strain	Sex	Route	Dose and Duration	Tumor Site/ Tumor type ¹	Incidence ²	Reference
Rat, Sprague Dawley	Male	i.p.	25 mg/kg in saline (injection volume: 0.5 to 1 ml) once per week for 3 weeks; total dose: 75 mg/kg. Animals were killed at 30 weeks. Untreated controls.	Esophagus: Benign diffuse papillomastosis (r) Squamous carcinoma (r)	0/16, 2/10 0/16, 3/10*	Attwood <i>et</i> al., 1992
Rat,	Rat, Male and m	l muscu-	5 mg/kg in rape seed oil weekly for 29 weeks, injection volume not available; total dose: 145 mg/kg.	Esophagus: Papilloma and carcinoma combined (r)	0/34, 17/36***	Luo et al.,
Wistar	female		Vehicle controls. All animals were sacrificed at 86 weeks.	Forestomach: Papilloma and carcinoma combined (r)	0/34, 3/36	1987
Rat, Wistar	Male	Subcu- taneous (s.c.)	12.5 mg/kg in water (injection volume was not available) weekly for 8 weeks; total dose: 100 mg/kg. Animals were observed for 6 weeks. No controls.	Esophagus: Papilloma (r)	N/A, 11/18	Seto <i>et al.</i> , 1991
Rat, BD	Not specified	s.c.	10 or 20 mg/kg once weekly until death. Solvent and injection volume not reported; study duration unknown. No controls.	Esophagus: Papilloma (r) Carcinoma (r)	N/A, 3/20 N/A, 17/20	Druckery <i>et</i> al., 1967 ⁹

⁹ 20 rats were treated with either 10 or 20 mg/kg once per week. No treatment duration was reported; authors report combined results of both treatment groups (Druckery *et al.*, 1967)

Table 27 (cont'd). NMA-C5 animal carcinogenicity studies

Species, Strain	Sex	Route	Dose and Duration	Tumor Site/ Tumor type ¹	Incidence ²	Reference
	Male and female		3 mg/kg (in 5 mg/ml 0.9% NaCl) by single injection. Animals were maintained until	Esophagus: Papilloma (infrequent)	0/26, 1/28	
	(Newborn)		death. Mean survival was 57±19 weeks. Control: mean survival 57±15 weeks.	Forestomach: Papilloma	0/26, 2/28	
	Male and female		6 mg/kg (in 5 mg/ml 0.9% NaCl) by single injection. Animals were maintained until death. Mean survival was 75+15 weeks.	Esophagus: Papilloma (infrequent) Carcinoma (infrequent)	0/26, 3/26 0/26, 2/26	
	(3-day-old)		Control: mean survival 57 <u>+</u> 15 weeks.	Forestomach: Papilloma	0/26, 2/26	
		Animals were maintained until death. Mean survival was 33±11 weeks. Control: mean survival 43±8 weeks. 70 mg/kg to 3 males and 100 mg/kg to 11 females (in 5 mg/ml 0.9% NaCl) by single	week for 6 weeks; total dose: 450 mg/kg. Animals were maintained until death. Mean	Nasal cavity: Benign or malignant (r)	0/20, 10/23***	Mirvish <i>et al</i> ., 1996
Hamster, Syrian				Lung: Adenoma (r)	0/20, 15/23***	
golden	Male and female (38- day-old)			Esophagus: Papilloma (infrequent) Carcinoma (infrequent)	2/20, 5/23 1/20, 0/23	
			Control: mean survival 43 <u>+</u> 8 weeks.	Forestomach: Papilloma	3/20, 19/23***	
				Liver: Benign or malignant (r)	0/20, 4/23	
	Male and		females (in 5 mg/ml 0.9% NaCl) by single	Esophagus: Papilloma (infrequent)	0/26, 2/14	
	female (46- to 49-day- old)		injection. Animals were maintained until death. Mean survival was 43±15 weeks. Control: mean survival 57±15 weeks.	Forestomach: Papilloma	2/26, 3/14	

Table 27 (cont'd). NMA-C5 animal carcinogenicity studies

Species, Strain	Sex	Route	Dose and Duration	Tumor Site/ Tumor type ¹	Incidence ²	Reference
Mouse, 101/N			0.00159/ doily for 9 wooks: total doos:		0/146, 135/135***	
Mouse, STX/Le	Male and	Drinking	0.0015% daily for 8 weeks; total dose: 0.003 mmol ⁴ . Animals were observed	Esophagus:	0/67, 75/76***	Kurooka et
Mouse, BXH-8	Female	Water	for 16 weeks after dosing.	Benign or malignant (r)	0/99, 101/101***	<i>al</i> ., 1998
Mouse, C57BL/6J	romaio		Untreated controls.		0/103, 64/64***	
Mouse, <i>Brca1</i> Δ11/Δ11 p53*/-	Female	Drinking	10 ppm daily for 8 weeks; total dose: 0.002 mmol ⁴ . Animals were kept for 7 weeks after dosing and killed between weeks 15 and 25.	Esophagus and forestomach: Hyperplasia Carcinoma (r)	N/A, 7/7 N/A, 4/7	Cao et al.,
Mouse, $Brca1^{+/\Delta 11}$ $p53^{+/-}$		Water	No controls.	Esophagus and forestomach: Hyperplasia Carcinoma (r)	N/A, 5/7 N/A, 0/7	2007
Mouse, C57BL/6 p53 ^{+/+} wild type			Experiment termination: 15 weeks Low dose: 5 ppm daily for 8 weeks Total dose: 0.001 mmol ⁴ .	Esophagus: Papilloma (r) Squamous cell carcinoma (r)	0/5***, 7/13, 10/11** 0/5, 0/13, 1/11	
Mouse, C57BL/6 p53 ^{+/-} heterozygote	Male	Drinking Water	High dose: 15 ppm daily for 8 weeks Total dose: 0.003 mmol ⁴ . Untreated controls (p53 ^{+/+} or p53 ^{+/-} as appropriate).	Esophagus: Papilloma (r) Squamous cell carcinoma (r)	0/5**, 12/15**,13/14*** 0/5, 1/15, 2/14	Shirai <i>et</i> <i>al.</i> , 2002a; 2002b
Mouse, C57BL/6 p53 ^{-/-} knockout			5 ppm daily for 8 weeks Total dose: 0.001 mmol ⁴ . Untreated p53 ^{-/-} controls	Lingual: Papilloma (r) Squamous cell carcinoma (r) Esophagus: Papilloma (r) Squamous cell carcinoma (r)	0/4, 2/12 0/4, 5/12 0/4, 10/12** 0/4, 10/12**	

⁴ Total NMA-C5 dose estimated by OEHHA assuming the daily water intake volume of 25 ml for male rats used for the Carcinogenic Potency Database (CPDB) (http://toxnet.nlm.nih.gov/cpdb/) (Gold *et al.*, 1997)

Table 27 (cont'd). NMA-C5 animal carcinogenicity studies

Species, Strain	Sex	Route	Dose and Duration	Tumor Site/ Tumor type ¹	Incidence ²	Reference
Mouse, C57BL/6		Drinking water	Experiment termination: 25 weeks	Lingual: Carcinoma in situ	0/5, 1/13, N/R ¹⁰	Shirai <i>et al.</i> , 2002a; 2002b
p53 ^{+/+} wild type	Male		Low dose: 5 ppm daily for 8 weeks; total dose: 0.001 mmol ⁴ , terminated at 25 weeks.	Esophagus: Papilloma (r) Squamous cell carcinoma (r)	0/5***, 13/13***, 10/10*** 0/5, 1/13, 2/10	
Mouse,	Iviale		High dose: 15 ppm daily for 8 weeks; total dose: 0.003 mmol ⁴ , terminated at 25 weeks.	Lingual: Papilloma (r) Carcinoma in situ	0/6, 1/16, N/R ¹⁰ 0/6, 1/16, N/R ¹⁰	
C57BL/6 p53 ^{+/-} heterozygote		Untreated controls (p53 ^{+/+} or p53 ^{+/-} , as appropriate).		Esophagus: Papilloma (r) Squamous cell carcinoma (r)	0/6**, 15/16***, 13/14*** 0/6*, 7/16, 8/14*	
Mouse,	Male and female	i.p.		Lung: Adenoma (r)	3/20, 27/28***	Mirvish <i>et</i>
Swiss			death. Mean survival was 57±12 weeks. Control: mean survival 79±17 weeks.	Esophagus: Papilloma (r)	0/20, 9/28**	al., 1996

⁴Total NMA-C5 dose estimated by OEHHA assuming the daily water intake volume of 25 ml for male rats used for the Carcinogenic Potency Database (CPDB) (http://toxnet.nlm.nih.gov/cpdb/) (Gold *et al.*, 1997)

¹⁰ N/R = not reported

The carcinogenicity of NMA-C6 was studied in rats and hamsters. Two studies in rats are presented briefly below. Two oral gavage studies conducted in male and female Syrian golden hamsters were discussed in Section 3.2.1 above.

Table 28. Summary of animal carcinogenicity studies of NMA-C6

Species/ Strain	Sex	Route	Exposure duration and total dose	Tumor Site/ Tumor type ¹	Incidence ²	Reference
		Drinking water	1 mg in 20 ml drinking water/rat/day, 5 days/week for 21 weeks; total dose: 105 mg; 0 animals alive at 40 weeks. Animals allowed to die naturally unless moribund. No concurrent controls.	Tongue: Papilloma (r) Carcinoma (r) Esophagus: Papilloma (r) Carcinoma (r) Forestomach: Papilloma (r)	N/A, 1/20 N/A, 8/20 N/A, 1/20 N/A, 19/20 N/A, 2/20	
Rat, Fischer 344	Male		In 0.2 ml corn oil daily: Low dose: 13 mg/kg for 32 weeks; total dose: 170 mg; 6 animals alive at 70 weeks. Mid-dose: 31 mg/kgfor 28 weeks; total dose: 360 mg; 0 animals alive at 35 weeks.	Carcinoma (r) Nasal cavity: Carcinoma (r) Tongue: Papilloma (r) Carcinoma (r) Lung (r): Adenoma Carcinoma (r) ³	N/A, 2/20 N/A, 0/20, 1/20, 1/20 N/A, 0/20, 2/20, 0/20 N/A, 0/20, 1/20, 0/20 N/A, 2/20, 2/20, 10/20 N/A, 16/20, 7/20, 3/20	Lijinsky <i>et al.</i> , 1983b
		Gavage	High dose: 78 mg/kg for 16 weeks; total dose: 500 mg; 0 animals alive at 30 weeks. Animals allowed to die naturally unless moribund. No concurrent controls.	Esophagus: Papilloma (r) Carcinoma (r) Forestomach: Papilloma (r) Carcinoma (r) Liver: Sarcoma Carcinoma	N/A, 5/20, 5/20, 12/20 N/A, 5/20, 14/20, 7/20 N/A, 0/20, 1/20, 2/20 N/A, 6/20, 1/20, 0/20 N/A, 8/20, 18/20, 1/20 N/A, 12/20, 6/20, 10/20	

Rare tumor type denoted by (r)

Control incidence listed first, subsequent incidences correspond to treated groups in order of increasing dose; N/A = not available

Carcinomas, including adenocarcinoma

The carcinogenicity of NMA-C7 was studied in rats and hamsters. Three studies in rats and one in hamsters are presented in the table below (Table 29). Two oral gavage studies conducted in male and female Syrian golden hamsters by Lijinsky and Kovatch (1988) are discussed in Section 3.2.1 above (see Table 21 and Table 22).

Table 29. Summary of animal carcinogenicity studies of NMA-C7

Species/ Strain	Sex	Route	Exposure duration and total dose	Tumor Site/Tumor type ¹	Incidence ²	Reference
				Nasal cavity: Carcinoma (r)	N/A, 2/20	
			2.8 mg in 20 ml drinking water/rat/day, 5 days/week for 34 weeks; total dose: 490 mg; 0 animals alive at 55 weeks.	Tongue: Papilloma (r)	N/A, 2/20	
		Drinking water		Lung: Adenoma Carcinoma (r) ³	N/A, 2/20 N/A, 11/20	
		Animals moribur	Animals allowed to die naturally unless moribund.	Esophagus: Adenoma (r) Carcinoma (r)	N/A, 4/20 N/A, 15/20	
Rat, Fischer 344	Male		No concurrent controls.	Liver. Sarcoma Carcinoma	N/A, 0/20 N/A, 6/20	Lijinsky <i>et al.</i> , 1983b
		Gavage	In 0.2 ml corn oil daily: Low dose: 35 mg/kg for 30 weeks; total dose: 420 mg; 0 animals alive at 65 weeks.	Nasal cavity: Carcinoma (r)	N/A, 1/20, 2/20	19630
			Gavage High dose: 86 mg/kg for 25 weeks; total dose: 860 mg; 0 animals alive at 40 weeks. Lung: Adenoma Carcinoma (r) ³	Adenoma	N/A, 20/20, 7/20 N/A, 2/20, 2/20	
			Animals allowed to die naturally unless moribund. No concurrent controls.	Liver. Sarcoma Carcinoma	N/A, 11/20, 12/20 N/A, 20/20, 10/20	

¹ Rare tumor type denoted by (r)
² Control incidence listed first, subsequent incidences correspond to treated groups in order of increasing dose; N/A = not available; N/R = not reported
³ Carcinomas, including adenocarcinoma

Table 29 (cont'd). NMA-C7 animal carcinogenicity studies

Species/ Strain	Sex	Route	Exposure duration and total dose	Tumor Site/Tumor type ¹	Incidence ²	Reference
Rat, BD	Not specified	Subcu- taneous	40 or 80 mg/kg once weekly until death. Results reported for animals receiving either treatment. Solvent and injection volume not reported; study duration unknown. No controls.	Lung: Squamous cell carcinoma (r)	N/A, 1/20	Druckery et al., 1967
Hamster, Syrian golden	Male	Gavage	6.8 mg/animal in 0.2 ml ethyl acetate:corn oil (1:2) once weekly for 35 weeks; total dose: 236 mg. Necropsies performed on animals euthanized at various time intervals and on those found moribund or dead. Vehicle controls.	Lung: Adenosquamous carcinoma (r) Squamous cell carcinoma (r)	N/R, 20/36 N/R, 2/36	Rehm & Lijinsky,1994

The carcinogenicity of NMA-C11 was studied in male rats by gavage. The study is presented briefly below.

Table 30. Summary of animal carcinogenicity studies of NMA-C11

Species/ Strain	Sex	Route	Exposure duration and total dose	Tumor Site/Tumor type ¹	Incidence ²	Reference
			23 mg/animal 0.2 ml olive oil twice per week for 30 weeks; total dose: 1380 mg. 1 treated animal alive at 60 weeks. Animals were allowed to die	Lung: Alveolar cell adenoma Alveolar cell carcinoma Squamous cell carcinoma (r)	3%, 6/19 (32%) 2%, 10/19 (53%) <1%, 10/19 (53%)	
Rat, Fischer	Male	Gavage		Esophagus: Squamous cell carcinoma (r)	0%, 2/19 (11%)	Lijinsky et al.,
344				Forestomach: Papilloma (r)	0%, 2/19 (11%)	1978
		naturally.	Liver: Hepatocellular carcinoma Cholangiocarcinoma (r)	1% ³ , 10/19 (53%) 0%, 8/19 (42%)		

Rare tumor type denoted by (r)

² Control incidence listed first, subsequent incidences correspond to treated groups in order of increasing dose; incidence numbers converted to percentage by

Authors reported tumor incidence of controls as percentage; treated animals were compared to colony of male control rats kept at the study facilty during the same time period.

The carcinogenicity of NMA-C12 was studied in rats, hamsters, and guinea pigs. These studies are described in the table below (Table 31), with the exception of the oral gavage study conducted in male Fischer 344 rats by Lijinsky *et al.* (1981), discussed in Section 3.2.1 above (see Table 8).

Table 31. Summary of animal carcinogenicity studies of NMA-C12

Species/ Strain	Sex	Route	Exposure duration and total dose	Tumor Site/Tumor type ¹	Incidence ²	Reference	
		fale Gavage	0.2 ml of 60 mg/ml twice per week for 50 weeks;	Lung: Adenoma	N/A, 1/15		
Rat, Sprague Dawley	iviale		vehicle: olive oil; total dose: 1200 mg³. Male: 0 survivors at 80 weeks. Female: last survivor killed at 96 weeks. All animals allowed to die naturally or killed when moribund. No controls.	Bladder: Transitional cell carcinoma (r)	N/A, 15/15	Lijinsky & Taylor, 1975	
	Female			Lung: Adenoma	N/A, 6/15		
				Esophagus: Papilloma (r)	N/A, 1/15		
				Bladder: Transitional cell carcinoma (r)	N/A, 15/15		

¹ Rare tumor type denoted by (r)

³ Chemical preparation contained about 10% of impurity (aliphatic N-oxide)

² Control incidence listed first, subsequent incidences correspond to treated groups in order of increasing dose; treatment group tumor incidences with asterisks indicate significant results from Fisher pairwise comparison with controls (performed by OEHHA); control incidences with asterisks indicate significant results from exact trend test (performed by OEHHA): * p < 0.05; ** p < 0.01; *** p < 0.001; N/A = not available

Table 31 (cont'd). NMA-C12 animal carcinogenicity studies

Species/ Strain	Sex	Route	Exposure duration and total dose	Tumor Site/Tumor type ¹	Incidence ²	Reference	
Rat,	Male	Covers	0.2 ml of 125 mg/ml twice per week for 30 weeks; vehicle: olive oil; total dose: 1500 mg.	Bladder: Transitional cell carcinoma (r)	N/A, 13/13		
Sprague Dawley	Female	Gavage	0 animals alive at 70 weeks post-treatment. No controls.	Bladder: Transitional cell carcinoma (r)	N/A, 11/11	Lijinsky & Taylor, 1978	
Rat,	Male		0.2 ml of 125 mg/ml twice per week for 30 weeks; vehicle: olive oil; total dose: 1500 mg.	Bladder: Transitional cell carcinoma (r)	N/A, 4/6		
Fischer 344	Female	Gavage	0 animals alive at 60 weeks post-treatment. No controls.	Bladder: Transitional cell carcinoma (r)	N/A, 6/6		
Rat,	Famala	Gavage	0.2 ml of 60 mg/ml twice per week for 30 weeks; vehicle: corn oil; total dose: 720 mg.	Lung: Tumors (not otherwise specified)	0/20, 12/20***	Lijinsky <i>et al.</i> ,	
Fischer 344	Female Gavage 0 animals alive at 70 weeks. Untreated controls.		weeks.	Bladder (r): Tumors (not otherwise specified)	1/20, 17/20***	1983c	

Table 31 (cont'd). NMA-C12 animal carcinogenicity studies

Species/ Strain	Sex	Route	Exposure duration and total dose	Tumor Site/Tumor type ¹	Incidence ²	Reference
		Gavage	Low dose: 15 mg/kg/week for life; total average dose: 75 mg/animal/year; vehicle: olive oil; male average survival 67 weeks; female average survival 49 weeks. Mid-dose: 30 mg/kg/week; total average dose: 150 mg/animal/year; male average survival 65 weeks; female average survival 59 weeks. High dose: 60 mg/kg/week; total average dose 300 mg/animal/year; male average survival 58 weeks; female average survival 54 weeks. Two treatments missed in all dose groups. Vehicle controls: male average survival was 72 weeks; female average survival was 56 weeks.	dose: 75 (not otherwise specified)		
	Male			Digestive tract: Tumors (not otherwise specified)	5/15, 8/15, 3/15, 6/15 0/15***, 3/15, 5/15*, 13/15***	
Hamster, Syrian golden				Urinary tract: Tumors (not otherwise specified)		Althoff & Lijinsky, 1977
				Respiratory tract: Tumors (not otherwise specified)	0/15***, 0/15, 0/15, 6/15**	
	Female			Digestive tract: Tumors (not otherwise specified)	3/15, 1/15, 3/15, 2/15	
				Urinary tract: Tumors (not otherwise specified)	0/15***, 0/15, 4/15*, 13/15***	

Table 31 (cont'd). NMA-C12 animal carcinogenicity studies

Species/ Strain	Sex	Route	Exposure duration and total dose	Tumor Site/Tumor type ¹	Incidence ²	Reference	
			per v initia bw fo by 90 avers	per week for life; initial dose: 360 mg/kg bw for 4 weeks, followed by 90 mg/kg bw for an average of 25 weeks;	Lung: Adenoma Mucoepidermoid carcinoma Squamous cell carcinoma (r) Bladder: Transitional cell carcinoma (r) Papilloma (r)	0/10, 4/10* 0/10, 5/10* 0/10, 6/10** 0/10, 4/10* 0/10, 2/10	_
	Male		average total dose: 132 mg ⁴ . Average survival time: 29 weeks. Vehicle controls.	Site of injection: Anaplastic sarcoma Squamous cell carcinoma (r) Fibrosarcoma Osteosarcoma (r) Liposarcoma (r)	0/10, 3/10 0/10, 1/10 0/10, 1/10 0/10, 1/10 0/10, 1/10		
Hamster, European			Animals injected once per week for life; initial dose: 360 mg/kg bw for 4 weeks, followed by 90 mg/kg bw for an average of 25 weeks; vehicle: olive oil; average total dose: 141 mg ⁵ . Average survival time: 24 weeks. Vehicle controls.	Nasal cavity: Papilloma (r)	0/10, 1/10	Ketkar <i>et al</i> .,	
(Strain Mhh:EPH)		s.c.		Salivary gland: Haemangoendothelial sarcoma	0/10, 1/10	1981	
	Famala			Lung: Adenoma Mucoepidermoid carcinoma Sqamous cell carcinoma (r)	0/10, 2/10 0/10, 6/10** 0/10, 4/10*		
	remale			Bladder: Transitional cell carcinoma (r) Papilloma (r)	0/10, 3/10 0/10, 2/10		
				<i>Uterus</i> Leiomyosarcoma	0/10, 1/10		
				Site of injection: Anaplastic sarcoma Squamous cell carcinoma Fibrosarcoma	0/10, 3/10 0/10, 3/10 0/10, 1/10		

⁴ First tumor appeared at week 5 after initial treatment ⁵ First tumor appeared at week 6 after initial treatment

Table 31 (cont'd). NMA-C12 animal carcinogenicity studies

Species/ Strain	Sex	Route	Exposure duration and total dose	Tumor Site/Tumor type ¹	Incidence ²	Reference
Guinea Pig,	Male	Gavage 1.0 ml/kg of 100 mg/ml, 2 treatments/week for 40 weeks; total dose: 8000 mg; olive oil vehicle; 0 animals alive at 80 weeks. Vehicle control; 0 controls alive at 120 weeks	2 treatments/week for 40 weeks; total dose: 8000 mg; olive oil vehicle; 0 animals alive at 80	Liver: Hemangiosarcoma Bile duct carcinoma (Cholangiocarcinoma) Hepatocellular carcinoma	0/20, 12/20*** 0/20, 3/20 0/20, 1/20	Cardy & Lijinsky,
Strain 2			Pancreas: Hemangiosarcoma	0/20, 1/20	1980	

3.3 Other Relevant Data

3.3.1 Genotoxicity

Studies evaluating the genotoxic potential of the NMAs consist primarily of mutagenicity assays in bacteria and DNA adduct studies in rats. Specifically, eleven NMAs have been tested in bacterial mutagenicity assays (NMA-C1 – C4, NMA-C6 – C12), and *in vivo* DNA adduct formation has been studied in rats with twelve NMAs (NMA-C1 – C12) The majority of NMAs have not been studied in other gentoxicity assay systems. The exceptions are NMA-C3, which has been tested for mutagenicity in Chinese hamster V79 cells, and NMA-C1, which has been tested in a number of different genotoxicity assays.

Since NMA-C1 and –C2 are already listed under Proposition 65 as causing cancer, the genotoxicity findings for these two chemicals are only briefly summarized here. Specifically, NMA-C1 and NMA-C2 both induce mutations in *Salmonella typhimurium* and Chinese hamster V79 cells (CCRIS, 2014; US EPA, 2003a), and form DNA adducts in rats *in vivo* (Von Hofe *et al.*, 1987; Kleihues *et al.*, 1987). NMA-C1 has tested positive for genotoxicity in numerous additional *in vitro* and *in vivo* assays assessing a number of different endpoints, including reverse mutations in *Escherichia coli*, forward mutations in mammalian assays *in vitro* and *in vivo*, unscheduled DNA synthesis (UDS) in human fibroblasts and animal hepatocytes *in vitro*, and DNA strand breaks, sister chromatid exchange, chromosomal aberrations, and micronuclei formation in rodents *in vitro* and *in vivo* (CCRIS, 2014; OEHHA, 2006). Thus the most well-studied NMA, NMA-C1, has been shown to induce mutations, to be clastogenic, and to form DNA adducts *in vitro* and *in vivo*. The less studied NMA-C2 has also been shown to induce mutations in bacteria and mammalian cells *in vitro*, and forms DNA adducts *in vivo*. Findings from the gentoxicity studies of the other NMAs are presented in some detail below.

Bacterial Mutagenicity

The genotoxicity of several individual NMAs (NMA-C3 – C4, NMA-C6 – C12 compounds) was tested in bacterial mutation assays with various *S. typhimurium* and *E. coli* strains (see Table 32). *S. typhimurium* strains TA100, TA1530 and TA1535, and *E. coli* strain WP2 uvrA are sensitive to base-pair substitutions (Camus *et al.*, 1976; Gatehouse, 2012; Eastmond *et al.*, 2009). *S. typhimurium* strain TA98 is sensitive to frameshift substitutions (Mortelmans and Zeiger, 2000).

In general, NMAs tested positive for mutagenicity in test strains TA100, TA1530 and TA1535, primarily when tested in the presence of rat liver S9 induced with phenobarbital (PB), Aroclor 1254, or polychlorinated biphenyl (PCB), or in the presence of a modified Fenton's reagent (H₂O₂, Fe²⁺ and Cu²⁺, a reactive oxygen generating system) (Inami *et al.*, 2010; Andrews and Lijinsky, 1980; Camus *et al.*, 1976; Tsutsumi *et al.*, 2010; Suzuki *et al.*, 1985; Yahagi *et al.*, 1977). No mutagenicity was observed with test strain TA98 in the absence of S9, but some mutagenicity was observed in the presence of induced S9 (Sugimura *et al.*, 1976; Inoue *et al.*, 1980). Specific findings from the bacterial mutagenicity studies presented in Table 32 are described in more detail below.

NMA-C3 was mutagenic in bacterial mutagenicity assays using test strain TA1530 with phenobarbital (PB)-induced hamster liver S9 but not with PB-induced rat liver S9 (Camus *et al.*, 1976). It was also positive in test strain TA1535 with Aroclor 1254-induced rat liver S9 (Andrews and Lijinsky, 1980), and in test strains TA 1535 and *E. coli* WP2 uvrA in the presence of a modified Fenton's reagent (Inami *et al.*, 2010).

NMA-C4 induced mutagenicity (primarily with PB- or PCB-induced rat liver S9 extract) in test strains TA100 and TA1535, as well as *E. coli* WP2 hcr⁻ (Tsutsumi *et al.*, 2010; Suzuki *et al.*, 1985; Yahagi *et al.*, 1977; Sugimura *et al.*, 1976). Andrews and Lijinsky (1980) found that NMA-C4 was mutagenic to test strain TA1535 in both the presence and absence of Aroclor 1254-induced rat liver S9. It was also mutagenic to test strains TA 1535 and *E. coli* WP2 uvrA in the presence of a modified Fenton's reagent (Inami *et al.*, 2010; Tsutsumi *et al.*, 2010). NMA-C4 was not mutagenic in the presence or absence of rat liver S9 in test strain TA98 (Sugimura *et al.*, 1976; Yahagi *et al.*, 1977).

Several NMAs (NMA-C6 – C11) induced mutations in test strain TA1535 in the presence but not the absence of Aroclor 1254-induced rat liver S9 (Andrews and Lijinsky, 1980).

NMA-C12 induced mutations in test strain TA100 in the presence of PB or PCB-induced rat liver S9 but not in test strain TA98 in the presence or absence of metabolic activation (Inoue *et al.*, 1980; Yahagi *et al.*, 1977; Sugimura *et al.*, 1976).

No bacterial mutagenicity assays were identified for NMA-C5 or NMA-C14.

Table 32. Bacterial gene mutation assays

NMA	Strain ¹	Concentration	Res	ults ²	Activation system	Reference	
IAIAI	Strain	tested	- S9	+ S9	Activation system		
	TA1530		NT	+	PB ³ induced hamster liver S9	Camus <i>et al</i> ., 1976	
C3 -	TA 1550	0 Fumal/plata	NT	-	PB induced rat liver S9	Camus et al., 1976	
	TA1535	0 - 5 µmol/plate	+	NT	Modified Center's respect	Inami at al. 2010	
	E. coli WP2 uvrA		+	NT	Modified Fenton's reagent ⁴	Inami <i>et al</i> ., 2010	
	TA98	Not stated	-	-	PB or PCB ⁵ induced rat liver S9	Cugimura at al. 1076	
	TA100	Not stated	-	+	PB 01 PCB illduced fat liver S9	Sugimura <i>et al</i> ., 1976	
	TA98	Not stated	-	-	DD or DCD induced not liver CO	Vohogi of al. 1077	
	TA100	0 - 40 µmol/plate	-	+	PB or PCB induced rat liver S9	Yahagi <i>et al.</i> , 1977	
		0 - 15 µmol/plate	(+) ⁶	+	PB or PCB induced rat liver S9		
	TA1535		(+) ⁶	+	PB or PCB induced rat liver S9 with or without DMSO	Overaldi at al. 4005	
		0 - 15 μmol/plate	(+) ⁶	+	PB or PCB induced rat liver S9	- Suzuki <i>et al.</i> , 1985 -	
C4	E. coli WP2 hcr		(+) ⁶	+	PB or PCB induced rat liver S9 rat with or without DMSO		
			+	NT	Modified Fenton's reagent plus nitric oxide		
	TA1535	0 - 5 µmol/plate	-	NT	Modified Fenton's reagent plus DMPO ⁷	Tsutsumi <i>et al.,</i> 2010	
			-	NT	Modified Fenton's reagent plus CarboxyPTIO ⁸	-	
	TA4505	O	+	NT	Modified Fenton's reagent		
	TA1535	0 - 5 µmol/plate	+	NT	H ₂ O ₂ plus Cu ²⁺	Inami <i>et al</i> ., 2010	
	E. coli WP2 uvrA	0 - 5 µmol/plate	+	NT	Modified Fenton's reagent		

Table 32 (cont'd). Bacterial gene mutation assays

NMA	Strain ¹	Concentration	Res	ults²	Activation system	Reference	
NIVIA	Strain	tested	- S 9	+ S9	Activation system	Reference	
C3			1	+			
C4			+	+			
C6			-	+			
C7	T \ 1505	0 1000 ug/ploto	-	+	Aroclor 1254 induced rat liver	Andrews and Lijinsky, 1980	
C8	C9	0 - 1000 μg/plate	-	+	S9		
C9			-	+			
C10			-	+			
C11			-	+			
	TA98	Not stated	-	-	PB or PCB induced rat liver S9	Sugimure of al. 1076	
	TA100	Not stated	-	+	PB of PCB induced fat liver S9	Sugimura et al., 1976	
C12	TA98	Not stated	-	-	PB or PCB induced rat liver S9	Val. 2 2 4 4077	
012	TA100	0 - 1 µmol/plate	1	+	PB of PCB induced fat liver S9	Yahagi <i>et al.</i> , 1977	
	TA98	50 - 500 μg/plate	1	-	PCB induced rat liver S9	Inoug of al. 1080	
1	TA100	50 - 500 µg/plate	-	+	FCB illudced lat liver 39	Inoue <i>et al</i> ., 1980	

¹ Test strains used are of the genus *Salmonella typhimurium* unless otherwise noted in table
² Not tested (NT)
³ Phenobarbital (PB)
⁴ Modified Fenton's reagent (H₂O₂, Fe²⁺ and Cu²⁺, a reactive oxygen generating system)
⁵ Polychlorinated biphenyl
⁶ "weakly positive" as stated by author
⁷ 5,5-Dimethyl-1-pyrroline N-oxide (DMPO)
⁸ 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3 oxide (CarboxyPTIO)

In vitro mammalian mutagenicity

NMA-C3 was mutagenic in V79 Chinese hamster lung cells in the presence of a rat liver S15 fraction (a post-mitochondrial fraction from male BD VI rat livers centrifuged at 15000 x g for 20 minutes) (Kuroki *et al.*, 1977). NMA-C3 was also mutagenic in V79 Chinese hamster lung cells in the presence, but not absence, of hamster hepatocytes (Langenbach, 1986) (Table 33).

Table 33. In vitro mammalian genotoxicity tests

Chemical	Endpoint	Test system	Result	Reference
	Mutagenicity; Azaguanine resistance	V79 Chinese hamster cells	+ with S15 ¹ from PB treated rats	Kuroki <i>et al</i> ., 1977
C3	Mutagenicity; Ouabain resistance	V79 Chinese hamster cells	+ in presence of hamster hepatocytes	Langenbach, 1986

¹ A post-mitochondrial fraction from male rat BD VI livers centrifuged at 15000 x g for 20 minutes

Nucleic acid alkylation adducts

NMAs have been shown to form DNA and RNA adducts through alkylation in target tissues *in vivo* and *in vitro*.

Nucleic acid alkylation in vivo – NMA-C1 – C12

Twelve NMAs, from NMA-C1 through NMA-C12, have been shown to form DNA adducts as a result of alkylation of the DNA of target tissues (lung, esophagus, liver, kidney) in male Fischer rats in vivo (Von Hofe et al., 1987; Kleihues et al., 1987) (see Table 34). In these studies rats were treated with a single oral dose of 0.1 mmol/kg of the respective NMA and sacrificed 6 hours later. DNA was extracted from frozen tissues and the amounts of 7-methylguanine and O⁶-methylguanine were determined using high performance liquid chromatography. All NMAs tested formed DNA adducts in rat liver (see Table 34). Additional sites of 7-methylguanine and O⁶-methylguanine formation for the individual NMA compounds were as follows: NMA-C1 and NMA-C2 formed DNA adducts in the lung and kidney; NMA-C3 and NMA-C4 formed DNA adducts in the esophagus, lung, and kidney; NMA-C5 formed DNA adducts in the esophagus and the lung; and NMA-C10, -C11, and -C12 formed DNA adducts in the lung. The extent of formation of methylated guanine adducts was greatest in liver tissue following administration of short chain alkyl nitrosamines; levels of methylated guanine adducts in the liver decreased with increasing alkyl chain length. The tissue with the second largest amount of methylated quanine adducts was the esophagus, with the highest levels seen with NMA-C4 and NMA-C5, followed by NMA-C3. Both kidney and lung tissues had similar levels of methylated quanine adducts; in kidney tissues NMA-C1 - C4 formed methylated guanine adducts, with levels decreased with increasing alkyl chain length. While only 7-methylguanine and O⁶-methylguanine were measured in this set of studies, NMAs also form other types of DNA adducts (Von Hofe *et al.*, 1987; Kleihues *et al.*, 1987). For example, Kleihues *et al.* (1987) reported on a separate study of rats exposed to NMA-C2, where several ethyl and hydroxyethyl DNA adducts were identified.

Nucleic acid and protein alkylation in vivo – NMA-C4

Studies by Magee and Lee (1964) demonstrated that the methyl group of NMA-C4 binds to protein and RNA of rat liver and kidney tissues to a greater extent than its butyl group. ¹⁴C-labeled NMA-C4 (either N-butyl-[¹⁴C]methylnitrosamine or N[¹⁴C]butylmethylnitrosamine) was injected intraperitoneally into Wistar rats, and rats were sacrificed 6 or 7 hours post-injection. RNA and protein from the liver, kidneys, pancreas, and spleen were extracted and examined for radioactivity. Liver RNA had the highest radioactivity (measured as radioactive 7-methylguanine), followed by kidneys, spleen, and pancreas (Table 34). Nucleic acids and protein were labeled to a greater extent when N-butyl-[¹⁴C]methylnitrosamine rather than N-[¹⁴C]butylmethylnitrosamine was administered.

Nucleic acid alkylation in vitro - NMA-C5

Alkylation of liver and esophageal rat DNA was observed after incubating tissue slices of rat esophagus and liver with ³H-labeled NMA-C5 (Mirvish *et al.*, 1987) (Table 34). DNA was isolated and analyzed for apurinic acid, N7-methylguanine, and O⁶-methylguanine. Esophageal DNA contained 19 times more O⁶-methylguanine than liver DNA. This is consistent with the bioassay findings for NMA-C5, which significantly increased the incidence of esophageal, nasal, forestomach, and tracheal tumors but not liver tumors in rats (as presented in Section 3.2).

Nucleic acid alkylation in vivo – NMA-C5

Adult male F344 rats were injected with a single dose of N-nitroso[methyl¹⁴C]-pentanamine (NMA-C5) (0.1mmol/kg), and DNA was extracted from individual organs six hours later (Koenigsmann *et al.*, 1988). The concentration of methylated purines (guanine and adenine) was measured. Levels of alkylated DNA (measured as methylated purines) were highest in esophageal tissue, followed by nasal epithelium and liver, with lower levels in trachea, lung, forestomach, and kidney (Table 34).

Table 34. Nucleic acid and protein adducts formed by NMAs

NMA-	In vivo/ in vitro	Type of Adduct	Animal Test Species	Result	Reference
C4	In vivo	RNA and protein	Wistar rat	+ liver, kidney, pancreas, spleen	Magee and Lee, 1964
	In vitro	DNA	MRC- Wistar rat	+ esophagus, liver	Mirvish et al., 1987
C5	In vivo	DNA	Fischer rat	+ esophagus, nose,liver, trachea, lung, forestomach, kidney	Koenigsmann <i>et</i> al., 1988
C1				+ liver, lung, kidney	
C2				+ liver, lung, kidney	
C3				+ esophagus, liver, lung, kidney	Von Hofe <i>et al.,</i>
C4				+ esophagus, liver, lung, kidney	
C5	In vivo	DNA	Fischer rat	+ lung, esophagus, liver	1987; Kleihues <i>et al.</i> ,
C6				+ liver	1987
C7				+ liver	
C8				+ liver	
C9 C10				+ liver + lung, liver	
C11				+ lung, liver	
C12				+ lung, liver	

In summary, all twelve NMAs tested form DNA adducts in rats *in vivo*, all eleven NMAs tested are mutagenic in bacteria, all three NMAs tested are mutagenic in Chinese hamster V79 cells, and NMA-C1, the most extensively tested compound in the group, has been shown to be mutagenic and clastogenic in multiple *in vitro* and *in vivo* test systems.

3.3.2 In Vitro Cell Transformation Assays

NMA-12 was tested in an *in vitro* cell transformation assay using Syrian golden hamster embryo cells (Inoue *et al.*, 1980). Cells were observed for randomly oriented three-dimensional growth with extensive crossing-over of the cells at the periphery of the colony. NMA-C12 was negative in this test system at media concentrations of 1, 10 and 100 μ g/ml. However, the response to the concurrent positive control 3-methylcholanthrene (3-MC) was low (0.2% transformation in 1 μ g/ml treatment group) compared to the response to the same 3-MC concentration during cell line characterization (>1.5% transformation).

3.3.3 Pharmacokinetics and Metabolism

The pharmacokinetics and metabolism of NMAs have been studied in several animal species and in humans. *In vivo* metabolism studies have been conducted in rats (Blattmann *et al.*, 1974; Mirvish *et al.*, 1985b; 1987; 1989; Suzuki *et al.*, 1981; Okada *et al.*, 1976a; Singer *et al.*, 1981, 1982). *In vitro* studies have been conducted with tissue preparations from liver, esophagus, trachea, lung, nose, and kidney of rats, mice, hamsters, and guinea pigs, (Lee *et al.*, 1989; Kawanishi *et al.*, 1983; Farrelly and Stewart, 1982; Farrelly *et al.*, 1982; Huang *et al.*, 1992, 1993; Lorr *et al.*, 1982; Mirvish *et al.*, 1985b, 1987, 1988, 1989, 1991a, 1991b, 1994b; Ji *et al.*, 1989) as well as with human liver and esophageal microsomes (Huang *et al.*, 1992; Mirvish *et al.*, 1994b).

NMAs are metabolized across species in a similar manner, and common metabolites are formed *in vivo* and *in vitro*. Metabolites identified include hydroxy-, oxo- and carboxy- intermediates as well as the Proposition 65 listed carcinogens formaldehyde and N-nitrososarcosine, and the animal tumorigens N-nitrosomethyl-3-carboxypropylamine, 4-hydroxy-nitrosomethyl-*n*-butylamine, and N-methyl-nitroso-2-oxopropylamine (MOP) (Bellec *et al.*, 1996; Koenigsmann *et al.*, 1988; Farrelly and Stewart, 1982; Mirvish *et al.*, 1985b, 1989, 1991a, 1991b, 1994b; Huang *et al.*, 1993; Lai and Arcos, 1980; Lorr *et al.*, 1982).

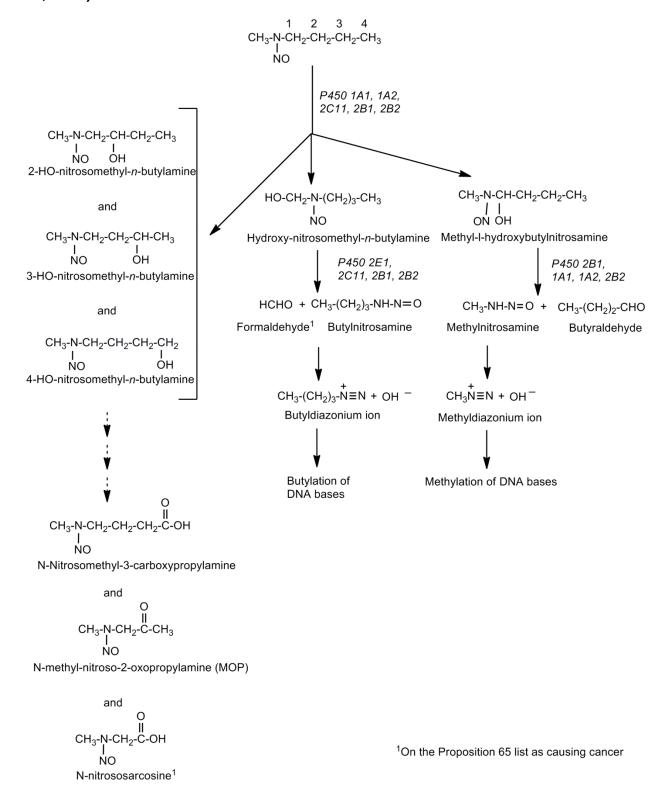
3.3.3.1 Absorption and Distribution

Dermal absorption studies using an *in vitro* human skin model system were performed with NMA-C12. In these studies NMA-C12 was absorbed to a limited extent by human skin when applied either in isopropyl myristate, an oil-in-water emulsion, or a shampoo vehicle (Walters *et al.*, 1997). Different doses of NMA-C12 and different study protocols were used with each vehicle, thus comparison of results across vehicles is not straightforward. Application of the chemical to the skin in a shampoo formulation for 10 minutes, followed by a rinse, resulted in absorption of 0.75% of the applied dose after 48 hours. Application of the chemical to the skin in the oil-in-water emulsion (with no rinsing) resulted in absorption of 4.66% after 48 hours. Application of the chemical to the skin in isopropyl myristate resulted in absorption of 0.098% after 48 hours.

In rats, NMAs were absorbed rapidly and metabolites were detected in blood and urine (Blattmann *et al.*, 1974; Mirvish *et al.*, 1985b; 1987; 1989; Suzuki *et al.*, 1981; Okada *et al.*, 1976a; Singer *et al.*, 1981; 1982). Levels of NMA-C5 in the blood were determined in studies by Mirvish and colleagues. NMA-C5 was rapidly absorbed and distributed following a single *i.p.* injection in male MRC Wistar rats of 25 mg/ml water/kg, with NMA-C5 levels of 11.2 μg/ml (86 nmol/ml) measured in the blood after 15 minutes (Mirvish *et al.*, 1987). In a subsequent experiment, male MRC Wistar rats were exposed to 25 mg NMA-C5/10 ml water/kg by *i.p.* injection (192 μmol NMA-C5/kg bodyweight) (Mirvish *et al.*, 1989). Blood levels of NMA-C5 reached 86 nmol/ml blood 15 minutes postinjection, and then declined to 40 nmol/ml blood at 1 hour post-injection, 10 nmol/ml blood at 2 hours post-injection, and to undetectable levels at 5 hours post-injection.

3.3.3.2 Metabolism

Initial steps in bioactivation and metabolism of NMAs involve hydroxylation of the alkyl chain by cytochrome P450 dependent enzyme systems, oxidative dealkylation, and reductive denitrosation. Hydroxylation at the α carbon is thought to form an unstable intermediate, leading to the formation of a diazonium ion, which in turn can react with DNA and lead to DNA alkylation (Magee, 1980; Lorr *et al.*, 1982; Kawanishi *et al.*, 1992; Bellec *et al.*, 1996). Hydroxylation at non-α carbons also occurs, ultimately resulting in formation of DNA reactive products. Dinitrosation of NMAs occurs via the combined actions of cytochrome P450 and NADPH-dependent P450 reductase, but can also occur via hydroxyl radicals (Appel *et al.*, 1986).


Different cytochrome P450 enzyme systems (CYP) are involved in the initial metabolic reactions, with CYP 1A shown to catalyze the α -hydroxylation of the alkyl chain and CYP 2E1 shown to catalyze the oxidation of the methyl group (Bellec *et al.*, 1996). Further hydroxylation of NMAs, thought to occur mainly via ω - and/or β -oxidation, results in the generation of 2-, 3-, 4- and/or 5-hydroxy-NMAs (Blattmann *et al.*, 1974; Mirvish *et al.*, 1991a, 1991b, 1994b; Huang *et al.*, 1993). CYP 2C11 and 2C12 catalyze the 4-hydroxylation of NMA-C5, while CYP 1A1, 1A2, 2B1, 2B2 and 2E1 catalyze hydroxylation at different positions of the alkyl chain (Mirvish *et al.*, 1991a; 1991b). CYP 2E1 has also been shown to form formaldehyde through α -oxidation of the methyl groups of NMA-C3 and NMA-C4 (Bellec *et al.*, 1996).

The main metabolites formed include various aldehydes, carboxylated- and hydroxylated-NMAs, and nitrite, as well as several metabolites that are genotoxic and are classified as carcinogens (formaldehyde, N-nitrososarcosine), or that have been shown to induce tumors in animals (N-nitrosomethyl-3-carboxypropylamine, 4-hydroxy-nitrosomethyl-n-butylamine, MOP) (Lijinsky et al., 1983a; Hasegawa et al., 1998; Okada et al., 1976b; Druckery et al., 1967; Thomas et al., 1988, Sugimura et al., 1976; Bellec et al., 1996; Koenigsmann et al., 1988; Farrelly and Stewart, 1982; Mirvish et al., 1985b, 1989, 1991a, 1991b, 1994b; Ji et al., 1989; Huang et al., 1993; Lai and Arcos, 1980; Lorr et al., 1982).

The *in vitro* studies indicate that the metabolism of NMAs may be qualitatively similar across several animal species (rats, mice, hamsters, and guinea pigs) and humans.

Possible routes of NMA metabolism with NMA-C4 as an example are presented in Figure 1 on the next page.

Figure 1. Proposed routes of NMA-C4 metabolism in rats (adapted from Huang et al., 1993)

Results from metabolism studies with individual NMAs are summarized below.

NMA-C4

NMA-C4 was metabolized by human liver microsomes, and identified metabolites include formaldehyde, butyraldehyde and nitrite (Yoo *et al.*, 1988). In rats, four metabolites were identified in urine at 48 hours following a single dose of orally administered NMA-C4 (130 mg/kg), namely 4-hydroxy-nitrosomethyl-*n*-butylamine, N-nitrosomethyl-3-carboxypropylamine, methyl-(3-carboxy-2-hydroxypropyl)-nitrosamine, and N-nitrososarcosine (Blattmann *et al.*, 1974). *In vitro*, formaldehyde, butyraldehyde and nitrite are formed with microsomal enzyme systems (Farrelly *et al.*, 1982; Lee *et al.*, 1989; Lorr *et al.*, 1982).

Demethylation of NMA-C4 to formaldehyde occurred primarily via the acetone inducible CYP 2E1 whereas debutylation occurred via a phenobarbital (PB) inducible CYP 2B1 enzyme, indicating alkyl group selectivity by the P450 enzymes (Lee *et al.*, 1989). Induction of rat microsomes with isopropanol, PB or 3-methylcholanthrene (MC) increased dealkylation as measured by increased formaldehyde and butyraldehyde formation compared to uninduced controls (Kawanishi *et al.*, 1983; Lorr *et al.*, 1982). Use of specific P450 antibodies indicated that rat CYP 2C11 mainly catalyzes demethylation and ω -1 hydroxylation, CYP 1A1 or 1A2 catalyze 3-hydroxylation and debutylation, CYP 2E1 catalyzes demethylation, and CYP 2B1 or 2B2 mainly perform ω -1 hydroxylation, demethylation, and debutylation reactions (Huang *et al.*, 1993). Other metabolites of NMA-C4 include 2-, 3-, and 4-hydroxy-nitrosomethyl-*n*-butylamine (Mirvish *et al.*, 1994b; Huang *et al.*, 1993).

Nitrite generation from NMA-C4 was also observed in an artificial hydroxy radical generating system (Appel *et al.*, 1986). This mechanism is likely to involve the generation of hydroxyl radicals via the formation of superoxide anion by cytochrome P450 or NADPH cytochrome P450 reductase in the presence of iron.

NMA-C5

The metabolism of NMA-C5 was studied using segments of human esophagi, as well as human liver and esophageal microsomes (Huang *et al.*, 1992; Mirvish *et al.*, 1994b). Similar to metabolism in animals, NMA-C5 metabolism involves hydroxylation and dealkylation reactions. Segments of human esophagi (harvested within 6 hours of death and subsequently incubated with NMA-C5 for 6 hours) yielded several hydroxylated metabolites. The main hydroxylated metabolite was 5-hydroxy-N-nitrosomethyl-*n*-pentylamine, and trace amounts of 2-, 3-, and 4-hydroxy-N-nitrosomethyl-*n*-pentylamine were observed (Huang *et al.*, 1992). Microsomes harvested from human esophagi and liver tissues also yielded 2-, 3-, 4-, and 5-hydroxy-N-nitrosomethyl-*n*-pentylamine, with the 2-hydroxy-N-nitrosomethyl-*n*-pentylamine being predominant (Huang *et al.*, 1992; Mirvish *et al.*, 1994b). Other metabolites identified were formaldehyde and pentaldehyde. The demethylation reaction was inhibited in the presence of carbon monoxide, indicating the involvement of cytochrome P450 enzymes. Human liver microsomes

were more active than esophageal microsomes with regard to depentylation of NMA-C5.

In rats, metabolites were identified in 24- or 48-hour urine collected from animals which had received a single *i.p.* injection of 25 mg or 30 mg NMA-C5 (Mirvish *et al.*, 1985b, 1989). Urine contained parent compound and the metabolites 2-, 3-, and 4-hydroxy-N-nitrosomethylpentanamine and 4-oxo-methyl-N-pentan-nitrosamine. The principal blood metabolites were 2- and 4-hydroxy- and 4-oxo-nitrosomethyl-*n*-pentylamine (Mirvish *et al.*, 1987; 1989). Blood levels of 4-hydroxy- and 4-oxo-nitrosomethyl-*n*-pentylamine, peaked after an *i.p.* injection of 25 mg/10 ml water /kg at 13 nmol/ml at 30 minutes and 21-22 nmol/ml at 60 to 120 minutes, respectively (Mirvish *et al.*, 1989).

In vitro, NMA-C5 was dealkylized to formaldehyde and pentaldehyde by rat esophageal and liver microsomes (Mirvish et al., 1994b; Huang et al., 1992). The demethylation reactions were inhibited by carbon monoxide (CO), indicating that P450 enzymes are involved. In addition to pentaldehyde and formaldehyde, 2-, 3-, 4-, and 5-hydroxy-N-nitrosomethylpentanamine were formed, with 5-hydroxy-N-nitrosomethylpentanamine being produced predominantly (Huang et al., 1992). The two keto-nitrosamines, 3-, and 4-oxo-N-nitrosomethylpentanamine, which are formed in vivo, were also identified (Ji et al., 1989; Mirvish et al., 1987, 1988, 1989).

NMA-C5 is metabolized in a similar manner across species, including human tissues, and many of the same metabolites are formed both *in vivo* and *in vitro*. The 2-, 3-, 4-, and 5-hydroxy-N-nitrosomethylpentanamine and one keto-nitrosamine were identified in various tissues of mouse, hamster, and guinea pig, as well as in human tissues (Mirvish *et al.*, 1985, 1994b). The positional hydroxylation reaction, as well as the formation of formaldehyde (demethylation) and pentaldehyde (depentylation) are catalyzed by P450 isozymes (Mirvish *et al.*, 1991a, 1991b). Inhibition studies with monoclonal P450 antibodies indicated CYP 2C11, 2EI and 2B1 as major P450s in uninduced microsomes from male rats, and CYP 2C12 from female rats. Enzymes CYP 2C11 and CYP 2C12 were deemed to catalyze most of the 4-hydroxylation reactions (Mirvish *et al.*, 1991a, 1991b).

NMA-C12

Male Wistar rats were exposed to NMA-C12 by gavage (average dose 143 mg/rat), and urine was collected from the animals over a 48-hour period. Four metabolites were detected in the pooled rat urine, with the primary metabolite being N-nitrososarcosine (14.5%), followed by N-nitrosomethyl-n-(2-hydroxy-3-carboxy)propylamine (3.5%), N-nitrosomethyl-3-carboxypropylamine (2.5%), and MOP (0.7%) (Okada *et al.*, 1976a; Suzuki *et al.*, 1981).

C4-C14 NMAs

Metabolites of a series of NMAs, ranging from NMA-C4 to NMA-C14, were extracted from rat urine 24 hours after gavage with 0.52 mM of each individual NMA (Singer *et al.*, 1981, 1982). The principle metabolites of NMAs with even-numbered carbons were different compared to NMAs with odd-numbered carbons. Compounds with even-numbered carbons were metabolized to approximately equal amounts of N-nitrososarcosine and N-nitrosomethyl-3-carboxypropylamine. Compounds with odd-numbered carbons were metabolized to nitroso-methyl-2-carboxyethyl-amine and small amounts of N-nitrosomethyl-3-carboxypropylamine. MOP was formed from all NMAs studied, but levels were higher with NMAs with even-numbered carbons compared to NMAs with odd-numbered carbons. The proportion of MOP increased with the length of the even-numbered alkyl chains, ranging from 0.01% for NMA-C4 to 0.53% for NMA-C14. Very little MOP along with nitroso-3-methylamino-2-hydroxypropane was formed with odd-numbered alkyl chains, with levels ranging from 0.02% to 0.04% and from 0.01% to 0.03%, respectively.

An overview of the metabolism studies is presented in Table 35 below.

Table 35. Metabolism studies of NMAs

NMA-	In vitro/ in vivo	Species	Test system	Reaction products/Metabolites observed	Reference
		Human	Liver micro- somes	Formaldehyde, butyraldehyde, nitrite	Yoo <i>et al.</i> , 1988
		Fischer rats	Liver micro- somes	Oxidative de-alkylation; formalde- hyde, butyraldehyde	Farrelly et al., 1982
		Sprague Dawley rats	Liver micro- somes; in- duced by iso- propanol, pyra- zole, PB, or MC	Nitrite, formaldehyde	Lorr <i>et al.</i> , 1982
		Wistar rats	Liver micro- somes; in- duced by PB or MC	Oxidative de-alkylation; metabolites: formaldehyde, butyraldehyde	Kawanishi et al., 1983
		Sprague Dawley rats	Liver micro- somes; P450 enzymes; in- duced by PB, safrole, or MC	Oxidative de-alkylation; substrate specificity and alkyl group specificity of P450 enzymes; formaldehyde, butyraldehyde (reported as demethylation and debutylation reactions)	Lee <i>et al.</i> , 1989
	In vitro	NMRI mice; Artificial sys- tem (XOD/hypox anthine)	Liver micro- somes; in- duced with PB	Formaldehyde and Nitrite formation	Appel <i>et al.</i> , 1986
C4		Sprague Dawley rats	Dawley rats and b-Naphthoflavon		Kawanishi et al., 1992
		MRC-Wistar rats; Sprague Dawley rats	MRC W rats- lung, liver, tra- chea, and esophagus slices; SD rats- micro- somes (in- duced by PB, MC, or isonia- zid)	Dealkylation and hydroxylation; metabolite yield; substrate specificity of P 450; 2-, 3-and 4- hydroxy- nitrosomethyl-n-butylamine; formaldehyde, butyraldehyde	Huang <i>et</i> <i>al.</i> , 1993; Mirvish <i>et</i> <i>al.</i> , 1994b
	In vivo	Rats (un- known)	Oral route; single dose 130mg/kg; 48 h urine analysis	Metabolites: 4-hydroxy- nitro- somethyl- <i>n</i> -butylamine; N- nitrosomethyl-3- carboxypropylamine; Methyl- (carboxymethyl)-nitrosamine (N- Nitrososarcosine)	Blattmann et al., 1974

Table 35 (cont'd). Metabolism studies of NMAs

NMA-	In vitro/ in vivo	Species	Test system	Reaction products/Metabolites observed	Reference
		Sprague Dawley rats	Liver micro- somes; in- duced by MC, PB, or Aroclor 1254; isoniazid	Metabolites: 2-, 3-, 4-, and 5- hydroxy-N-nitrosomethylpentyl- amine; 2-, 3-, 4-, and 5-hydroxy- methyl-pentan-nitrosamine, For- maldehyde, Pentaldehyde; P 450 specificity	Mirvish <i>et</i> al., 1991a
		MRC-Wistar rats; Sprague Dawley rats; Swiss mice; Syrian hamsters; guinea pigs	Tissue preparations (esophagus,- tracheal, liver, lung, kidney, and nasal tissue)	Metabolites: 2,-3-, 4- hydroxyl- methyl-pentan-nitrosamine and oxo- N-methyl-pentan-nitrosamine found in all species, most tissues; 5- hydroxy-methyl-pentan- nitrosamine only with Wistar-rat tissues	Mirvish <i>et</i> al., 1985b
	MF rat:	MRC-Wistar rats; Syrian hamsters	Tissues ranging from fetuses two days before term to tissues from young adults; esophagus, forestomach, whole stomach, liver lung, skin, kidney	Rat: 2-, 3-, and 4- hydroxy-methyl-pentan-nitrosamine; 3-, and 4-oxo- N-methyl -pentan nitrosamine. Maximum metabolism of esophagus at 9 d of age; forestomach at 3 days; none in adults. Hamster: newborn esophagus active; 3 d old hamster forestomach active; none in adults	Mirvish et al., 1987
C5		MRC-Wistar rats; Syrian hamsters	Tissue slices (esophagus, stomach, intes- tine, trachea, and liver); neo- natal to adult	Metabolites: 2-, 3-, 4-, and 5- hydroxy-nitrosomethyl- <i>n</i> -pentylamine; 4-oxo-nitrosomethyl- <i>n</i> -pentylamine	Mirvish et al., 1988
		Sprague Dawley rats	Liver prepara- tions; Induced by PB, MC, clofibrate, or isoniazid	Metabolites:2-, 3-, 4-, 5- hydroxyl-methyl-pentan-nitrosamine;	Mirvish <i>et</i> al., 1989
		Sprague Dawley rats	Liver slices and microsomes; Induced by PB, MC, Aroclor 1254 clofibrate, or isoniazid	Metabolites: Nitrite, formaldehyde, pentaldehyde, 2-, 3-, 4-, and 5- hydroxyl- methylpentan-nitrosamine, 4-oxo- methyl-pentan-nitrosamine	Ji <i>et al</i> ., 1989

Table 35 (cont'd). Metabolism studies of NMAs

NMA-	In vitro/ in vivo	Species	Test system	Reaction products/Metabolites observed	Reference
		Sprague Dawley rats	Induced and uninduced liver microsomes; Monoclonal AB to P450 enzymes to identify P450s involved	Metabolites in uninduced microsomes:4- hydroxy-methyl-pentan nitrosamine, formaldehyde, pentaldehyde, nitrite formation; Induced microsomes: 2-, 3-4-, and 5-hydroxy-methyl-pentannitrosamine, pentaldehyde, formaldehyde	Mirvish <i>et</i> <i>al.</i> , 1991b
		Human; Sprague Dawley rats	Microsomes from esophagus and liver	Metabolites (human): formaldehyde; pentaldehyde; 5- HO-methyl- pentan-nitrosamine. Very low levels of 2,-3-, 4- HO- methyl- pentan-nitrosamine. Metabolites (rat): formaldehyde, pentaldehyde; Me- thyl-hydroxy-pentan-nitrosamine (HO positions not specified)	Huang <i>et</i> <i>al.</i> , 1992; Mirvish <i>et</i> <i>al.</i> , 1994b
C5		MRC-Wistar rats	Blood & urine analysis; i.p. injection of 25 mg C5/10ml water/kg; 5 min – 5 h blood samples	Metabolites: 2-,3-, and 4- hydroxymethyl-pentan-nitrosamine and 4-oxo-N-methyl-pentan nitrosamine in urine as β glucuronides; low levels 2 HO-, 3-HO- and higher levels of 4-HO- and 4-oxo N-methyl-pentan-nitrosamine in blood. Rapid elimination within 2 h, undetectable at 5 h.	Mirvish <i>et</i> <i>al.</i> , 1989
	In vivo	MRC-Wistar rats	Blood & urine analysis; <i>i.p.</i> injection (25 mg/ml water/kg)	Blood: rapid absorption and distribution of C5 (11.2 µg/ml blood at 15 minutes; one-compartment first order kinetics); half-life 21 minutes; main metabolites were 4-HO- and 4-oxo N-methyl –pentannitrosamine; 80% elimination in urine within 6 h.	Mirvish <i>et</i> <i>al</i> ., 1987
		MRC-Wistar rats	Urine analysis (48 h); <i>i.p.</i> injection (30 mg/ml water/kg)	Metabolites: 2-, 3-, 4-, and 5- methyl-hydroxy-pentyl-nitrosamine; Oxo- N-methyl-pentan nitrosamine	Mirvish <i>et</i> <i>al.</i> , 1985b
C12	In vivo	Wistar rats	Urine analysis(48 h); gastric intubation (125-159 mg/rat)	Metabolites: N-nitrosomethyl-3-carboxypropylamine, N-methyl-N-(2-hydroxy-3-carboxypropyl)nitrosamine, N-methyl-N-(carboxymethyl)nitrosamine (N-Nitrososarcosine), MOP.	Suzuki et al.,1981
		Wistar rats	Urine analysis 48 h; gavage; 143 mg/rat	Metabolites- see above	Okada <i>et</i> <i>al.</i> ,1976a

Table 35 (cont'd). Metabolism studies of NMAs

NMA-	In vitro/ in vivo	Species	Test system	Reaction products/Metabolites observed	Reference
C3-C6	In vitro	Sprague Dawley rats	Microsomes; induced with acetone; pyrazole, PB, pyridine, 3-MC, β-naphthoflavone, indole-3-carbinol	Formaldehyde; propionaldehyde; butyraldehyde; pentaldehyde	Bellec <i>et</i> <i>al</i> ., 1996
C3, C5- C7	In vitro	Fischer rats	Microsomes	Formaldehyde	Farrelly & Stewart, 1982
		Fischer rats	Gavage (12 mg; 2/week for 30 weeks) Urine analysis; 24 h	Odd-numbered nitroso - alkylamine metabolites: nitroso- methyl-carboxy-ethylamine; nitro- so-methyl-2-oxopropylamine (small amount only). Even-numbered nitroso- alkylamine metabolites: N- nitrososarcosine, nitroso-methyl- carboxypropylamine; All: nitroso-methyl-2-oxopropylamine (increasing amounts with increasing even C number)	Singer et al., 1982
C4-C14	In vivo	Fischer rats	Gavage, (0.2 ml of 0.52 mM 2/week) Urine analysis; 24 h	Main metabolites from odd numbered compounds: Nitroso-methyl-2-carboxyethylamine. Nitroso-3-methylaminopropionic acid; Small amounts of nitrosomethylaminoalkyl-carboxylic acids; Main metabolites from even numbered compounds: N-nitrososarcosine, N-nitrosomethyl-3-carboxypropylamine (NMCP); nitrosomethyl-aminoalkyl-carboxylic acids; Other metabolites: MOP; methyl 3-(nitrosomethylamino)-propionic acid; methyl 4-(nitrosomethyl-amino)butyric acid; 5-(nitrosomethylamino) pentanoic acid; 6-(nitrosomethylamino)	Singer et al., 1981

3.3.3.3 Excretion

Based on the clearance of NMA-C5 from the blood of rats following a single *i.p.* injection, Mirvish *et al.* (1987) concluded that the elimination of NMA-C5 follows a one-compartment first order kinetics model, with a half-life of 21 minutes, an absorption rate constant of 5.25/hour, and an elimination rate constant of 2.0/hours.

NMAs are excreted into urine, primarily as metabolites, regardless of the route of administration (*i.e.*, gavage or *i.p* injection). NMA-C12 was extensively metabolized and excreted into urine at about 20% of the dose as nitroso metabolites within 48 hours following a single gavage exposure. No parent compound was detected in urine, and no additional nitroso metabolites were detected in urine beyond 48 hours (Suzuki *et al.*, 1981).

Male Wistar rats received *i.p.* injections of NMA-C5 (Mirvish *et al.*, 1985b) or were induced with MC and then 48 hours later injected with NMA-C5 (Mirvish *et al.*, 1989). About 0.08% of the administered dose of NMA-C5 was excreted unchanged in urine and total nitroso metabolite excretion was 1.1%. The urinary nitroso metabolites occurred as their β -glucuronides.

3.3.3.4 Summary

NMAs are rapidly absorbed regardless of the route of administration, distributed via the blood, rapidly metabolized, and eliminated via urine. Metabolism occurs primarily via cytochrome P450 enzymes, resulting in various oxidation products (alcohols, ketones, carboxylic acids) and nitrite. *In vitro* experiments with human and animal tissues have identified the common metabolites formaldehyde, nitrite, and butyr- or pentaldehyde. *In vivo*, common metabolites include the Proposition 65 listed carcinogen N-nitrososarcosine, and the animal tumorigens 4-hydroxy-nitrosomethyl-*n*-butylamine, N-nitrosomethyl-3-carboxypropylamine and MOP.

3.3.4 Animal Tumor Pathology

Rat

Table 36 lists tumor types which are rare or significantly increased in incidence or both resulting from exposure of rats to NMAs with alkyl chain lengths ranging from three to fourteen carbons. Tumors of the nasal cavity, tongue, lung, esophagus, forestomach, liver, bladder and several other organs were observed in rats.

Table 36. Tumor sites in rats treated with NMAs of various alkyl chain lengths

NMA-	Nasal cavity	Tongue	Lung	Esophagus	Forestomach	Liver	Bladder	Others
С3	M, F	F		M, F	F	M, F		F ^{1,2}
C4	M, F	M, F		M, F	M, F			M ¹ , F ¹
C5	M, F	M		M, F	MF ³ , M			M ⁴ , F ⁴
C6	М	M	М	M	M	М		
C7	М	M	М	M		M		
C8	M		M			M	M	M ⁴
C9	М		М			М		
C10	М		М		М		M	
C11			М	М	M	М		
C12			M, F	F	М		M, F	M ⁵
C14			M				M	M ⁶

¹Oropharyngeal tumors (rare)

Nasal cavity tumors were observed in male rats treated with NMA-C3 (Reznik *et al.*, 1975), NMA-C4 (Lijinsky *et al.*, 1983b), NMA-C5 (Mirvish *et al.*, 1985a, 1994a; Bulay and Mirvish, 1979; Yamaguchi *et al.*, 1989), NMA-C6 (Lijinsky *et al.*, 1983b), NMA-C7 (Lijinsky *et al.*, 1983b), NMA-C8 (Lijinsky *et al.*, 1981), NMA-C9 (Lijinsky *et al.*, 1981) and NMA-C10 (Lijinsky *et al.*, 1981), and in female rats treated with NMA-C3 (Lijinsky *et al.*, 1983a; Reznik *et al.*, 1975), NMA-C4 (Lijinsky *et al.*, 1980, 1983a, 1983b), and NMA-C5 (Bulay and Mirvish, 1979). All types of nasal tumors are rare in rats (Boorman *et al.*, 1990; Schwartz *et al.*, 1994) in one or more of the following strains: Sprague Dawley (SD), F344, and MRC-Wistar.

The nasal cavity tumors observed with the NMAs include squamous cell papillomas and carcinomas, olfactory adenocarcinomas and basal cell carcinomas that originate from the respiratory epithelium of the nasoturbinals and maxilloturbinals or from the maxillary sinuses and the olfactory epithelium (Lijinsky et al., 1983a; Reznik et al., 1975; Bulay and Mirvish, 1979; Yamaguchi et al., 1989; Lijinsky et al., 1981).

² Epiglottis tumors (rare)

³ MF- tumor incidences were reported in males and females combined

⁴ Trachea tumors (papilloma, carcinoma; rare)

⁵ Pancreatic islet cell carcinoma

⁶ Kidney carcinoma (rare)

The rat nasal cavities are composed of two compartments that are divided by a septum. Each has three turbinates (synonymous with turbinals) projecting into the lumen: nasoturbinates (most apical and superior), maxilloturbinates (inferior to the nasoturbinates), and ethmoid turbinates (most caudal). The olfactory organ is located posteriorly, near the ethmoid turbinals. There is one pair of maxillary sinuses in the lateral wall of the nasal cavity, which are lined by ciliated columnar epithelium with few goblet cells. Half the surface area of the nasal passage is lined with *olfactory* epithelium, half by *respiratory* and transitional epithelium, and 4% by *squamous* epithelium (Boorman *et al.*, 1990).

The *olfactory* epithelium covers a portion of the nasal septum, most of the dorsal meatus, parts of the nasal wall, and the ethmoid turbinates. Olfactory epithelium is composed of pseudostratified columnar cells of three types: sustentacular, sensory, and basal cells. Olfactory adenocarcinomas were observed in the nasal cavity (Lijinsky et al., 1983a). Respiratory epithelium extends from the nasal vestibule to the nasopharynx, covering the lateral wall, maxilloturbinate, the majority of the nasoturbinate, and part of the ethmoid turbinate. Six different cell types make up the respiratory epithelium: cilated and non-ciliated columnar cells, goblet cells, brush cells, cuboidal cells, and basal cells. Tumors were observed in the apical nasal cavities that originated from the respiratory epithelium of the nasoturbinates and maxilloturbinates and maxillary sinuses (Reznik et al., 1975; Lijinsky et al., 1981). The nares and nasal vestibule are lined by lightly keratinized stratified squamous epithelium. Squamous cell papillomas and carcinomas were observed in the nasal cavity (Lijinsky et al., 1983a; 1981). Squamous cell papilloma may progress to overt squamous cell carcinoma, which is marked by invasive rather than expansile growth (Boorman et al., 1990). Observed carcinomas were either basal cell or a mixture of basal and squamous cell with keratin (Lijinsky et al., 1981).

Tongue tumors were observed in male rats treated with NMA-C4 (Lijinsky *et al.*, 1980; 1983b), NMA-C5 (Mirvish *et al.*, 1994a; Tanaka *et al.*, 1997; Yamaguchi *et al.*, 1989), NMA-C6 (Lijinsky *et al.*, 1983b) and NMA-C7 (Lijinsky *et al.*, 1983b) in one or more of the following strains: F344, MRC-Wistar, ad Wistar, and in female F344 rats exposed to NMA-C3 (Lijinsky *et al.*, 1983a) and NMA-C4 (Lijinsky *et al.*, 1980; 1983a).

The tongue tumors were squamous cell papillomas and carcinomas, which arise principally from the stratified squamous epithelium but can also arise from the connective tissue. Neoplasms of the tongue are rare in SD rats and F344 rats (Baldrick, 2005; Haseman *et al.*, 1998; Whiteley *et al.*, 1996). Tongue squamous cell papillomas are considered to have the potential to progress to carcinomas (Whiteley *et al.*, 1996; McConnell *et al.*, 1986).

Tumors of the trachea were observed in male and female MRC-Wistar rats following NMA-C5 exposure (Bulay and Mirvish, 1979) and in male F344 rats following NMA-C8 (Lijinsky *et al.*, 1981) exposure. The tumors observed in rats treated with NMA-C5 were papillomas and carcinomas, while the tumors observed after treatment with NMA-C8 were papillomas. Trachea tumors are rare in rats (Boorman *et al.*, 1990).

Lung tumors were observed in male rats treated with several NMAs: NMA-C6 (Lijinsky *et al.*, 1983b), NMA-C7 (Lijinsky *et al.*, 1983b), NMA-C8 (Lijinsky *et al.*, 1981), NMA-C9 (Lijinsky *et al.*, 1981), NMA-C10 (Lijinsky *et al.*, 1981), NMA-C11 (Lijinsky *et al.*, 1978), NMA-C12 (Lijinsky *et al.*, 1981;), and NMA-C14 (Lijinsky *et al.*, 1981) and in females treated with NMA-C12 (Lijinsky and Taylor, 1975; Lijinsky *et al.*, 1983c) in one or more of the following strains: F344 and SD. The lung tumors observed include alveolar/bronchial adenomas, adenocarcinomas, carcinomas, and squamous cell carcinomas. Bronchiolo-alveolar adenomas are considered to have the potential to progress from benign to malignant phenotypes (McConnell *et al.*, 1986). Adenocarcinomas and squamous cell carcinomas of the lung are rare in rats (Boorman *et al.*, 1990; Schwartz *et al.*, 1994). The origin of squamous cell carcinomas is uncertain; they may arise from bronchi, bronchioles, or alveoli, but may also arise from keratinizing epidermal cysts originating in the alveoli (Boorman *et al.*, 1990).

Esophageal tumors were observed in both sexes of rats treated with NMAs: NMA-C3 (Lijinsky *et al.*, 1983a; Reznik *et al.*, 1975), NMA-C4 (Lijinsky *et al.*, 1980, 1983a, 1983b, 1991a; Koreeda *et al.*, 1999), NMA-C5 (Sasajima *et al.*, 1982; Druckery *et al.*, 1967; Mirvish *et al.*, 1985a, 1996, 1994a; Bulay and Mirvish, 1979; Luo *et al.*, 1987; Tanaka *et al.*, 1997; Yamaguchi *et al.*, 1989; Attwood *et al.*, 1992; Seto *et al.*, 1991; Matsufuji *et al.*, 1987; Iizuka *et al.*, 1980; Kuwayama and Eastwood, 1988; Kondoh *et al.*, 1990), NMA-C6 (Lijinsky *et al.*, 1983b [males only]), NMA-C7 (Lijinsky *et al.*, 1983b [males only]), NMA-C11 (Lijinsky *et al.*, 1978), and NMA-C12 exposure (Lijinsky and Taylor, 1975 [females only]). Tumors were observed in >20 studies in rats of F344, SD, Wistar and Donryu strains and in young Wistar rats following NMA-C5 exposure.

The esophageal tumors were squamous cell papillomas and carcinomas, and basal cell papillomas and carcinomas. Proliferative lesions of the esophagus typically arise from the stratified squamous epithelium, and carcinomas may arise from epithelium or within papillomas (Whiteley *et al.*, 1996). Esophageal tumors are rare in rats (Whiteley *et al.*, 1996; Brown and Hardisty, 1990; Haseman *et al.*, 1998). Esophageal squamous cell papillomas are considered to have the potential to progress to carcinomas (McConnell *et al.*, 1986).

Forestomach tumors were observed in female rats treated with NMAs: NMA-C3 (Lijinsky et al., 1983a) and NMA-C4 (Lijinsky et al., 1980, 1983a, 1983b) and in male rats treated with NMA-C4 (Lijinsky et al., 1980, 1983b), NMA-C5 (Mirvish et al., 1996, 1985a; Luo et al., 1987), NMA-C6 (Lijinsky et al., 1983b), NMA-C8 (Lijinsky et al., 1981), NMA-C10 (Lijinsky et al., 1981), NMA-C11 (Lijinsky et al., 1978), and NMA-C12 (Lijinsky et al., 1981).

The forestomach tumors were squamous cell papillomas and carcinomas in F344, MRC-Wistar, and Wistar rats. Forestomach tumors are rare in rats (Frantz *et al.*, 1991; Haseman *et al.*, 1998). Squamous cell carcinomas arise through proliferation of the non-glandular epithelium, and are locally invasive. Forestomach squamous cell papillomas are considered to have the potential to progress to carcinomas (McConnell *et al.*, 1986; Frantz *et al.*, 1991).

Liver tumors were observed in female SD rats treated with NMA-C3 (Reznik *et al.*, 1975) and in male rats treated with NMA-C3 (Reznik *et al.*, 1975), NMA-C6 (Lijinsky *et al.*, 1983b), NMA-C7 (Lijinsky *et al.*, 1983b), NMA-C8 (Lijinsky *et al.*, 1981), NMA-C9 (Lijinsky *et al.*, 1981) and NMA-C11 (Lijinsky *et al.*, 1978) in one or more of the following strains: F344 and SD.

The liver tumors were hepatocellular adenomas and carcinomas, hemangioendotheliomas (hemangiomas), hemangiosarcomas, and cholangiocarcinomas. Hepatocellular adenomas are considered to have the potential to progress to carcinomas (McConnell *et al.*, 1986). Hemangiomas (synonyms: benign hemangioendothelioma; benign hemangioma) are benign tumors of the endothelial cells lining blood vessels that are well-demarcated and do not exhibit local invasion (Mitsumori, 1990). They can progress to malignant hemangiosarcomas (synonymous with malignant hemangioendotheliomas; angiosarcomas), which are a proliferation of atypical endothelial cells consisting of irregular, poorly formed vascular channels (IARC, 1996; Mitsumori, 1990). They tend to metastasize to other organs, especially the lungs (Bannasch and Zerban, 1990). Hemangiosarcomas are rare in Fischer rats (Boorman *et al.*, 1990). Cholangiocarcinomas appear as firm nodules frequently distributed in the liver in a multinodular fashion and they arise from cholangiofibromas (Boorman and Everitt, 2006). Cholangiocarcinomas are rare in Fischer rats (Boorman *et al.*, 1990).

Significant increases in pancreatic islet cell carcinomas were observed in male F344 rats treated with NMA-C12 (Lijinsky *et al.*, 1981). The pancreas is comprised of the exocrine and endocrine pancreas. The endocrine pancreas is made up of the islets of Langerhans (*i.e.*, the islets), which are collections of cells distributed throughout the pancreas and comprise about 1-2% of the total pancreatic tissue. Islet cell carcinomas display marked cellular anaplasia and pleomorphism, with occasional alpha and delta cells scattered throughout the neoplastic mass. Carcinomas also display varied growth patterns and may invade the fibrous capsule, lymphatics and blood vessels. Occasionally they metastasize, usually to the liver or lung. These tumors are considered uncommon but not rare in F344 rats (Boorman *et al.*, 1990).

Kidney tumors were observed in male F344 rats treated with NMA-C14 (Lijinsky *et al.*, 1981). Lijinsky *et al.* (1981) did not specify the carcinoma cell type. Kidney carcinomas may arise from tubule cells, transitional cells, or squamous cells. Carcinomas of all three cell types are rare in male F344 rats (Boorman *et al.*, 1990). Tubular cell carcinomas arise from the tubules of the nephron, most frequently the proximal tubule. They are often locally invasive, but rarely metastasize. Transitional cell carcinomas arise from the renal pelvis, which is part of the collecting duct system. They may be difficult to distinguish from tubular cell carcinomas and can only be identified by the location of the tumor. Squamous cell carcinomas may also arise from the renal pelvis, and although uncertain, may have arisen from transitional epithelium that has undergone squamous metaplasia (Boorman *et al.*, 1990).

Bladder tumors were observed in male rats treated with NMA-C8 (Lijinsky *et al.*, 1981), NMA-C10 (Lijinsky *et al.*, 1981), NMA-C12 (Lijinsky *et al.*, 1981; Lijinsky and Taylor,

1975, 1978) and NMA-C14 exposure (Lijinsky *et al.*, 1981) in one or more of the following strains: F344 and SD, and in female F344 rats treated with NMA-C12 (Lijinsky and Taylor, 1975, 1978; Lijinsky *et al.*, 1983c).

The bladder tumors were transitional cell papillomas and carcinomas, and undifferentiated sarcomas. Bladder tumors are rare in male rats (Goodman *et al.*, 1979; Boorman and Everitt, 2006). In rats, most urinary bladder transitional cell carcinomas arise from papillomas and can be exophytic, endophytic, or both (Boorman *et al.*, 1990). The endophytic carcinomas can invade the bladder wall and are generally more malignant. The differentiation of transitional cell carcinoma from papilloma is based primarily on invasion, and then to a lesser extent on growth patterns and cell atypia (Boorman *et al.*, 1990). Transitional cell papillomas may progress to malignant carcinomas (McConnell *et al.*, 1986).

Hamster

Table 37 lists tumor types which are rare, infrequent or significantly increased in incidence or both resulting from exposure of hamsters to NMAs with various chain lengths. Tumors of the nasal cavity, laryngeal-tracheal-bronchial tract, lung, esophagus, forestomach, liver, bladder, thyroid and digestive system were observed in hamsters.

Table 37. Tumor sites in hamsters treated with NMAs of various alkyl chain lengths

NMA-	Nasal cavity	L-T-B ¹	Lung	Esophagus	Forestomach	Liver	Bladder	Others
C3	M, F	M, F	M, F			M, F		M^2 , F^3
C4	M, F		M, F		M, F	M, F		
C5	M, F		M, F	MF ⁴	M, F	M, F		
C6	M		M, F		M, F	M, F	M, F	
C 7	M, F		M, F		M, F	M, F		
C8	M, F		M, F		M, F	M, F	M, F	
C12	F		M, F				M, F	

¹ Tumors of larynx, trachea, bronchial tract

Nasal cavity tumors were observed in male and female hamsters treated with NMA-C3 (Pour *et al.*, 1974; Lijinsky and Kovatch, 1988; Althoff and Grandjean, 1979), NMA-C4 (Lijinsky and Kovatch, 1988), NMA-C5 (Mirvish *et al.*, 1996; Lijinsky and Kovatch,

² Thyroid tumors

³ Described only as digestive system tumors

⁴ MF- tumor incidences were reported in males and females combined

1988), NMA-C6 (Lijinsky and Kovatch, 1988), NMA-C7 (Lijinsky and Kovatch, 1988), NMA-C8 (Lijinsky and Kovatch, 1988) and NMA-C12 exposure (Ketkar *et al.*, 1981).

Nasal cavity tumors were seen both in the anterior and posterior regions, including nasal cell papillomas, adenomas, adenocarcinomas and carcinomas. Adenocarcinomas may originate either from the lining epithelium or submucosal glands (IARC, 1996). All types of nasal tumors are rare in untreated Syrian golden hamsters, with a spontaneous incidence of less than 0.1% (IARC, 1996). IARC (1996) states that "even low incidences of tumors in this organ can be regarded as evidence for a potential carcinogenic risk posed by the agent under study." Hamster nasal cavities are composed of four turbinates: atrioturbinates, nasal turbinates, maxillary turbinates, and ethmoturbinates. Atrioturbinates are the most apical part of the nasal cavity and are lined by non-keratinizing squamous epithelium. The nasoturbinates and maxilloturbinates form the intermediate region and are lined by pseudo-stratified respiratory epithelium, containing ciliated, basal, mucous, and neuroendocrine cells. The ethmoturbinates are the most caudal of the nasal cavities, and are made up of four ectoturbinates and three endoturbinates. They are lined by olfactory epithelium, containing basal, olfactory sensory, sustentacular, and neuroendocrine cells. The hamster has a maxillary sinus which extends into the nasal lumen and is coated with respiratory epithelium (IARC, 1996).

Laryngeal, tracheal and bronchial tract (L-T-B) tumor incidences were increased significantly after treatment with NMA-C3 (Pour *et al.*, 1974; Althoff and Grandjean, 1979 [malignant tracheal tumors]). These structures are sometimes grouped together because the larynx, trachea and extrapulmonary bronchi are lined by the same types of cells. This pseudo-stratified or one-layered epithelium is made up of ciliated cells and various types of non-ciliated secretory goblet cells. Tumors arising from these areas showed papillary growth lined by cuboidal mucus-secreting or squamous cells, or both. Tumors of the L-T-B tract have been reported occasionally in control hamsters (IARC, 1996).

Lung tumors were observed in hamsters after treatment with the following NMAs: NMA-C3 (Pour *et al.*, 1974; Althoff and Grandjean, 1979; Lijinsky and Kovatch, 1988), NMA-C4 (Lijinsky and Kovatch, 1988), NMA-C5 (Mirvish *et al.*,1996; Lijinsky and Kovatch, 1988), NMA-C6 (Lijinsky and Kovatch, 1988), NMA-C7 (Lijinsky and Kovatch, 1988; Rehm and Lijinsky, 1994), NMA-C8 (Lijinsky and Kovatch, 1988) and NMA-C12 (Ketkar *et al.*, 1981; Althoff and Lijinsky, 1977).

The histology of the bronchiolo-alveolar region of the lower respiratory tract in hamsters is strikingly different from that of the larynx, trachea and extrapulmonary bronchi; it is a mosaic of attenuated lining cells and cuboidal cells (IARC, 1996). Lung tumors included alveolar/bronchial adenomas and carcinomas, squamous cell carcinomas, adenosquamous carcinomas and mucoepidermoid carcinomas. Squamous cell papillary tumors rarely invade adjacent tissues but may progress to carcinomas (IARC, 1996). Adenosquamous carcinomas originate from squamous differentiation of neoplastic Clara cells or undifferentiated neoplastic cells in bronchioloalveolar carcinomas, particularly those with an acinar adenocarcinomatous pattern (Rehm and Lijinsky, 1994). Lung

tumors are rare in untreated Syrian golden hamsters, with a spontaneous incidence of no more than 0.1-0.5% (IARC, 1996).

Statistically non-significant increases in esophageal squamous cell papillomas and carcinomas were observed in hamsters by i.p. injection to NMA-C5, as newborns, 3-day olds and 38-day olds (Mirvish *et al.*, 1996). The spontaneous occurrences of esophageal squamous cell papillomas or carcinomas are infrequent in hamsters (IARC, 1996).

Forestomach tumors were observed in male and female hamsters exposed to NMA-C4 (Lijinsky and Kovatch, 1988), NMA-C5 (Mirvish *et al.*, 1996; Lijinsky and Kovatch, 1988), NMA-C6, -C7 and -C8 (Lijinsky and Kovatch, 1988). Forestomach tumors were squamous cell papillomas and carcinomas. According to IARC (1996), spontaneous neoplasms of the forestomach are infrequent in the hamster. The incidences of spontaneous squamous cell papillomas of the forestomach listed by IARC were 4.1% in female hamsters and 6.1% in males, and the incidence of squamous cell carcinoma in males was 0.5%. Squamous cell carcinomas may either develop from benign papillomas or evolve directly from atypical epithelium (IARC, 1996).

Liver tumors were observed in both male and female hamsters exposed to NMA-C3 (Pour *et al.*, 1974; Lijinsky and Kovatch, 1988), NMA-C4 (Lijinsky and Kovatch, 1988), NMA-C5 (Mirvish *et al.*, 1996; Lijinsky and Kovatch, 1988), NMA-C6 (Lijinsky and Kovatch, 1988), NMA-C7 (Lijinsky and Kovatch, 1988), and NMA-C8 (Lijinsky and Kovatch, 1988) and in females exposed to NMA-C6 (Lijinsky and Kovatch, 1988). Liver tumors included vascular tumors (hemangioendotheliomas [hemangiomas] and hemangiosarcomas), biliary/cholangiocellular tumors (cholangiomas and cholangiocarcinomas), hepatocellular adenomas and carcinomas, and histiocytic sarcomas. Similar to rats, hemangiosarcomas commonly metastasize in hamsters, especially to the lungs. Progression from cholangioma to cholangiocarcinoma is likely (IARC, 1996). The incidences of spontaneous epithelial (combined hepatocellular and cholangiocellular) carcinomas in untreated Syrian hamsters were less than 1%, as were the incidences of spontaneous hemangiomas and hemangioendotheliomas (IARC, 1996).

Bladder tumors were observed in male and female hamsters exposed to NMA-C6 (Lijinsky and Kovatch, 1988) and NMA-C12 (Ketkar *et al.*, 1981; Althoff and Lijinsky, 1977 [identified as urinary tract tumors]). Urinary bladder tumors were transitional cell papillomas and carcinomas, and hemangioendotheliomas or hemangiomas. No spontaneously occurring epithelial neoplasms of the hamster urinary bladder have been reported except for two cases of malignant lymphoma (IARC, 1996). Therefore, the occurrences of the above tumor types are considered to be rare in hamsters.

Mouse

Table 38 lists tumor types which are rare or significantly increased in incidence or both resulting from exposure of mice to NMAs with various chain lengths. Tumors of the nasal cavity, tongue, larynx-trachea-bronchial tract, lung, esophagus, forestomach, and liver were observed in mice.

Table 38. Tumor sites in mice treated with NMAs of various alkyl chain lengths

NMA-	Nasal cavity	Tongue	L-T-B ¹	Lung	Esophagus	Forestomach	Liver
C3	F		F	F			F
C5		М		MF ²	M, F	F ³	

¹ Tumors of larynx, trachea, bronchial tract

Nasal cavity tumors were observed in female NMRI mice treated with NMA-C3 (Dickhaus *et al.*, 1977), and were mainly squamous cell papillomas and carcinomas. Squamous cell papillomas of the nasal cavity have the potential to progress to malignant carcinomas (McConnell *et al.*, 1986; Maronpot, 1999). The nasal anatomic structure and histology of the mouse is similar to that of the rat (Maronpot, 1999). Nasal cavity tumors are considered rare in mice (Haseman *et al.*, 1998).

Tumors of the tongue were observed in male C57BL/6 mice exposed to NMA-C5 (Shirai *et al.*, 2002a, 2002b), and were mainly papillomas and squamous cell carcinomas. Tongue tumors are considered rare in mice (Haseman *et al.*, 1998).

L-T-B tumors were observed in female NMRI mice exposed to NMA-C3 (Dickhaus *et al.*, 1977). Squamous cell carcinomas plus a carcinoma *in situ* and a papilloma were observed in the larynx. Squamous cell carcinomas and papillomas were observed in the trachea. Squamous cell papillomas also occurred in the intrapulmonary large bronchi.

Lung tumors were observed in female NMRI mice exposed to NMA-C3 (Dickhaus *et al.*, 1977) and in male and female Swiss mice exposed to NMA-C5 (Mirvish *et al.*, 1996). Lung tumors were mostly adenomas with some incidence of malignant adenocarcinomas and one incidence of squamous carcinoma. Mouse lung adenomas are considered to have the potential of progressing to malignant carcinomas (McConnell *et al.*, 1986).

Esophageal and forestomach tumors were observed in male and female Swiss, 101/N, STX/Le, BXH-8, C57BL/6, and Brca mice after treatment with NMA-C5 (Mirvish *et al.*, 1996; Kurooka *et al.*, 1998; Cao *et al.*, 2007; Shirai *et al.*, 2002a, 2002b). Esophageal and forestomach tumors are considered rare in mice (Haseman *et al.*, 1998). The tumor types in those organs were squamous cell papillomas and carcinomas. Squamous cell papillomas are considered to have the potential to progress to malignant carcinomas (McConnell *et al.*, 1986).

Liver tumors were observed in female NMRI mice exposed to NMA-C3 (Dickhaus *et al.*, 1977). Most neoplasms were hemangioendotheliosarcomas (hemangiosarcomas).

² MF- tumor incidences were reported as males and females combined.

³ Esophagus and forestomach were combined

Guinea Pig

Liver tumors were observed in male guinea pigs exposed to NMA-C12. The incidence of hemangioendothelial sarcomas (hemangiosarcomas) was significantly increased (Cardy and Lijinsky, 1980). Hemangiosarcoma is a malignant tumor of blood vessel cells and often metastasizes to other organs such as lungs and spleen. In addition, three cholangiocarcinomas or bile duct carcinomas, one hepatocellular carcinoma, and one pancreatic hemangiosarcoma were also observed (Cardy and Lijinsky, 1980).

3.3.5 Structure – Activity Comparisons

NMAs are tertiary amines that share structural similarities with other carcinogenic alkylated nitrosamines. Three structurally similar N-nitroso-dialkylamine compounds-- N-nitrosodiethylamine (NDEA), N-nitrosodi-*n*-propylamine (NDPA), and N-nitrosodi-*n*-butylamine (NDBA), are shown in Table 39, along with the general structure for NMAs, and NMA-C1 and NMA-C2.

NMAs share close structural similarities with N-nitroso-dialkylamines. All compounds within each group contain a nitroso group, a second N atom, and two alkyl groups. The difference between the dialkylamines and NMAs is that the two alkyl groups in the dialkylamine compounds are identical, making the molecule symmetrical, while for the NMAs one of the alkyl groups is a methyl group, and the length of the second alkyl group may range from one to fourteen (or more) carbons.

Table 39. NMAs and related structures

Chemical (CAS number)	Structure	Cancer Class	sification
Chemical (CAS number)	Structure	Proposition 65	Other
NMAs			
General structure R1= (CH3); R2= (CH2)n	$ \begin{array}{c c} N & R^2 \\ \hline & R^1 \end{array} $	Currently under evaluation	Not Evaluated
NMA-C1 (62-75-9)	O N CH_3 CH_3	Listed	IARC 2A ¹ NTP RA ² EPA B2 ³
NMA- C2 (10595-95-6)	O N CH ₃	Listed	IARC 2B ¹ EPA B2 ⁴
Related structures			
N-Nitrosodiethylamine (55-18-5) (NDEA)	ON N CH ₃	Listed	IARC 2A ¹ NTP RA ² EPA B2 ⁵
N-Nitrosodi- <i>n</i> -propylamine (621-64-7) (NDPA)	N—N CH ₃ CH ₃	Listed	IARC 2B ¹ NTP RA ² EPA B2 ⁶
N-Nitrosodi- <i>n</i> -butylamine (924-16-3) (NDBA)	N—N CH ₃ CH ₃	Listed	IARC 2B ¹ NTP RA ² EPA B2 ⁷

¹ IARC, 1987 ² National Toxicology Program (NTP): reasonably anticipated (RA) to be a human carcinogen (RA) (NTP, 1981)

³ US EPA, 2002b

⁴ US EPA, 2003a; ⁵US EPA, 2003c; ⁶US EPA, 2002a; ⁷US EPA, 2003b

As indicated in Table 39, the two smallest NMAs (NMA-C1 and NMA-C2) and each of the three N-nitroso-dialkylamines (NDEA, NDPA, and NDBA) are classified as carcinogens by IARC, the National Toxicology Program (NTP), and US EPA, and each is on the Proposition 65 list as causing cancer.

Tables 40 and 41 present the target tissue sites that have been observed in rats (Table 40) and hamsters (Table 41) for thirteen NMA compounds (C1 – C12, C14) and the three N-nitroso-dialkylamines (NDEA, NDPA, and NDBA), allowing comparisons across chemicals. As shown in Tables 40 and 41, tumors were observed at multiple sites in rats and hamsters following treatment with each of these chemicals. Moreover, several of the tumor sites were common to many of the NMAs, and many of these sites are also common target tumor sites of NDEA, NDPA and NDBA.

In addition to sharing similar findings of carcinogenic activity in animals, the NMAs and the three N-nitroso-dialkylamines also share positive findings of genotoxic activity. As summarized in Section 3.3.1, all twelve NMAs tested for the ability to alkylate DNA form DNA adducts in rats *in vivo*, all eleven NMAs tested for the ability to induce mutations in bacteria are mutagenic, and all three NMAs tested for the ability to induce mutations in mammalian cells *in vitro* are mutagenic. The most extensively tested NMA, NMA-C1, has been demonstrated to be mutagenic and clastogenic in multiple *in vitro* and *in vivo* assay systems. The evidence for the NDEA, NDPA, and NDBA includes the following:

- NDEA is mutagenic in Salmonella and E. coli, as well as in mammalian assays in vitro. It induces UDS in rat hepatocytes and induces micronuclei formation in human cell lines (CCRIS, 2014).
- NDPA is mutagenic in *Salmonella* and mammalian assays *in vitro* (CCRIS, 2014).
- NDBA is mutagenic in *Salmonella* and *E. coli*, and mammalian assays *in vitro* (CCRIS, 2014).

In summary, tumors were observed in multiple species and at multiple sites following treatment with NMAs and three close structural analogues, and many tumor sites are shared amongst species and chemicals. All tested compounds are mutagenic in *Salmonella* and several are positive in mammalian assay systems for genotoxicity.

Table 40. Structure Activity Comparisons: Target tumor sites in rats

Chemical	Nasal cavity (r)	Tongue (r)	Oro- Pharynx (r)	Lung (r) ¹	Esoph- agus (r)	Fore- stomach (r)	Liver	Kidney (r)	Bladder (r)	Others
NMAs										
C1 ²	x ³			Х			x³	x ³		Bile duct
C2 ⁴	X			X			X			
C3	χ^3	x	х		x ³	x	x^3			Epiglottis (r)
C4	х	х	х		X ³	х				
C5	x ³	x ³			x ³	х				Trachea (r) ³
C6	Х	х		x ⁵	x ⁵	х	x ⁵			
C7	х	х		x ⁵	x ⁵		x ⁵			
C8	x³			x ³			x ^{3,6}		x ³	Trachea (r) ³
C9	х			x ³			x ^{3,7}			
C10	Х			x ³		х			x ³	
C11				х	х	х	x ⁷			
C12				x ³		x ³	х		x ³	Pancreas ³
C14				х				х	x ³	
Related cor	npounds									
NDEA ²	х				x ³		x ³	х		Leukemia
NDPA ²	x ³	х		Х	х		χ^3			
NDBA ⁸		х		х	x ³		x ³		x ³	

[&]quot;x" denotes observation of tumors, (r) = rare tumors
Adenocarcinoma and squamous cell carcinoma of the lung are rare in rats.

Adenocarcinoma and squametes see 2 IARC (1978)

3 Statistically significant (p<0.05) increases of tumor incidence by Fisher pairwise comparison (conducted by OEHHA)

4 Lijinsky *et al.* (1991b); Murai *et al.* (1991)

5 No concurrent control, but tumor incidence ≥90%

6 The liver observed in males, this tumor type is rare in male rats

⁶ Hemangiosarcoma of the liver observed in males, this tumor type is rare in male rats ⁷ Cholangiocarcinoma of the liver observed in males, this tumor type is rare in male rats

⁸ IARC (1974)

Table 41. Structure Activity Comparisons: Target tumor sites in hamsters

Chemical	Nasal cavity (r)	Lung (r)	Esophagus (infrequent)	Forestomach (r¹)	Liver (r)	Bladder (r)	Others
MNAs	, ,	•		, ,	, ,		
C1 ²	х				x ⁴		
C2 ³	x ⁴				x ⁴		
C3	x ⁴	x ⁴			x ⁴		Digestive system ⁴ and thyroid ⁴ with <i>in utero</i> exposure, larynx-trachea-bronchi ⁴
C4	\mathbf{x}^4	\mathbf{x}^4		x ⁴	x^4		
C5	x ⁴	x ⁴	х	x ⁴	х		
C6	х	x ⁴		x ⁴	x ⁴	х	
C7	x ⁴	x ⁴		x ⁴	\mathbf{x}^4		
C8	х	x ⁴		x ⁴	x ⁴	х	
C9				No studie	s identified		
C10				No studie	s identified		
C11				No studie	s identified		
C12	х	x ⁴				x ⁴	
C14			•	No studie	s identified	•	
Related cor	npounds						
NDEA ²	x ⁴	\mathbf{x}^4	x ⁴	x ⁴	x ⁴		
NDPA ²	x ⁴	\mathbf{x}^4					
NDBA ⁵		x ⁴		x ⁴		x ⁴	
¹ Forestomac ² IARC (1978 ³ Lijinsky and	Kovatch (1988) significant (p<0.05)	arcinomas are	rare in males	Fisher pairwise com	parison (conduct	ed by OEHHA)	

4. MECHANISMS

Tumors have been seen in multiple species and strains at multiple sites after treatment with NMAs (Tables 5-9, 13-31). A body of evidence suggests that NMAs act via a genotoxic mechanism or mechanisms. As discussed in Section 3.3.1 (Genotoxicity), all twelve NMAs tested form DNA adducts in rats in vivo (Table 34), eleven NMAs have been tested and shown to induce mutations in bacteria (Table 32, CCRIS, 2014), three have been tested and shown to induce mutations in mammalian cells in vitro (Table 33, CCRIS, 2014; US EPA, 2003a) and the most extensively tested NMA, NMA-C1, has been demonstrated to be mutagenic and clastogenic in multiple in vitro and in vivo assay systems (CCRIS, 2014).

NMAs, like many other nitrosamines, require metabolic activation for genotoxic and carcinogenic activity. Activation of nitrosamines is thought to occur primarily via mixed function oxidase-catalyzed hydroxylation. Hydroxylation of NMAs at the carbon alpha to the nitroso group results in formation of carbonyl compounds, such as the carcinogen formaldehyde, and an electrophilic intermediate (i.e., an alkyl-diazonium ion). The alkyldiazonium ion has been proposed to react with DNA or other nucleophilic molecules giving rise to alkylation products and one molecule of N₂ (Magee, 1980; Bellec et al., 1996; Kawanishi et al., 1992; Farrelly and Stewart, 1982; Lorr et al., 1982; Lee et al., 1989). Hydroxylation of NMAs at a non-alpha carbon ultimately yields a series of carboxylated and hydroxylated products, including the genotoxic carcinogen N-nitrososarcosine (for NMA-C2 and NMAs with longer alkyl chains) and three other genotoxic compounds that are tumorigenic in animals: MOP (for NMA-C3 and NMAs with longer alkyl chains), 4hydroxy-nitrosomethyl-*n*-butylamine and N-nitrosomethyl-3-carboxypropylamine (for NMA-C4 and NMAs with longer alkyl chains).

In summary, there is strong evidence that NMAs act through one or more genotoxic mechanisms, as a result of metabolic activation via cytochrome P450 enzymes to form mutagenic and carcinogenic metabolites.

5. REVIEWS BY OTHER AGENCIES

NMAs as a chemical group have not been classified as to their potential carcinogenicity by the U.S. EPA, the U.S. Food and Drug Administration, NTP, the National Institute for Occupational Safety and Health, or IARC. The two smallest NMAs (NMA-C1 and NMA-C2), which have been listed under Proposition 65 as causing cancer since October 1, 1987 and October 1, 1989, respectively, have been classified by the U.S. EPA (both as Group B2: probable human carcinogen), NTP (both as "reasonably anticipated to be a human carcinogen"), and IARC (NMA-C1 as Group 2A: probably carcinogenic to humans; NMA-C2 as Group 2B: possibly carcinogenic to humans).

6. SUMMARY AND CONCLUSION

6.1 Summary of Evidence

No epidemiology studies were identified that investigated the risk of cancer associated with exposure to NMAs.

Evidence for carcinogenicity of NMAs comes from multiple animal studies in which significant increases in malignant and combined malignant and benign tumors, including rare tumors, have been observed. Tumors were observed at multiple sites, in multiple species and strains, by various routes of exposure, and tumor sites were shared amongst species and across NMAs. Specifically, NMAs have been tested in rats, hamsters, mice and guinea pigs. Rats were exposed via drinking water, gavage, s.c. injection, i.p. injection, intravesicular injection into the bladder, and intramuscular injection. Hamsters were exposed via drinking water, gavage, s.c. injection, i.p. injection and in utero exposure. Mice were exposed via s.c. injection and i.p. injection. Guinea pigs were exposed by gavage. The main results of the bioassays for NMA-C3 through NMA-C14 are summarized below³ and a summary of the target tumor sites for NMA-C1 through NMA-C14 by species is presented in Table 42.

- NMA-C3: Statistically significant increases in the incidence of nasal cavity, esophageal and liver tumors, and increases in the incidence of rare tumors in the tongue, epiglottis, oropharynx and forestomach in rats. Statistically significant increases in the incidence of nasal cavity, larynx-tracheabronchial tract, lung, thyroid, liver, and digestive system tumors in hamsters. Statistically significant increases in the incidence of nasal cavity, larynx-trachea-bronchial tract, lung and liver tumors in mice.
- NMA-C4: Statistically significant increases in the incidence of esophageal tumors, and increases in the incidence of rare tumors in the nasal cavity, tongue, oropharynx and forestomach in rats. Statistically significant increases in the incidence of nasal cavity, lung, forestomach and liver tumors in hamsters.
- NMA-C5: Statistically significant increases in the incidence of nasal cavity, tongue, and esophageal tumors, and increases in the incidence of rare tumors in the trachea and forestomach in rats. Statistically significant increases in the incidence of nasal cavity, lung, and forestomach tumors, and increases in the incidence of rare tumors in the liver and infrequent tumors in the esophagus in hamsters. Statistically significant increases in the incidence of lung, esophageal and combined esophageal and forestomach tumors, and increases in the incidence of rare tongue tumors in mice.

³NMA-C1 and NMA-C2 induce tumors in animals, are genotoxic, and are listed under Proposition 65 as causing cancer.

- NMA-C6: Greater than 90% incidence of liver tumors, and increases in the incidence of rare tumors in the nasal cavity, tongue, lung, esophagus, and forestomach in rats. Statistically significant increases in the incidence of lung, forestomach and liver tumors, and increases in the incidence of rare tumors in the nasal cavity and bladder in hamsters.
- NMA-C7: Greater than 90% incidence of liver tumors, and increases in the incidence of rare tumors in the nasal cavity, tongue, lung, and esophagus in rats. Statistically significant increases in the incidence of nasal cavity, lung, forestomach and liver tumors in hamsters.
- NMA-C8: Statistically significant increases in the incidence of nasal cavity, trachea, lung, liver and bladder tumors in rats. Statistically significant increases in the incidence of lung, forestomach and liver tumors, and increases in the incidence of rare tumors in the nasal cavity and bladder in hamsters.
- NMA-C9: Statistically significant increases in the incidence of lung and liver tumors, and increases in the incidence of rare tumors in the nasal cavity in rats.
- NMA-C10: Statistically significant increases in the incidence of lung and bladder tumors, and increases in the incidence of rare tumors in the nasal cavity and forestomach in rats.
- NMA-C11: Increases in the incidence of rare tumors in the lung, esophagus, forestomach and liver in rats.
- NMA-C12: Statistically significant increases in the incidence of lung, forestomach, pancreatic and bladder tumors, and increases in the incidence of rare tumors of the esophagus in rats. Statistically significant increases in the incidence of lung and bladder tumors, and increases in the incidence of rare tumors in the nasal cavity in hamsters. Statistically significant increases in the incidence of hemangiosarcomas in guinea pigs.
- NMA-C14: Statistically significant increases in the incidence of bladder tumors, and increases in the incidence of rare tumors in the lung and kidney in rats.

Table 42. Observations of statistically significant tumor sites and increased rare tumor sites in rats, hamsters, mice and guinea pigs¹ exposed to NMAs

	Target tumor site		Nasa cavity		Т	ongı	ie		Oro- haryr		ı	Lung		Esc	pha	gus		Fore-	_	ı	Liver		K	idne	у	В	ladd	er
	Species ²	R (r)	H (r)	M (r)	R (r)	Н	M (r)	R (r)	Н	M	R (r) ³	H (r)	M	R (r)	H (i)	M (r)	R (r)	H (r) ⁴	M (r)	R (r) ⁵	H (r)	M	R (r)	Н	M	R (r)	H (r)	M
	C1 ^{6,7}	X *	х								x		х							x *	x *	х	х*		х			
	C2 ⁶	х	x *								х									х	x *							
	C3 ⁸	X *	х*	х*	х			х				x *	x *	х*			X			х*	х*	х*						
	C4	X	x *	NT	x		NT	x		NT		x *	NT	x *		NT	х	х*	NT		x *	NT			ТИ			NT
	C5 ⁹	X *	х*		х*		x					x *	x *	х*	х	x *	x	х*	x ¹⁰		х							
١.	C6	X	х	NT	X		NT			NT	x ¹¹	x *	NT	x ¹¹		NT	X	х*	NT	x ¹¹	x *	NT			NT		х	NT
NMA	C7	X	x *	NT	x		NT			NT	x ¹¹	х*	NT	x ¹¹		NT		х*	NT	x ¹¹	x *	NT			ТИ			NT
Z	C8 ¹²	X *	х	ΝТ			NT			NT	х*	x *	NT			NT		х*	NT	x *	x *	NT			NT	x *	х	NT
	C9	X	ΝТ	ΝТ		NT	NT		NT	NT	х*	NT	NT		NT	NT		NT	NT	x *	NT	NT		NT	NT		NT	NT
	C10	X	NT	NT		NT	NT		NT	NT	х*	NT	NT		NT	NT	х	NT	NT		NT	NT		NT	NT	x *	NT	NT
	C11		NT	NT		NT	NT		NT	NT	х	NT	NT	х	NT	NT	X	NT	NT	x ¹³	NT	NT		NT	NT		NT	NT
	C12 ¹⁴		х	NT			NT			NT	х*	х*	NT	х		NT	х*		NT			NT			NT	х*	х*	NT
	C14		NT	NT		NT	NT		NT	NT	х	NT	NT		NT	NT		NT	NT		NT	NT	х	NT	NT	х*	NT	NT

[&]quot;x" denotes observation of tumors, * statistically significant (*p* < 0.05) increases of tumor incidence by Fisher pairwise comparison (conducted by OEHHA); (r) = rare tumor; (i) = infrequent tumor; NT = not tested

¹ Hemangiosarcomas* of the liver were observed in male guinea pigs exposed to NMA-C12

²R (rat); H (hamster); M (mouse)

³ Adenocarcinoma and squamous cell carcinoma of the lung are rare in rats.

⁴ Squamous cell carcinoma of the forestomach are rare in male hamsters

⁵ Cholangiocarcinoma and hemangiosarcoma of the liver are rare in rats.

⁶ IARC (1978)

Bile duct [rat]

⁸ Epiglottis (r) [rat]; digestive system* and thyroid* with *in utero* exposure, larynx-trachea-bronchial tract * [hamster]; larynx-trachea-bronchial tract* [mouse]

⁹Trachea* (r) [rat]

¹⁰ Esophagus and forestomach combined (Cao *et al.*, 2007)

¹¹ No concurrent control, but tumor incidence ≥ 90%

¹² Trachea* (r), liver hemangiosarcomas (r) [rat]

¹³ Cholangiocarcinoma of the liver observed in males, this tumor type is rare in male rats, ¹⁴ Pancreas* [rat],

Additional evidence for the carcinogenicity of NMAs stems from genotoxicity studies. All NMAs tested (NMA-C1 – C4, NMA-C6 – C12) have demonstrated positive mutagenicity in at least one *Salmonella* test strain, generally in the presence of exogenous metabolic activation. NMA-C1, -C3 and -C4 were tested and found to be mutagenic in *E. coli*. In mammalian systems NMA-C1 – C3 have demonstrated mutagenicity *in vitro* in V79 Chinese hamster lung cells. The most well-studied NMA, NMA-C1, has tested positive for a number of additional genotoxicity endpoints, including induction of mutations in rodents *in vivo*, UDS in human and rodent cells *in vitro*, and DNA strand breaks, sister chromatid exchange, chromosomal aberrations, and micronuclei formation in rodents *in vitro* and *in vivo*.

NMAs have also been shown to form DNA, RNA, and protein adducts in target tissues *in vivo* and *in vitro*. Specifically, NMA-C4 has been shown to form methyl adducts with RNA and protein *in vivo* in rat liver, kidney, pancreas and spleen. NMA-C1 – C12 have all been shown to form DNA adducts in rat liver *in vivo*. DNA methyl adducts have been measured in several additional target tissues in rats exposed to NMAs, including lung (NMA-C1 – C5, NMA-C10 – C12), esophagus (NMA-C3 – C5), kidney (NMA-C1 – C5), and nasal cavity, trachea and forestomach (NMA-C5).

NMAs require metabolic activation for genotoxic and carcinogenic activity. Metabolism studies indicate that NMAs are metabolized in a similar manner (across chemicals), forming various carboxylated and hydroxylated products, and share several common metabolites, including some that are carcinogenic and genotoxic. The carcinogenic metabolites identified are the Proposition 65 listed genotoxic carcinogens N-nitrososarcosine and formaldehyde, as well as the genotoxic animal tumorigens N-nitrosomethyl-3-carboxypropylamine, 4-hydroxy-nitrosomethylbutylamine, and MOP. *In vitro* metabolism studies with human and rodent tissue preparations reveal common metabolites and similar activation mechanisms across NMAs and across species.

NMAs share structural similarities with other alkylated nitrosamines, including the N-nitroso-dialkylamines NDEA, NDPA, and NDBA. These three N-nitroso-dialkylamines are listed under Proposition 65 and are classified as carcinogens by IARC, NTP, and US EPA, as are NMA-C1 and NMA-C2⁴. The three N-nitroso-dialkylamines each induce tumors, including rare tumors, at multiple sites, in several species, and share common target sites amongst each other and with the NMAs. In addition to sharing similar findings of carcinogenic activity in animals, the NMAs and the three N-nitroso-dialkylamines also share positive findings of genotoxic activity. Specifically, NDEA is mutagenic in *Salmonella* and *E. coli*, as well as in mammalian assays *in vitro* and induces UDS in rat hepatocytes and micronuclei formation in human cell lines. NDPA is

_

⁴ NMA-C2 has not been classified by NTP.

mutagenic in Salmonella and mammalian assays in vitro. NDBA is mutagenic in Salmonella and E. coli, and in mammalian assays in vitro.

A body of evidence suggests that NMAs act via a genotoxic mechanism or mechanisms.

6.2 Conclusion

The evidence for the carcinogenicity of NMAs as a group comes primarily from more than 90 experiments in animals with positive tumor findings. These studies were conducted in rats, hamsters, mice, and guinea pigs by various routes of exposure. Tumors were observed following treatment with all thirteen of the NMAs that have been tested for carcinogenicity in animals, including the two NMAs currently listed under Proposition 65 (NMA-C1 and NMA-C2). Tumors were observed in multiple species or strains for many of the NMAs. Several of the observed tumors are rare, including tumors of the nasal cavity, tongue, oropharynx, esophagus, forestomach, kidney, and bladder in rats; and tumors of the nasal cavity, lung, liver, and bladder in hamsters.

Positive findings from genotoxicity and DNA adduct studies indicate that NMAs are likely to operate through genotoxic mechanisms, and that metabolic activation by cytochrome P450 enzymes is required for activity. All twelve NMAs tested for the ability to alkylate DNA form DNA adducts in rats *in vivo*, all eleven NMAs tested for the ability to induce mutations in bacteria are mutagenic, and all three NMAs tested for the ability to induce mutations in mammalian cells *in vitro* are mutagenic. The most extensively tested NMA, NMA-C1, has been demonstrated to be mutagenic and clastogenic in multiple *in vitro* and *in vivo* assay systems.

NMAs are metabolized in a similar manner across chemicals and species, and common metabolites have been observed amongst all NMAs. Two of these common metabolites are listed under Proposition 65 as causing cancer, and are genotoxic (N-nitrososarcosine and formaldehyde). Three others are genotoxic and induce tumors in animals (*i.e.*, N-nitrosomethyl-3-carboxypropylamine, 4-hydroxy-nitrosomethyl-n-butylamine, and MOP). The NMAs and three structurally similar carcinogenic N-nitroso-dialkylamines listed under Proposition 65 share target tumor sites amongst species and chemicals, as well as positive findings of genotoxicity.

7. REFERENCES

Althoff J and Grandjean C (1979). *In vivo* studies in Syrian golden hamsters: a transplacental bioassay of ten nitrosamines. *Natl Cancer Inst Monogr* **51**:251-255.

Althoff J and Lijinsky W (1977). Urinary bladder neoplasms in Syrian hamsters after administration of *N*-nitroso-*N*-methyl-*N*-dodecylamine. *Z Krebsforsch Klin Onkol* **90**:227-231.

Andrews AW and Lijinsky W (1980). The mutagenicity of 45 nitrosamines in Salmonella typhimurium. *Teratogenesis, Carcinogenesis, and Mutagenesis* **1**:295-303.

Appel KE, Wiessler M, Schoepke M, Rühl CS and Hildebrandt AG (1986). Metabolic nitrite formation from *N*-nitrosamines: are there other pathways than reductive denitrosation by cytochrome P-450? *Carcinogenicity* **7**:659-663.

Attwood SE, Smyrk TC, DeMeester TR, Mirvish SS, Stein HJ and Hinder RA (1992). Duodenoesophageal reflux and the development of esophageal adenocarcinoma in rats. *Surgery* **111**:503-510.

Baldrick P (2005). Carcinogenicity evaluation: comparison of tumor data from dual control groups in the Sprague–Dawley rat. *Toxicologic Pathology* **33**:283–291.

Bannasch P and Zerban H (1990). Tumours of the liver. IN: Pathology of tumours in laboratory animals. Vol 1: Tumours of the rat. 2nd edition by Turusov VS and Mohr U. IARC Scientific publications No. 99. IARC, Lyon, France. pp. 199-240.

Bellec G, Goasduff T, Dreano Y, Menez J and Berthou F (1996). Effect of the length of alkyl chain on the cytochrome P450 dependent metabolism of *N*-dialkylnitrosamines. *Cancer Letters* **100**:115-123.

Blattmann L, Joswig N and Preussmann R (1974). Structure of rat urinary metabolites of the carcinogen methyl-n-butyl-nitrosamine. *Z Krebsforsch* **81**:71-73.

Boorman GA and Everitt JI (2006) Chapter 14: Neoplastic Disease. IN: The Laboratory Rat, 2nd edition. Elsevier Inc. pp. 479-511.

Boorman GA, Eustis SL, Elwell MR, Montgomery Jr. CA and MacKenzie WF (1990). Pathology of the Fischer rat. Reference and atlas. Academic Press, Inc.

Brown HR and Hardisty JF (1990). Oral cavity, esophagus, and stomach. IN: Pathology of the Fischer rat. Reference and atlas. Boorman, GA *et al.* (Ed). Academic Press, Inc., pp. 9-30.

Bulay O and Mirvish SS (1979). Carcinogenesis in rat esophagus by intraperitoneal injection of different doses of methyl-*n*-amylnitrosamine. *Cancer Research* **39**:3644-3646.

Camus A, Bertram B, Krüger FW, Malaveille C and Bartsch H (1976). Mutagenicity of β-Oxidized N,N-di-n-propylnitrosamine derivatives in S. typhimurium mediated by rat and hamster tissues. *Z Krebsforsch Klin Onkol* **86**:293-302.

Cao L, Xu X, Cao LL, Wang RH, Coumoul X, Kim SS and Deng CX (2007). Absence of full-length Brca1 sensitizes mice to oxidative stress and carcinogen-induced tumorigenesis in the esophagus and forestomach. *Carcinogenesis* **28**:1401-1407.

Cardy H and Lijinsky W (1980). Comparisonof the carcinogenic effects of five nitrosaminesin Guinea pigs. *Cancer Research* **40**:1879-1884.

Chemical Carcinogenesis Research Information System (CCRIS, 2014). N-nitrosomethyl-*n*-propylamine, -butylamine, -pentylamine, -hexylamine, -heptylamine, -octylamine, -nonylamine, -decylamine, -dodecylamine, and -tetradecylamine. Records 406, 1122, 3059, 3060, 3061, 1368, 1367, 1366, 1132, and 1365. Available at: http://www.toxnet.nlm.nih.gov/.

Dickhaus S, Reznik G, Green U and Ketkar M (1977). The carcinogenic effect of beta-oxidized dipropylnitrosamine in mice: I. Dipropylnitrosamine and methyl-propylnitrosamine. *Z Krebsforsch Klin Onkol* **90**:253-258.

Druckery H, Preussmann R, Ivankovic S and Schmähl D (1967). Organotropic carcinogenic effects of 65 various N-nitroso compounds on BD-rats. *Z Krebsforsch* **69**:103-201 (German).

Eastmond DA, Hartwig A, Anderson D, Anwar WA, Cimino MC, Dobrev I, Douglas GR, Nohmi T, Phillips DH and Vickers C (2009). Mutagenicity testing for chemical risk assessment: update of the WHO/IPCS Harmonized Scheme. *Mutagenesis* **24**:341-349.

Eisenbrand G, Fuchs A and Koehl W (1996). *N*-nitroso compounds in cosmetics, household commodities and cutting fluids. *European Journal of Cancer Prevention* **5**(Supp. 1):41-46.

Farrelly JG and Stewart ML (1982). The metabolism of a series of methylalkylnitrosamines. *Carcinogenesis* **3**:1299-1302.

Farrelly JG, Stewart ML, Saavedra JE and Lijinsky W (1982). Relationship between Carcinogenicity and *in Vitro* Metabolism of Nitrosomethylethylamine, Nitrosomethyl-*N*-butylamine, and Nitrosomethyl-(2-phenylethyl)amine Labeled with Deuterium in the Methyl and α-Methylene Positions. *Cancer Research* **42**:2105-2109.

Frantz JD, Betton G, Cartwright ME, Crissman JW, Macklin AW and Maronpot RR (1991). Proliferative lesions of the non-glandular and glandular stomach in rats, G1-3. IN: Guides for Toxicologic Pathology, STP/ARP/AFIP, Washington, DC.

Frith CH, Eighmy JJ, Fukushima S, Cohen SM, Squire RA and Chandra M (1995). Proliferative lesions of the lower urinary tract in rats, URG-2. IN: Guides for Toxicologic Pathology, STP/ARP/AFIP, Washington, DC.

Gatehouse D (2012). Bacterial mutagenicity assays: test methods. IN: Genetic Toxicology: Principles and methods in molecular biology. Eds. JM Parry and EM Parry vol. 817, Springer Science Business Media LLC 2012.

Gold LS, Slone TH, Manley NB, Garfunkel GB, Rohrbach L, and Ames BN (1997). The carcinogenic potency database. IN: Carcinogenic potency and genotoxicity databases. Eds. LS Gold and E Zeiger, CRC Press, Inc., Boca Raton.

NMAs 98 August 2014 OEHHA

Goodman DG, Ward JM, Squire RA, Chu KC and Linhart MS (1979). Neoplastic and nonneoplastic lesions in aging F344 rats. *Toxicol Appl Pharmacol* **48**:237-248.

Hasegawa R, Futakuch M, Mizoguchi Y, Yamaguchi T, Shirai T, Ito N and Lijinsky W (1998). Studies of initiation and promotion of carcinogenesis by *N*-nitroso compounds. *Cancer Letters* **123**:185-191.

Haseman JK, Hailey JR and Morris RW (1998). Spontaneous neoplasm incidences in Fischer 344 Rats and B6C3F mice in two-year carcinogenicity studies: a national toxicology program update. *Toxicological Pathlogy* **26**:428-441.

Hecht SS, Morrison JB and Wenninger JA (1982). *N*-nitroso-*N*-methyldodecylamine and *N*-nitroso-*N*-methyltetradecylamine in hair care products. *Fd Chem Toxic* **20**:165-169.

Huang Q, Stoner G, Resau J, Nickols J and Mirvish SS (1992). Metabolism of *N*-nitrosomethyl-*n*-amylamine by microsomes from human and rat esophagus. *Cancer Research* **52**:3547-3551.

Huang Q, Wang S, Chen SC, Babcock DM, Park SS, Gelboin HV and Mirvish SS (1993). Hydroxylation and dealkylation of methyl-*n*-butylnitrosamine and role of certain cytochrome *P*-450 isozomes in these reactions. *Cancer Letters* **69**:107-116.

IARC (1974). International Agency for Research on Cancer. Some Aromatic Amines, Hydrazine and Related Substances, *N*-Nitroso Compounds and Miscellaneous Alkylating Agents. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Volume 4. World Health Organization. Lyon, France.

IARC (1978). International Agency for Research on Cancer. Some *N*-Nitroso Compounds. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Volume 17. World Health Organization. Lyon, France.

IARC (1987). International Agency for Research on Cancer. IARC Monographs on the Evaluation of the Carcinogenic Risks to Humans. Overall Evaluations of Carcinogenicity: An Updating of IARC Monographs Volumes 1 to 42. Supplement 7. Lyon, France.

IARC (1996). International Agency for Research on Cancer. Pathology of tumours in laboratory animals. Volume III. Tumours of the hamsters. Second Edition, Turusov VS and Mohr U (Eds). IARC Scientific Publications No. 126. IARC, Lyon, France.

lizuka T, Ichimura S and Kawachi T (1980). Esophageal carcinoma in rats induced by *N*-amyl-*N*-methylnitrosamine. *Gann* **71**:94-99.

Ikeda K and Migliorese K (1990). Analysis of nitrosamines in cosmetics. *J Soc Cosmet Chem* **41**:283-333.

Inami K, Ishimura S, Akaike Y, Suzuki E, Tsutsumi N, Takeda K and Mochizuki M (2010). Oxidation products of *N*-nitrosodialkylamines generated by Fenton's reagent in the presence of copper are direct acting mutagens. *Journal of Health Science* **56**:576-580.

Inoue K, Sunakawa T and Takayama S (1980). Studies of *in vitro* cell transformation and mutagenicity by surfactants and other compounds. *Fd Cosmet Toxicol* **18**:289-296.

Ji C, Mirvish SS, Nickols J, Ishizaki H, Lee MJ and Yang CS (1989). Formation of hydroxy derivatives, aldehydes, and nitrite from *N*-nitrosomethyl-*n*-amylamine by rat liver microsomes and by purified cytochrome P-450 IIB1. *Cancer Research* **49**:5299-5304.

Kamp E and Eisenbrand G (1991). Long-chain *N*-nitroso-*N*-methylalkylamines in commercial cosmetics, light-duty dishwashing liquids and household cleaning preparations. *Fd Chem Toxic* **29**:203-209.

Kawanishi T, Ohno Y, Takahashi A, Nakadate M, Takanaka A, Kasuya Y and Omori Y (1983). Effect of phenobarbital and 3-methylcholanthrene on the hepatic microsomal metabolism of *N*-nitrosodimethylamine, *N*-nitrosomethylbutylamine and *N*-nitrosomethylbenzylamine. *Cancer Letters* **20**:157-164.

Kawanishi T, Ohno Y, Takanaka A, Kawano S, Yamazoe Y, Kato R and Omori Y (1992). N-Nitrosodialkylamine dealkylation in reconstituted systems containing cytochrome P-450 purified from phenobarbital- and β-naphthoflavone-treated rats. *Arch Toxicol* **66**:137-142.

Ketkar MB, Althoff J and Lijinsky W (1981). The carcinogenic effect of nitrosomethyldodecylamine in European hamsters. *Cancer Letters* **13**:165-168.

Kleihues P, von Hofe E, Schmerold I, Keefer LK and Lijinsky W (1987). Organ specificity, metabolism and reaction with DNA of aliphatic nitrosomethylalkylamines. IARC scientific publication No. 84 on the relevance of N-nitroso compounds to human cancer: exposure and meachanisms. Eds. H. Bartsch, I.K., O'Neill, R. Schulte-Hermann. Lyon, France.

Koenigsmann M, Schmerold I, Jeltsch W, Ludeke B, Kleihues P and Wiessler M (1988). Organ and cell specificity of DNA methylation by *N*-nitrosomethylamylamine in rats. *Cancer Research* **48**:5482-5486.

Kondoh Y, Ogoshi K, Tajima T and Mitomi T (1990). Antitumor effects of flutamide on experimental esophageal carcinoma induced by *n*-amyl-*n*-methylnitrosamine (amn) in rats. 15th International Cancer Congress, Hamburg, Germany, August 16-22, 1990. *J Cancer Res Clin Oncol* **116**(Suppl.1): 459.

Koreeda T, Yamanaka E, Yamamichi K, Tashiro S, Tsubura A and Hioki K (1999). Inhibitory effect of retinoid on esophageal carcinogenesis in rats induced by *N*-nitroso-*N*-methylbutylamine in relation to cellular retinoic acid-binding protein. *Anticancer Res* **19**:4139-4143.

Kuroki T, Drevon C and Montesano R (1977). Microsome-mediated mutagenesis in V79 chinese hamster cells by various nitrosamines. *Cancer Research* **37**:1044-1050.

Kurooka M, Hongyo T, Nakajima H, Baskar R, Li LY, Fukuda K, Sutoh K, Miyata M, Matsuda H and Nomura T (1998). High incidence of esophageal cancer in esophageal achalasia by the oral administration of *N*-amyl-*N*-methylnitrosamine and its prevention by nicardipine hydrochloride in mice. *Cancer Letters* **127**:55-61.

Kuwayama H and Eastwood GL (1988). Light and electron microscopic and autoradiographic studies on *N*-methyl-*N*-amylnitrosamine-induced rat esophageal carcinogenesis. *Digestive Diseases and Sciences* **33**:83-91.

NMAs 100 August 2014 OEHHA

Lai DY and Arcos JC (1980). Dialkylnitrosamines bioactivation and carcinogenesis. *Life Sciences* **27**:2149-2165.

Langenbach R (1986). Mutagenic activity and structure-activity relationships of short-chain dialkyl *N*-nitrosaines in a hamster hepatocyte V79 cell-mediated system. *Mutation Research* **163**:303-311.

Lee M, Ishizaki H, Brady JF and Yang CS (1989). Substrate specificity and alkyl group selectivity in the metabolism of *N*-nitrosodialkylamines. *Cancer Research* **49**:1470-1474.

Lijinsky W and Kovatch RM (1988). Comparative carcinogenesis by nitrosomethyl-alkylamines in Syrian hamsters. *Cancer Research* **48**:6648-6652.

Lijinsky W and Taylor HW (1975) Induction of urinary bladder tumors in rats by administration of nitrosomethyldocylamine. *Cancer Research* **35**:958-961.

Lijinsky W and Taylor HW (1978). Comparison of bladder carcinogenesis by nitrosomethyldodecylamine in Sprague-Dawley and Fischer rats carrying transplanted bladder tissue. *Cancer Letters* **5**:215-218.

Lijinsky W, Reuber MD and Riggs CW (1983c). Carcinogenesis by combinations of N-nitroso compounds in rats. *Fd Chem Toxic* **21**:601-605.

Lijinsky W, Reuber MD and Singer GM (1983b). Induction of tumors of the esophagus in rats by nitrosomethylalkylamines. *J Cancer Res Clin Oncol* **106**:171-175.

Lijinsky W, Saavedra JE and Kovatch RM (1991b). Carcinogenesis in rats by substituted dialkylnitrosamines given by gavage. *In Vivo* **5**:85-9.

Lijinsky W, Reuber MD, Saavedra JE and Blackwell BN (1980). The effect of deuterium on the carcinogenicity of nitroso-methyl-*n*-butylamine. *Carcinogenesis* 1:157-160.

Lijinsky W, Reuber MD, Saavedra JE and Singer GM (1983a). Carcinogenesis in F344 rats by *N*-nitrosomethyl-*n*-propylamine derivatives. *J Natl Cancer Inst* **70**:959-963.

Lijinsky W, Taylor HW, Mangino M and Singer GM (1978). Carcinogenesis of nitrosomethylundecylamine in Fischer rats. *Cancer Letters* **5**:209-213.

Lijinsky W, Thomas BJ and Kovatch RM (1991a). Local and systemic carcinogenic effects of alkylating carcinogens in rats treated by intravesicular administration. *Jpn J Cancer Research* **82**:980-986.

Lijinsky W, Saavedra JE and Reuber MD (1981). Induction of carcinogenesis in Fischer rats by methylalkylnitrosamines. *Cancer Research* **41**:1288-1292.

Lorr NA, Yityoong YT and Yang CS (1982). The nature of nitrosamine denitrosation by rat liver microsomes. *Carcinogenesis* **3**:1039-1043.

Luo D, Wang C, Li Y, Ye S, Deng S and Liu Y (1987). A study on carcinogenesis and synergistic carcinogenesis of the culture of *Fusarium moniliforme* in rats. *J West China Univ Med Sci* **18**:343-347 (Chinese).

Magee PN and Lee KY (1964). Cellular Injury and Carcinogenesis: Alkylation of ribonucleic acid of rat liver by diethylnitrosamine and *n*-butylmethylnitrosamine *in vivo*. *Biochem J* **91**:35-42.

Magee PN (1980). Metabolism of nitrosamines: an overview. IN: Microsomes, drug oxidations, and chemical carcinogenesis, Volume II. Eds. MJ Coon *et al.* Academic Press, London, England.

Maronpot RR (1999). Pathology of the Mouse: Reference And Atlas. Cache River Press.

Matsufuji H, Ueo H, Mori M, Kuwano H and Sugimachi K (1987). Enhancement of esophageal carcinogenesis induced in rats by *N*-amyl-*N*-methylnitrosamine in the presence of 12-O-tetradecanoylphorbol-13-acetate. *J Natl Cancer Inst* **79**:1123-1129.

McConnell EE, Solleveid HA, Swenberg JA and Boorman GA (1986). Guidelines for combining neoplasms for evaluation of rodent carcinogenesis studies. *J Natl Cancer Inst* **76**:283-289.

Mirvish SS, Ji C, Makaray M, Schut HAJ and Krokos C (1987). Metabolism of the oesophageal carcinogen N-nitrosomethylamine: changes with age, clearance from blood and DNA alkylation. IARC scientific publication No. 84, on the relevance of N-nitroso compounds to human cancer: exposure and meachanisms. Eds. H Bartsch, IK O'Neill, R Schulte-Hermann. Lyon, France.

Mirvish SS, Ji C and Rosinsky S (1988). Hydroxy metabolites of methyl-namylnitrosamine produced by esophagus, stomach, liver, and other tissues of the neonatal to adult rat and hamster. *Cancer Research* **48**:5663-5668.

Mirvish SS, Makary M, Issenberg P, Deshpande A, Ji C and Lawson TA (1989). Ketonitrosamines as metabolites of methyl-n-amylnitrosamine (MNAN) and its hydroxy derivatives in the rat. *Carcinogenesis* **10**:2209-2214.

Mirvish SS, Huang Q, Chen SC, Park SS and Gelboin HV (1994b). Metabolism of methylbutyl- and methylamylnitrosamine by rat and human esophagus and other tissues and induction of esophageal adenocarcinoma in rats. IN: Nitrosamines and related N-nitroso compounds. Eds. Loeppky *et al.*, ACS Symposium Series, American Chemical Society. Washington DC.

Mirvish SS, Huang Q, Chuan J, Wang S, Park SS and Gelboin HV (1991a). Positional specificity for methyl-n-amylnitrosamine hydroxylation by cytochrome P-450 isozymes determined with monoclonal antibodies. *Cancer Research* **51**:1059-1064.

Mirvish SS, Ji C, Huang Q, Wang S, Park SS and Gelboin HV (1991b). Use of monoclonal antibodies to identify cytochrome P450 isozymes in rat liver microsomes that hydroxylate N-nitrosomethylamine at each of six positions. IARC scientific publication No. 105, on the relevance of N-nitroso compounds, tobacco smoke and mycotoxin. Eds. JK O'Neill, J Chen and H Bartsch. Lyon, France.

Mirvish SS, Nickols J, Weisenburger DD and Smyrk T (1996). Carcinogenicity tests of methyl-*n*-amylnitrosamine (MNAN) administered to newborn and adult rats and hamsters and adult mice and of 2-oxo-MNAN administered to adult rats. *Cancer Letters* **107**:171-177.

Mirvish SS, Salmasi S, Lawson TA, Pour P and Sutherland D (1985a). Test of catechol, tannic acid, Bidens pilosa, croton oil, and phorbol for cocarcinogenesis of esophageal tumors induced in rats by methyl-*n*-amylnitrosamine. *J Natl Cancer Inst* **74**:1283-1290.

Mirvish SS, Wang M, Smith JW, Deshpande AD, Makary MH and Issenberg P (1985b). β - to ω -hydroxylation of the esophageal carcinogen methyl-n-amylnitrosamine by the rat esophagus and related tissues. *Cancer Research* **45**:577-583.

Mirvish SS, Weisenburger DD, Hinrichs SH, Nickols J and Hinman C (1994a). Effect of catechol and ethanol with and without methylamylnitrosamine on esophageal carcinogenesis in the rat. *Carcinogenesis* **15**:883-887.

Mitsumori K (1990). Blood vessels and lymphatic vessels. IN: Pathology of the Fischer rat. Reference and atlas. Boorman, GA *et al.* ed., Academic Press, Inc. pp. 473-484.

Morrison JB and Hecht SS (1982). *N*-nitroso-*N*-methyldodecylamine and *N*-nitroso-*N*-methyltetradecylamine in household dishwashing liquids. *Fd Chem Toxic* **20**:583-586.

Mortelmans K and Zeiger E (2000). The Ames *Salmonella*/microsome mutagenicity assay. *Mutation Research* **455**:29-60.

Murai T, Mori S, Hosono M, Takeuchi Y, Ohara T, Makino S, Takeda R, Hayashi Y, Fukushima S (1991). Renal pelvic carcinoma which shows metastatic potential to distant organs, induced by N-butyl-N-(4-hydroxybutyl)nitrosamine in NON/Shi mice. *Jpn J Cancer Res* **82**:1371-7.

NTP (1981). Report on Carcinogens, Second Edition. Research Triangle Park, NC: U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program.

Office of Environmental Health Hazard Assessment (OEHHA, 2006). Public Health Goals for Chemicals in Drinking Water. N-Nitrosodimethylamine. OEHHA. December.

Okada M, Suzuki E and Mochuzuki M (1976a). Possible important role of urinary N-methyl-N-(3-carboxypropyl)nitrosamine in the induction of bladder tumors in rats by N-methyl-N-docecylnitrosamine. *Gann* **67**:771-772.

Okada M, Suzuki E and Hashimoto Y (1976b). Carcinogenicity of N-nitrosamines to N-butyl-N-(4-hydroxybutyl)nitrosamine and N,N-dibutylnitrosamine in ACI/N rats. *Gann* **67**: 825-834.

Pour P, Kmoch N, Greiser E, Mohr U, Althoff J and Cardesa A (1976a). Spontaneous tumors and common diseases in two colonies of Syrian hamsters I. Incidence and sites. *J Natl Cancer Inst* **56**:931-935.

Pour P, Krüger FW, Althoff J, Cardesa A and Mohr U (1975). A new approach for induction of pancreatic neoplasms. *Cancer Research* **35**:2259-2268.

Pour P, Krüger FW, Cardesa A, Althoff J and Mohr U (1974). Tumorigenicity of methyl-*n*-propylnitrosamine in Syrian golden hamsters. *J Natl Cancer Inst* **52**:457-462.

Pour P, Mohr U, Cardesa A, Althoff J and Kmoch N (1976b). Sponatneous tumors and common diseases in two colonies of Syrian hamsters. II. Respiratory tract and digestive system. *J Natl Cancer Inst* **56**:937-948.

Rehm S and Lijinsky W (1994). Squamous metaplasia of bronchiolar cell-derived adenocarcinoma Induced by *N*-nitrosomethyl-*n*-heptylamine in Syrian hamsters. *Vet Pathol* **31**:561-571.

Reznik G, Mohr U and Krüger FW (1975). Carcinogenic effects of Di-n-propylnitrosamine, beta-hydroxypropyl-*n*-propylnitrosamine, and methyl-*n*propylnitrosamine on Sprague-Dawley rats. *J Natl Cancer Inst* **54**:937-43.

Sasajima K, Taniguchi Y, Okazaki S, Morino K, Takubo K, Yamashita K and Shirota A (1982). Sequential morphological studies of the esophageal carcinoma of rats induced by *N*-methyl-*N*-amylnitrosamine. *Eur J Cancer Clin Oncol* **18**:559-564.

Schwartz LW, Keenan FF, Keenan CM, Brown HR and Mann PC (1994). Proliferative lesions of the rat respiratory tract, R-1. IN: Guides for Toxologic Pathology, STP/ARP/AFIP, Washington, DC.

Seto Y, Kobori O, Shimizu T and Morioka Y (1991). The role of alkaline reflux in esophageal carcinogenesis induced by *N*-amyl-*N*-methylnitrosamine in rats. *Int J Cancer* **49**:758-63.

Shirai N, Tsukamoto T, Yamamoto M, Iidaka T, Sakai H, Yanai T, Masegi T, Donehower LA and Tatematsu M (2002a). Elevated susceptibility of the p53 knockout mouse esophagus to methyl-*N*-amylnitrosamine carcinogenesis. *Carcinogenesis* **23**:1541-1547.

Shirai N, Tsukamoto T, Yamamoto M, Iidaka T, Sakai H, Yanai T, Masegi T, Donehower LA and Tatematsu M (2002b). Tongue carcinogenic susceptibility of p53 deficient mice to methyl-*n*-amylnitrosamine. *J Toxicol Pathol* **15**:209-214.

Singer GM, Lijinsky W, Buettner L and McClusky GA (1981). Relationship of rat urinary metabolites of *N*-nitrosomethyl-*N*-alkylamine to bladder carcinogenesis. *Cancer Research* **41**:4942-4946.

Singer GM, Lijinsky W, Buettner L and McClusky GA (1982). Metabolism of nitrosomethyl-*n*-alkylamines in Fischer rats. In: *IARC scientific publications No. 41. N-Nitroso Compounds: Occurrence and Biological Effects*. Bartsch H, O'Neill IK, Castegnaro M and Okada M (Eds.). Lyon, France: International Agency for Research on Cancer. pp. 493-498.

Sugimura T, Sato S, Nagao M, Yahagi T, Matsushima T, Seino Y, Takeuchi M and Kawachi T (1976). Overlapping of carcinogens and mutagens. IN: Fundamentals in cancer prevention. Proceedings of the 6th International Symposium of The Princess Takamatsu Cancer Research Fund, Toyo, Japan, 1975.

Suzuki E, Mochizuki M and Okada M (1981). Metabolic fate of *N*-methyl-*N*-dodecylnitrosamine in the rat, in relation to its carcinogenicity to the urinary bladder. *Gann* **72**:713-716.

Suzuki E, Mochizuki M, Takeda K and Okada M (1985). α-Hydroxylation and mutagenicity of unsymmetrical *N*-nitrosodialkylamines with a butyl group. *Jpn J Cancer Res (Gann)* **76**:184-191.

Tanaka T, Makita H, Kawabata K, Mori H, Kakumoto M, Satoh K, Hara A, Sumida T, Fukutani K, Tanaka T and Ogawa H (1997). Modulation of *N*-methyl-*N*-amylnitrosamine-induced rat oesophageal tumourigenesis by dietary feeding of diosmin and hesperidin, both alone and in combination. *Carcinogenesis* **18**: 761-769.

Thomas BJ, Kovatch RM and Lijinsky W (1988). The induction of bladder tumors in F344 rats by intravesicular administration of some nitrosamines. *Jpn J Canc Res (Gann)* **79**:309-313.

Tsutsumi N, Inami K, and Mochizuki M (2010). Activation mechanism for N-nitroso-N-methylbutylamine mutagenicity by radical species. *Bioorganic & Medicinal Chemistry* **18**: 8284-8288

- U.S. EPA (2002a). N-Nitrosodi-N-propylamine. Integrated Risk Information System *IRIS*, from http://www.epa.gov/iris/subst/0177.htm.
- U.S. EPA (2002b). N-Nitrosodimethylamine. Integrated Risk Information System *IRIS*, from http://www.epa.gov/iris/subst/0045.htm.
- U.S. EPA (2003a). N-Nitroso-N-methylethylamine. Integrated Risk Information System *IRIS*, from http://www.epa.gov/iris/subst/0179.htm.
- U.S. EPA (2003b). N-Nitroso-di-n-butylamine. Integrated Risk Information System *IRIS*, from http://www.epa.gov/iris/subst/0037.htm.
- U.S. EPA (2003c). N-Nitrosodiethylamine. Integrated Risk Information System *IRIS*, from http://www.epa.gov/iris/subst/0042.htm.

Von Hofe E, Schmerold I, Lijinsky W, Jeltsch W and Kleihues P (1987). DNA methylation in rat tissues by a series of homologous aliphatic nitrosamines ranging from N-nitrosodimethylamine to nitrosomethyldocecylamine. *Carcinogenesis* **8**:1337-1341.

Walters KA, Brain KR, Dressler WE, Green DM, Howes D, James VJ, Kellig CK, Watkinson AC and Gettings SD (1997). Percutaneous penetration of N-nitroso-N-methyldocecylamine thropugh human skin *in vitro*: Application from cosmetic vehicles. *Fd Chem Tox* **35**:705-712.

Whiteley LO, Anver MR, Botts S and Jokinen MP (1996). Proliferative lesions of the intestine, salivary glands, oral cavity, and esophagus in rats. G1-1/2/4. IN: Guides for Toxicologic Pathology. STP/ARP/AFIP. Washington, DC.

Yahagi T, Nagao M, Seino Y, Matsushima T, Sugimura T and Okada M (1977). Mutagenicities of N-nitrosamines on *Salmonella*. *Mut Res* **48**:121-130.

Yamaguchi S, Hirose M, Fukushima S, Hasegawa R and Ito N (1989). Modification by catechol and resorcinol of upper digestive tract carcinogenesis in rats treated with methyl-*N*-amylnitrosamine. *Cancer Research* **49**:6015-6018.

Yoo JS, Guengrich FP and Yang CS (1988). Metabolism of *N*-nitrosodialkylamines by human liver microsomes. *Cancer Research* **48**:1499-1504.

Appendix A: Parameters for Literature Searches on the Carcinogenicity of "N-Nitrosomethyl-*n*-alkylamines"

Searches of the literature on the carcinogenicity of "N-Nitrosomethyl-*n*-alkylamines" were conducted under contract by the University of California at Berkeley (Charleen Kubota, M.L.I.S.). The goal was to identify peer-reviewed open source and proprietary journal articles, print and digital books, reports and gray literature that potentially reported relevant toxicological and epidemiological information on the carcinogenicity of these chemicals. The search sought to specifically identify all literature relevant to the assessment of evidence on cancer.

Databases

The literature search utilized the following search platforms/database vendors:

- PubMed (National Library of Medicine)
- EMIC (National Library of Medicine)
- SciFinder®: CAS (Chemical Abstracts Service)
- <u>TOXNET</u> (National Library of Medicine): Toxicology Literature Online (TOXLINE), Genetic Toxicology Data Bank (GENE-TOX)
- <u>Web of Knowledge:</u> BIOSIS Previews®, Web of Science® (Thomson-Reuters, Inc.)

Search Process

Relevant subject terms were entered into the PubMed Search Builder to execute a search.

The following is a typical chemical search strategy used to search PubMed: ("chemical name" [MeSh] OR CAS registry number[RN]) AND ("bioassay"[MeSh] OR "carcinogenicity"[MeSh] OR "cancer"[MeSh] OR "tumor"[MeSH]) OR "neoplasm"[MeSH]) OR "genotoxicity"[MeSH]) OR "mutagenicity"[MeSH]) OR "metabolism"[MeSH]) OR "absorbtion"[MeSH]) OR "pharmacokinetics"[MeSH]) OR "structure activity relationship"[MeSH])

In PubMed, MeSH (Medical Subject Headings) terms at the top of hierarchical lists of subject headings are automatically "exploded" in a search to retrieve citations with more specific MeSH terms. For example, the heading "carcinogenicity" includes broad conditions that are related to cancer induction in animals and humans.

Additional databases listed above were then searched. The search strategies were tailored according to the search features unique to each database. Web of Science, for example, was searched by entering chemical terms and refining the search by applying Web of Science categories Toxicology and/or Public, Environmental and Occupational Health. The search term used includes either the CAS registry number or the chemical name and its available synonyms. Sometimes other databases not listed here were searched as needed.

Additional focused searches were performed by OEHHA as needed. Relevant literature was also identified from citations in individual articles.