Proposed Specific Regulatory Level Chemical Causing Cancer: Glyphosate

Comment by: 
anonymous
Received on: 
06/20/2017 - 12:57pm
Comment: 
Widespread use of glyphosate has led to the evolution of glyphosate-resistant weeds covering an estimated 120 million hectares globally in 2010. So far, 23 species of weeds have been recorded, forcing Monsanto to acknowledge the problem and protect their profits by declaring that their warranty does not cover yield losses. Glyphosate-resistant weeds are threatening the utility of glyphosate and glyphosate-tolerant crops. Resistant weeds are likely responsible for increased herbicide use. Argentinian use went from 2 to 20 litres per hectare between 1996 and 2010. Glyphosate-tolerant crops, as well as other crops grown subsequently in the same fields are affected by glyphosate’s metal chelating properties. Chelation and immobilisation of metal micronutrients such as manganese damages physiological processes in the plant including disease resistance and photosynthesis. Numerous diseases including Goss’ wilt, Fusarium wilt, and Take All are now widespread in the US. More than 40 diseases have been linked to glyphosate use. Reduced lignin content in glyphosate-tolerant crops leads to reduced water retention, requiring more water, and severely compromising yields during drought years. Soil biology is strongly disrupted by glyphosate, which is toxic to many beneficial micro- and macro-organisms including earthworms. It harms a wide range of microbes, those producing indole-acetic acid (a growth-promoting auxin), responsible for mycorrhizae associations, phosphorus & zinc uptake; microbes such as Pseudomonads and Bacillus that convert insoluble soil oxides to plant-available forms of manganese and iron; nitrogen-fixing bacteria Bradyrhizobium, Rhizobium; and other organisms involved in the biological control of soil-borne diseases. Glyphosate may be retained and transported in soils, with long-lasting cumulative effects on soil ecology and fertility, especially in northern ecosystems with long biologically inactive winters. Glyphosate’s high water solubility makes aquatic wild-life very vulnerable. Lab studies showed extreme toxicity, killing many frog species. Roundup decreased the survival of algae and increased toxic bloom-forming cyanobacteria, hence accelerating the deterioration of water quality especially in small water systems. Indirect effects through habitat disruption are also a concern, as highlighted by the major decline of Monarch butterfly populations whose larvae feed on milkweed that are largely destroyed by glyphosate applications in the US. Livestock illnesses are linked to GM diets, and include reproductive problems, diarrhoea, bloating, spontaneous abortions, reduced live births, inflamed digestive systems, and nutrient deficiency. This has translated into much reduced profit for farmers. Contamination of ground water supplies as well as rain and air has been documented in Spain and the US, threatening our drinking water, leaving people vulnerable to exposure. Berlin city residents were recently shown to carry glyphosate levels above permitted EU drinking water levels. Conclusion The serious harm to health and the environment caused by the use of glyphosate herbicides is clear. There is a compelling case for banning or phasing out glyphosate-based herbicides worldwide, in favour of a global transition to non-GM, herbicide-free organic agriculture (see Food Futures Now *Organic *Sustainable *Fossil Fuel Free , Report).