Public Health Goal for 1,1-Dichloroethane in Drinking Water

Prepared by

Pesticide and Environmental Toxicology Section
Office of Environmental Health Hazard Assessment
California Environmental Protection Agency

June 2002
LIST OF CONTRIBUTORS
This Public Health Goal (PHG) technical support document provides information on health effects from contaminants in drinking water. PHGs are developed for chemical contaminants based on the best available toxicological data in the scientific literature. These documents and the analyses contained in them provide estimates of the levels of contaminants in drinking water that would pose no significant health risk to individuals consuming the water on a daily basis over a lifetime.

The California Safe Drinking Water Act of 1996 (amended Health and Safety Code, Section 116365), amended 1999, requires the Office of Environmental Health Hazard Assessment (OEHHA) to perform risk assessments and publish PHGs for contaminants in drinking water based exclusively on public health considerations. Section 116365 specifies that the PHG is to be based exclusively on public health considerations without regard to cost impacts. The Act requires that PHGs be set in accordance with the following criteria:

1. PHGs for acutely toxic substances shall be set at levels at which no known or anticipated adverse effects on health will occur, with an adequate margin of safety.
2. PHGs for carcinogens or other substances which can cause chronic disease shall be based upon currently available data and shall be set at levels which OEHHA has determined do not pose any significant risk to health.
3. To the extent the information is available, OEHHA shall consider possible synergistic effects resulting from exposure to two or more contaminants.
4. OEHHA shall consider the existence of groups in the population that are more susceptible to adverse effects of the contaminants than a normal healthy adult.
5. OEHHA shall consider the contaminant exposure and body burden levels that alter physiological function or structure in a manner that may significantly increase the risk of illness.
6. In cases of insufficient data to determine a level of no anticipated risk, OEHHA shall set the PHG at a level that is protective of public health with an adequate margin of safety.
7. In cases where scientific evidence demonstrates that a safe dose-response threshold for a contaminant exists, then the PHG should be set at that threshold.
8. The PHG may be set at zero if necessary to satisfy the requirements listed above.
9. OEHHA shall consider exposure to contaminants in media other than drinking water, including food and air and the resulting body burden.

10. PHGs published by OEHHA shall be reviewed every five years and revised as necessary based on the availability of new scientific data.

PHGs published by OEHHA are for use by the California Department of Health Services (DHS) in establishing primary drinking water standards (State Maximum Contaminant Levels, or MCLs). Whereas PHGs are to be based solely on scientific and public health considerations without regard to economic cost considerations, drinking water standards adopted by DHS are to consider economic factors and technical feasibility. Each standard adopted shall be set at a level that is as close as feasible to the corresponding PHG, placing emphasis on the protection of public health. PHGs established by OEHHA are not regulatory in nature and represent only non-mandatory goals. By federal law, MCLs established by DHS must be at least as stringent as the federal MCL if one exists.

PHG documents are used to provide technical assistance to DHS, and they are also informative reference materials for federal, state and local public health officials and the public. While the PHGs are calculated for single chemicals only, they may, if the information is available, address hazards associated with the interactions of contaminants in mixtures. Further, PHGs are derived for drinking water only and are not to be utilized as target levels for the contamination of other environmental media.

Additional information on PHGs can be obtained at the OEHHA Web site at www.oehha.ca.gov.
TABLE OF CONTENTS

LIST OF CONTRIBUTORS ... II

PREFACE ... III

TABLE OF CONTENTS ... V

PUBLIC HEALTH GOAL FOR 1,1-DICHLOROETHANE IN DRINKING
WATER .. 1

SUMMARY .. 1

INTRODUCTION ... 1

CHEMICAL PROFILE .. 2

Chemical Identity ... 2
Physical and Chemical Properties ... 2
Production and Uses .. 3

ENVIRONMENTAL OCCURRENCE AND HUMAN EXPOSURE 3

Air .. 3
Soil .. 4
Water ... 4
Food .. 4
Other Sources .. 4

METABOLISM AND PHARMACOKINETICS 4

Absorption .. 4
Distribution ... 4
Metabolism .. 5
Excretion .. 6

TOXICOLOGY .. 7

Toxicological Effects in Animals and Plants 7
Acute Toxicity .. 7
Subchronic Toxicity ... 7

DRAFT FOR PUBLIC COMMENT
AND SCIENTIFIC REVIEW v June 2002
PUBLIC HEALTH GOAL FOR 1,1-DICHLOROETHANE IN DRINKING WATER

SUMMARY

The Office of Environmental Health Hazard Assessment (OEHHA) has developed a proposed public health goal (PHG) of 3 ppb for 1,1-dichloroethane (1,1-DCA) in drinking water. This proposed PHG uses an existing OEHHA cancer potency value based on tumors in a study in rats, supported by data in mice. Uncommon tumors appeared in both species and there was decreased survival in the animals treated with 1,1-DCA in both species.

1,1-DCA is an organic solvent but is apparently not widely used. Its primary use is as an intermediate in the synthesis of vinyl chloride and 1,1,1-trichloroethane. There are fewer toxicological studies available than for many simple chlorinated organic solvents, but also less environmental and occupational exposure.

The current California MCL of 5 ppb (5 µg/L) is based on decreased survival of male rats in the same study on which the proposed PHG is based. At the time the MCL was developed, 1,1-DCA was not listed as a chemical known to the State of California to cause cancer and there was no cancer potency published. There were concerns about the adequacy of the only study of cancer available and the federal EPA had no cancer potency or MCL for this chemical. Therefore, the decreased survival was used as the basis of the MCL with a very large uncertainty factor.

INTRODUCTION

The purpose of this document is to propose a PHG for the chlorinated solvent 1,1-DCA in drinking water. 1,1-DCA is a volatile compound with a moderately low solubility in water, so it is expected to partition into the air in environmental situations. It has been detected in a small fraction of the groundwater samples (ca. 0.5 percent) in the California water screening program, but not in the surface water samples (DHS, 1999).

U.S. EPA has not set a federal Maximum Contaminant Level (MCL) or Maximum Contaminant Level Goal (MCLG) for 1,1-DCA. The California Department of Health Services (DHS) established an MCL of 0.005 mg/L or 5 parts per billion (ppb) in 1988 (DHS, 1988). The California MCL was computed using the lowest dose level to which male rats were exposed in a National Cancer Institute bioassay of 1,1-DCA (NCI, 1978).

The primary objective in producing this document is to reevaluate the toxicological literature, and determine if there is a more appropriate toxicological study or a better method for determining safe levels of 1,1-DCA in drinking water than were used in the earlier risk assessments supporting the development of the California MCL.
CHEMICAL PROFILE

Chemical Identity

The structure and CAS registry number are given below as well as the chemical formula and various names.

Table 1. Chemical Identity of 1,1-DCA

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>1,1-Dichloroethane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>Ethylidene chloride, Ethylidene dichloride, 1,1-Ethylidene dichloride, alpha alpha-Dichloroethane, asymmetric Dichloroethane, Dutch Oil</td>
</tr>
<tr>
<td>Chemical Formula</td>
<td>C₂H₄Cl₂</td>
</tr>
<tr>
<td>CAS Registry Number</td>
<td>75-34-3</td>
</tr>
</tbody>
</table>

Figure 1. Structure of 1,1-dichloroethane.

Physical and Chemical Properties

1,1-DCA is called a volatile chemical, as opposed to a non-volatile or semi-volatile chemical, based on its physical properties and the method used to measure its concentration in water. 1,1-DCA can be detected by a variety of instruments including mass spectrometry or electron capture. No matter what detection instrument is used, the first step of most analyses is to separate 1,1-DCA from the water and non-volatile chemicals in the water. This is accomplished by purging the volatile chemicals from the water with an inert gas and trapping the volatile chemicals on a solid absorbing material (Cleseri et al., 1989). Physical and chemical properties are given in Table 2. While there is theoretically no variability in physical and chemical properties, there is error in the estimation of those constants. Different values appear in the literature for these properties. MacKay et al. (1993) has surveyed the literature for physical/chemical properties of a variety of chemicals and published those values along with the literature
references. The values in the table represent a mean and standard deviation of the values found in MacKay *et al.* (1993) for 1,1-DCA.

Table 2. Physical and Chemical Properties of 1,1-DCA

<table>
<thead>
<tr>
<th>Property</th>
<th>Value (mean ± std. dev.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular weight</td>
<td>98.96 gm/mole</td>
</tr>
<tr>
<td>Octanol-water partition coefficient (K_{ow})</td>
<td>62 ± 1 (unitless)</td>
</tr>
<tr>
<td>Water solubility</td>
<td>5,170 ± 313 mg/liter</td>
</tr>
<tr>
<td>Vapor pressure</td>
<td>0.3 ± 0.0054 atm</td>
</tr>
<tr>
<td>Henry’s law constant</td>
<td>0.0054 ± 0.0009 atm-m3/mol</td>
</tr>
<tr>
<td>Melting point</td>
<td>-97 ± 0.3 °C</td>
</tr>
<tr>
<td>Boiling point</td>
<td>57.3 ± 0.2 °C</td>
</tr>
<tr>
<td>Conversion factor</td>
<td>1 ppm = 4.12 mg/m3</td>
</tr>
</tbody>
</table>

Production and Uses

1,1-DCA is a chemical intermediate in the synthesis of vinyl chloride and 1,1,1-trichloroethane (ATSDR, 1995). Vinyl chloride is used in the production of vinyl plastics and 1,1,1-trichloroethane is used extensively as a solvent and degreaser. U.S. EPA’s Toxic Release Inventory (U.S. EPA, 1999) for data extracted on May 4, 1999 showed no reported releases in California.

ENVIRONMENTAL OCCURRENCE AND HUMAN EXPOSURE

Air

Because 1,1-DCA is listed as a federal hazardous air pollutant, the California Air Resources Board (CARB) identified it as a Toxic Air Contaminant in 1993 under AB 2728 (CARB, 1996). 1,1-DCA is not one of the 75 Toxic Air Contaminants for which CARB reports monitoring data (CARB, 1998). Therefore, ambient outdoor air concentrations could not be identified for California. A review of reports of ambient air concentrations of 1,1-DCA, either monitored or estimated, at places throughout the United States largely from locations outside California, summarizes ambient air concentrations (ATSDR, 1990). Since many of the samples appear to be from regions manufacturing 1,1-DCA, the relevance of these reported concentrations to exposures experienced by Californians is unclear because 1,1-DCA is not produced in California.
Soil

A review of the literature on soil concentrations found no data and concluded, “…the lack of available soil monitoring data is at least in part due to rapid repartitioning of 1,1-dichloroethane released to soils into ambient air and groundwater” (ATSDR, 1990). Therefore, soil is unlikely to be a direct source of 1,1-DCA exposure for people because it is rapidly repartitioned to air and groundwater.

Water

Analyses of 13,347 California groundwater sources of drinking water found 1,1-DCA in 68 samples, ranging from 0.51 ppb to 30 ppb. No 1,1-DCA was found in any of the 754 surface water sources of drinking water sampled (DHS, 1999).

Food

No information could be found on 1,1-DCA levels in food. The high volatility of 1,1-DCA makes its presence in foods very unlikely.

Other Sources

Populations experiencing the highest exposures would likely be workers in occupations where 1,1-DCA is present at high concentrations in workplace air (ATSDR, 1990).

METABOLISM AND PHARMACOKINETICS

Absorption

1,1-DCA is well absorbed by the oral and inhalation routes, as expected for a small lipophilic solvent. Oral administration of 1,1-DCA to rats and mice resulted in most of the solvent found in chamber air, which should largely result from exhalation of the absorbed solvent (Mitoma et al., 1985). No direct measurements of absorption in humans following inhalation exposure were found. However, the fact that 1,1-DCA was used as an anesthetic indicates adequate lung/blood partitioning to induce anesthesia (Miller et al., 1965). The extensive physiologically-based pharmacokinetic modeling of the chlorinated solvents could be used to evaluate inhalation and oral toxicokinetics (Gargas et al., 1989, 1990). Dermal absorption from water could be significant, but because of the rapid partitioning of 1,1-DCA into air, exposure to this chemical in bathing and showering would be dominated by the inhalation route.

Distribution

1,1-DCA will be rapidly distributed throughout the body similar to other small chlorinated hydrocarbons (Gargas et al., 1989, 1990; Barton et al., 1995). Radioactivity
was detected in liver, kidney, lung and stomach of rats and mice injected intraperitoneally with 14C-1,1-DCA (Colacci et al., 1985). Most of the radioactivity was found in chamber air after oral administration of 14C-1,1-DCA, indicating efficient distribution and exhalation (Mitoma et al., 1985). The fact that anesthesia occurs following inhalation administration to humans indicates that 1,1-DCA is well distributed to the central nervous system in humans.

Metabolism

The most comprehensive report of metabolism is in rat tissue (McCall et al., 1983). Microsomes were prepared from the livers of rats treated with the cytochrome P450 inducer, phenobarbital. 14C-Labelled 1,1-DCA was incubated with the microsomes and the radioactive components of the mixture were identified.

Figure 2 shows a predicted metabolic pattern for 1,1-DCA, with inferred intermediates in parentheses. Varying amounts of the other structures shown in this diagram were detected in the incubation mixture (McCall et al., 1983). The diagram can most easily be understood by recognizing the similarity of the production of the three acetic acid derivatives with the steps in the metabolism of ethanol. The steps are shown in four columns to highlight the similarities of the reactions. The first step is the hydroxylation of 1,1-DCA to one of two ethanol analogs shown in the second column. The second step is dehydrogenation of the ethanol analogs to chloraldehyde or one of two acetyl chlorides shown in the third column. The third and final step is conversion of the aldehyde/acetyl chloride to the corresponding acetic acid analog. The production rate of acetic acid was far greater than production of either of the two chloroacetic acids. Production of acetic acid was over 800 times greater than the monochloroacetic acid and over 2000 times greater than dichloroacetic acid.
Figure 2. Proposed Metabolism of 1,1 DCA

Excretion

Mitoma et al. (1985) collected urine, feces and the chamber air of mice and rats for 48 hours after oral administration of 14C-1,1-DCA. Radioactivity was measured in the urine and feces that together were called excreta. Volatile metabolites in the chamber air were pulled through three sequential traps: methylcellulose, toluene and a CO$_2$ trap. The animals were killed at 48 hours after dosing. The livers and kidneys were removed for analysis of protein binding and the radioactivity remaining in the carcass was measured. The following table shows the dose and the percent of administered dose recovered in air, excreta and the carcass.

Table 3. Excretion of 1,1-DCA

<table>
<thead>
<tr>
<th></th>
<th>Recovery</th>
<th>Expired Air*</th>
<th>CO$_2$ (assumed to be metabolized)</th>
<th>Excreta</th>
<th>Carcass</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAT</td>
<td>93%</td>
<td>86%</td>
<td>5.1%</td>
<td>0.92%</td>
<td>1.5%</td>
</tr>
<tr>
<td>MOUSE</td>
<td>99.7%</td>
<td>70%</td>
<td>25%</td>
<td>1.6%</td>
<td>2.4%</td>
</tr>
</tbody>
</table>

*Radioactivity sequentially trapped in methylcellulose and toluene
Metabolism appears to be greater in the mouse than in the rat. This was also found after chronic administration of 1,1-DCA in a companion study from the same laboratory (Mitoma et al., 1985).

TOXICOLOGY

Toxicological Effects in Animals and Plants

Acute Toxicity

No primary studies were found with detailed information on the effects of acute exposure. However, like other chlorinated aliphatic solvents, 1,1-DCA is anticipated to be acutely sedative, and anesthetic at a high dose. Secondary sources report an inhalation LC₅₀ of 17,300 ppm for two hours in mice (Verschueren, 1983) and 16,000 ppm for eight hours in rats (Verschueren, 1983), and an oral LD₅₀ in rats of 14,100 mg/kg (Kirk-Othmer, 1978).

Subchronic Toxicity

The dose selection study for the cancer bioassay (NCI, 1978) was a six-week subchronic exposure followed by a two week observation period. Rats and mice of both sexes were gavaged with corn oil or one of five concentrations of 1,1-DCA in corn oil. The doses were 562, 1000, 1780, 3160, and 5620 mg/kg-d in rats and 1000, 1780, 3160, 5620, and 10,000 mg/kg-d in mice. The following table shows the doses at which decreased body weight and death were observed in this range-finding study.

Table 4. Subchronic Toxicity in Rats and Mice

<table>
<thead>
<tr>
<th>Species, sex</th>
<th>Dose (mg/kg)</th>
<th>Decreased body weight (percent)</th>
<th>Death (incidence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rats</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>male</td>
<td>562</td>
<td>16</td>
<td>0/5</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>29</td>
<td>0/5</td>
</tr>
<tr>
<td>female</td>
<td>1780</td>
<td>20</td>
<td>0/5</td>
</tr>
<tr>
<td></td>
<td>3160</td>
<td>20</td>
<td>2/5</td>
</tr>
<tr>
<td>Mice</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>male</td>
<td>5620</td>
<td>NA</td>
<td>2/5</td>
</tr>
<tr>
<td>female</td>
<td>5620</td>
<td>NA</td>
<td>3/5</td>
</tr>
</tbody>
</table>

NA: Not applicable.

At the higher doses in both these studies, presumably more severe body weight decreases and an increased incidence of lethality occurred, although this is not stated in the brief description in the NCI report. Very few observations or measurements were conducted.
on the exposed animals because this was a dose finding study for the two-year study (NCI, 1978).

The initial high doses estimated for the chronic studies from these subchronic studies were 700 and 1500 mg/kg-d for the rat males and females, respectively, and 1800 mg/kg-d for mice of both sexes, based on the 5 day/week gavage schedule. The high doses for the chronic studies are nominally set at the maximum tolerated dose determined in the subchronic study. The derivation of the maximum exposure levels for the chronic studies is therefore understandable in rats, but not in mice. That is, it is not clear from these data that 1800 mg/kg-day (5 days/week) would represent an MTD for mice, and the mouse doses were in fact increased during the chronic study because the high dose animals were exhibiting no toxic effects.

A no-observed-adverse-effect level (NOAEL) cannot be determined for male rats from this subchronic study; the lowest dose of 562 mg/kg-day represents a lowest-observed-adverse-effect level (LOAEL). The lowest dose (562 mg/kg-day) is apparently a NOAEL for female rats. The 3160 mg/kg-day dose from the mouse study probably represents a NOAEL for body weight changes or death, but it is not clear whether it represents a true subchronic NOAEL for mice, since it was above the dose chosen as the maximum dose for the chronic study.

Genetic Toxicity

The results from genetic toxicity testing are somewhat contradictory. Table 5 summarizes the reports from the literature. The table has four sections for in vitro exposure tests (bacteria, yeast, fungi and mammalian cells) and a single section for in vivo exposures. It is important to note that conducting tests in vitro with volatile chemicals requires some care to ensure that tests do not yield false negative results. If the chemical volatilizes so media concentration are very low, a negative result may occur with a genotoxic chemical. Therefore, the second column of the table indicates if the exposures were conducted in a sealed container such as a desiccator. Many of the non-mammalian species used in these tests lack the enzymes to convert chemicals to reactive intermediates capable of mutating DNA. Therefore, mammalian activating enzymes can be added to the media during the exposure. The third and fourth columns show results with and without such activating enzymes.

Several studies found Salmonella typhimurium not to be mutated by 1,1-DCA. However, Riccio et al. (1983) report a positive result in some of the same strains previously tested with and without activation. This chemical caused chromosome abnormalities in Aspergillus nidulans, but did not mutate yeast. 1,1-DCA was negative in the mouse 3T3 cell transformation assay, but induced unscheduled DNA synthesis in both rats and mice and induced viral transformation in hamster embryo cells. Radioactivity was found in DNA, RNA and protein of liver, kidney, lung, and stomach following an intraperitoneal (ip) injection of radioactive 1,1-DCA into mice and rats. However, an ip injection failed to induce single strand breaks in the liver DNA of mice. The results of the tests for genotoxicity do not enable us to categorize this chemical as genotoxic or epigenetic.
Table 5. Genotoxicity of 1,1-DCA*

<table>
<thead>
<tr>
<th>Test Species/Strains</th>
<th>Exposure Conditions</th>
<th>Activation With</th>
<th>Activation Without</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria Reverse Mutation (Ames assay)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. typhimurium TA98, TA100, TA1535</td>
<td>Desiccator Assay: Vapor Exposure</td>
<td>+</td>
<td>+</td>
<td>Mitoma et al., 1984</td>
</tr>
<tr>
<td>S. typhimurium TA97, TA98, TA100, TA102</td>
<td>unknown</td>
<td>-</td>
<td>-</td>
<td>Nohmi et al., 1986</td>
</tr>
<tr>
<td>S. typhimurium TA98, TA100, TA1535</td>
<td>Desiccator Assay: Vapor Exposure</td>
<td>+</td>
<td>+</td>
<td>Riccio et al., 1983</td>
</tr>
<tr>
<td>S. typhimurium TA1537</td>
<td>Desiccator Assay: Vapor Exposure</td>
<td>-</td>
<td>-</td>
<td>Riccio et al., 1983</td>
</tr>
<tr>
<td>S. typhimurium TA98, TA100, TA1535, TA1537,1538</td>
<td>Desiccator Assay: Vapor Exposure</td>
<td>-</td>
<td>Not tested</td>
<td>Simon et al., 1977</td>
</tr>
<tr>
<td>S. typhimurium TA97, TA98, TA100, TA1535</td>
<td>Desiccator Assay: Vapor Exposure</td>
<td>-</td>
<td>Not tested</td>
<td>Zeiger, et al., 1992</td>
</tr>
<tr>
<td>Yeast Mutation Assay</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. cerevisiae D3</td>
<td>Suspension assay</td>
<td>-</td>
<td>Not tested</td>
<td>Simon et al., 1977</td>
</tr>
<tr>
<td>S. cerevisiae D7</td>
<td>No enclosure but other chemicals positive</td>
<td>-</td>
<td>Not tested</td>
<td>Bronzetti et al., 1987</td>
</tr>
<tr>
<td>Fungi Chromosomal Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus nidulans</td>
<td>Sealed capped glass tube</td>
<td>+</td>
<td>Not tested</td>
<td>Crebelli et al., 1995</td>
</tr>
<tr>
<td>Mammalian Cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syrian hamster embryo cells - cell transformation</td>
<td>Chamber with Vapor Exposure</td>
<td>Not tested</td>
<td>+</td>
<td>Hatch et al., 1983</td>
</tr>
<tr>
<td>BALB/C-3'T3 – viral transformation</td>
<td>Sealed Chamber: Vapor Exposure</td>
<td>Not tested</td>
<td>-</td>
<td>Tu et al., 1985</td>
</tr>
<tr>
<td>Rat/mouse - DNA repair</td>
<td>No enclosure</td>
<td>Not tested</td>
<td>+</td>
<td>Williams, 1983; Williams et al., 1989</td>
</tr>
<tr>
<td>In Vivo Rodent Exposures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rat/mouse organ - macromolecular binding</td>
<td>Not applicable</td>
<td>+**</td>
<td>Colacci et al., 1985</td>
<td></td>
</tr>
<tr>
<td>Balb/c (single strand breaks in DNA)</td>
<td>Not applicable</td>
<td>-</td>
<td>Taninger et al., 1991</td>
<td></td>
</tr>
</tbody>
</table>

* This table is a modification of a table found in OEHHA 1999b
** Binding indices in liver, kidney, lung and stomach were similar to other weak carcinogens
There were few endpoints and a limited range of organisms in which measurements were made. The existing data includes only a few in vitro mammalian cell assays and 1,1-DCA has not been tested in many of the standard assays (e.g., sister chromatid exchange (SCE), chromosomal aberrations, mutations in mouse lymphoma cells). Nor has the chemical been tested in many of the standard in vivo mammalian assays (e.g., rodent bone marrow micronucleus, or SCE, micronucleus, chromosomal aberrations in peripheral blood cells). There are no reports of data in humans (in vivo or in vitro). Given these facts and the ambiguity of the existing data, it is difficult to assess the genotoxic potential of 1,1-DCA.

Developmental and Reproductive Toxicity

Schwetz et al. (1974) evaluated the developmental toxicity of three chlorinated hydrocarbons including 1,1-DCA. Pregnant rats were exposed by inhalation to 1,1-DCA for 7 hours/day on days 6 through 15 of gestation at 3,800 and 6,000 ppm (2,300 and 3,600 mg/kg-d, respectively, assuming 50 percent pulmonary absorption). The 6,000 ppm exposure to 1,1-DCA caused delayed ossification of the sternebrae; this concentration was not considered to be maternally toxic. No adverse effects were observed at the lower concentration of 3,800 ppm, so the NOAEL is 2,300 mg/kg-day for developmental effects.

Immunotoxicity

No studies were identified.

Neurotoxicity

No studies were identified.

Chronic Toxicity

One comprehensive toxicity study involving chronic exposure of animals to 1,1-DCA was found (NCI, 1978). This study followed the typical NCI protocol of gavaging Osborne-Mendel rats and B6C3F1 mice of both sexes with 1,1-DCA in corn oil. Fifty animals per sex of both species were treated 5 days per week for 78 weeks. While it is not typical of NCI studies, the dose levels for both sexes of rats and mice changed during the exposure. The following tables show how doses were changed throughout the course of the study for each species. The week of the study is shown in the first column and dose level associated with that week is shown for each of the four different groups across the row. Values in the table are doses in mg/kg-d.
Table 6. Dose Level Changes for Osborne-Mendel Rats

<table>
<thead>
<tr>
<th>Week</th>
<th>Female</th>
<th></th>
<th>Male</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low Dose</td>
<td>High Dose</td>
<td>Low Dose</td>
<td>High Dose</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>750</td>
<td>1500</td>
<td>350</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>900</td>
<td>1800</td>
<td>450</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>450</td>
<td>900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>One week with no gavage followed by four weeks of exposure at the week 18 dose levels. This five-week cycle repeated until study end.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Surviving animals observed 33 weeks more, then killed and necropsied.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7. Dose Level Changes for B6C3F1 Mice

<table>
<thead>
<tr>
<th>Week</th>
<th>Female</th>
<th></th>
<th>Male</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low Dose</td>
<td>High Dose</td>
<td>Low Dose</td>
<td>High Dose</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>900</td>
<td>1800</td>
<td>900</td>
<td>1800</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1200</td>
<td>2400</td>
<td>1200</td>
<td>2400</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1500</td>
<td>3000</td>
<td>1500</td>
<td>3000</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1800</td>
<td>3600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Surviving animals killed and necropsied after 12 or 13 more weeks.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The study author’s estimates of the chronic daily doses from this complicated exposure regimen is shown in the second column of Table 8. The third column includes an adjustment to daily doses, based on the fact that these animals were dosed five rather than seven days per week. The doses in the third column are those used in the OEHHA calculations.

Table 8. Time-weighted Average Doses

| | Time weighted average low dose/high dose (mg/kg-d) | Five/seven day adjustment low dose/high dose (mg/kg-d) | |
|---|---|---|---|---|---|
| Male rats | 382/764 | 273/546 | |
| Female rats | 475/950 | 339/679 | |
| Male mice | 1442/2885 | 1030/2061 | |
| Female mice | 1665/3331 | 1189/2379 | |
The control groups for these studies are somewhat complicated due to the fact that the 1,1-DCA study occurred at a facility with animals being exposed to many other chemicals, concurrently. Both the rat and mouse studies included two different control groups. There were 20 vehicle- and 20 untreated-control animal of each sex and species assigned to each chemical under study. An untreated group was not necessarily housed with the vehicle control and 1,1-DCA exposed animals.

The rats in the vehicle control group for trichloroethylene were combined with those from those in the 1,1-DCA study in the analysis of the data. This resulted in 40 male and 40 female rats for statistical analysis. The mice in the vehicle control groups of 1,1,2-trichloroethane, trichloroethylene and allyl chloride were combined with the mice of those in 1,1-DCA to increase the number of vehicle control animals. This resulted in 80 male and 80 female vehicle control mice for statistical analysis.

This study poses serious problems because few of the rats survived the entire study period and significant early deaths were observed in the male mice. Female mice were the only animals to survive in good numbers to the end of the study. Both dose levels for male and female rats appeared to exhibit lower survival than their corresponding controls. The decreased survival was significantly lower for male rats ($p = 0.006$) but was not significant by the Tarone test for the females. Male mice in both treatment groups exhibited a significant decrease in survival, while the female mice had significantly decreased survival only at the highest dose. The percentages of animals alive at the end of the study (week 111 for rats and week 91 for mice) are shown in the following table. The rats had very high incidences of pneumonia. The values in parentheses indicate the percentage of rats diagnosed with chronic pneumonia.

<table>
<thead>
<tr>
<th></th>
<th>Untreated Control</th>
<th>Corn Oil Control</th>
<th>Low Dose Group</th>
<th>High Dose Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male rats</td>
<td>30% (70%)</td>
<td>5% (95%)</td>
<td>4% (80%)</td>
<td>8% (84%)</td>
</tr>
<tr>
<td>Female rats</td>
<td>40% (85%)</td>
<td>20% (89%)</td>
<td>16% (68%)</td>
<td>18% (64%)</td>
</tr>
<tr>
<td>Male mice</td>
<td>35%</td>
<td>55%</td>
<td>62%</td>
<td>32%</td>
</tr>
<tr>
<td>Female mice</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>50%</td>
</tr>
</tbody>
</table>

The NCI protocol is designed to test the carcinogenic potential of a chemical. A pathologist examined histological sections of about 27 tissues from each animal in the study using a light microscope. In addition to the pneumonia, a number of other disease processes were detected at levels above 10 percent in most of the groups including controls. The lesions not related to treatment included testicular atrophy in male rats, chronic inflammation of the kidney in female rats and male mice, and hydrometra of the uterus in female mice. There were no treatment-related lesions reported in either sex of rats or mice.
Body weights were lower in all treated groups compared to the untreated controls, but corn oil controls did not differ from the treated animals. The survival curves of animals in the four treatment groups over time (graphs not shown) indicated differences for male and female rats as well as female mice. In male rats, for example, survival at 78 weeks was about 90 percent in controls versus 40 percent in both 1,1-DCA-dosed groups. Of these three species-sex combinations, male rats were exposed to the lowest dose level, 273 mg/kg-d. This is a chronic LOAEL for a noncancer endpoint of decreased survival.

Carcinogenicity

One report of 1,1-DCA-induced cancer in animals was found (NCI, 1978). The experiment and its exposure protocol for mice and rats is described above under chronic toxicity. Male B6C3F1 mice exhibited hepatocellular carcinomas in control and treatment groups. Female Osborne-Mendel rats had evidence of two types of neoplasms, circulatory system hemangiosarcomas and mammary adenocarcinomas.

Hepatocellular Carcinoma

Hepatocellular carcinoma is a neoplasm arising from the most abundant cell in the liver, the hepatocyte. Some strains of mice such as the C57Bl/6 have very high spontaneous incidence rates of this particular tumor. In contrast, C3H mice have a much lower spontaneous rate of hepatocellular carcinoma. The B6C3H is the F1 (first generation offspring) of a cross of the C57Bl/6 and C3H inbred mouse strains. B6C3H mice were selected for conducting carcinogenicity bioassays like that for 1,1-DCA because the F1 generation was thought to balance the sensitivity to carcinogens with a moderate background level of hepatocellular carcinoma. The incidence in the pooled corn oil control, low and high dose groups were 6/72, 8/48 and 8/32, respectively.

In males, the incidence of tumors at both the high and low doses was not significantly different (p>0.05) from the corn oil controls using either a Fisher’s exact or Cochran-Armitage test (NCI, 1979).

Hemangiosarcoma

Hemangiosarcoma is a malignant neoplasm of vascular origin characterized by masses of endothelial cells displaying atypical morphology of malignant cells. Microscopically, these sarcomas may be similar in their cytological detail to fibrosarcomas and leiomyosarcomas. Therefore, it can be difficult to determine the exact cell or tissue of origin and careful scrutiny of the better-differentiated areas is required to identify the endothelial and vascular origin (Robbins, 1967).

Hemangiosarcomas were not observed in either control group, or in the low dose group. At the high dose level, they appear in subcutaneous tissue (2/50), lung (1/50) and spleen (1/49). A pair-wise comparison does not show statistical significance, but there is a positive trend test (OEHHA, 1999b).
Mammary Adenocarcinoma

Mammary adenocarcinomas arise from the epithelial cells of the breast. The incidence of mammary tumors at both the high and low doses was not significantly different (p>0.05) from the corn oil controls using either a Fisher exact or Cochran-Armitage test (NCI, 1978).

Endometrial Stromal Polyps

The Fisher exact test was positive for endometrial polyps in the high-dose group (p=0.017) relative to the pooled vehicle controls. None of the 18 laboratory historical vehicle control B6C3F1 mice used in studies by the NCI Bioassay Program had ever exhibited an endometrial stromal polyp.

Bioassay Summary

The NCI evaluation concludes that, “There were dose-related marginal increases in mammary adenocarcinomas and in hemangiosarcomas among female rats and there was a statistically significant increase in the incidence of endometrial stromal polyps among dosed female mice as compared to controls. These findings are indicative of the possible carcinogenic potential of the test compound. However, it must be recognized that under the conditions of this bioassay there was no conclusive evidence for the carcinogenicity of 1,1-dichloroethane in Osborne-Mendel rats or B6C3F1 mice.” The NCI review committee (a subcommittee of the Clearinghouse on Environmental Carcinogens) concluded that “there was no conclusive evidence as to the carcinogenicity of 1,1-dichloroethane in the treated mice and that the rat study was inadequate to draw any conclusion.” The committee also recommended a retest (NCI, 1978).

The U.S. EPA concluded that this bioassay “provides limited evidence of the carcinogenicity of 1,1-DCA in Osborne-Mendel rats and B6C3F1 mice...based on significant dose-related increases in the incidence of hemangiosarcomas at various sites and mammary carcinomas in female rats and statistically significant increases in the incidence of liver carcinoma in male mice and benign uterine polyps in female mice” (U.S. EPA, 1996). The U.S. EPA also noted that the statistical power of the study is limited by the low survival rates in many groups, which precluded the appearance of possible late-developing tumors.

“Survival analysis conducted by Gold and colleagues (Gold and Zeiger, 1997) reported a significant association with exposure and uterine endometrial polyps (p<0.004) compared to pooled controls in female mice. Additional positive findings included liver tumors (p<0.05) and lung tumors (p<0.04) in male mice compared to matched controls…

In female rats, they reported statistically significant associations of exposure and hemangiosarcomas of the circulatory system with matched controls (p<0.05) or pooled controls (p<0.02) and adenocarcinomas of the mammary gland (p<0.04) with matched controls” (OEHHA, 1999b)
Toxicological Effects in Humans

Acute Toxicity

No studies were identified. However, it was reported that 1,1-DCA can cause “salivation, sneezing, and coughing. In those few cases of intoxication...reported, the anticipated anesthetic effects have been observed with associated dizziness, nausea and vomiting. In severe & fatal cases hepatic & renal injury have been observed” (Hamilton and Hardy, 1974, as cited in HSDB, 2001).

Subchronic Toxicity

No studies were identified.

Genetic Toxicity

No studies were identified.

Developmental and Reproductive Toxicity

No studies were identified.

Immunotoxicity

No studies were identified.

Neurotoxicity

No studies were identified.

Chronic Toxicity

No studies were identified.

Carcinogenicity

No studies were identified.
DOSE-RESPONSE ASSESSMENT

Noncarcinogenic Effects

NCI (1978) reported that subchronic exposure decreased body weight gain of male rats at 562 mg/kg-d, while chronic exposure of male rats to 1,1-DCA caused decreased survival at 273 mg/kg-d. The chronic exposure dose is lower so it was chosen as the LOAEL for 1,1-DCA noncancer risk assessment.

Carcinogenic Effects

A cancer potency for 1,1-DCA has been published by OEHHA. The current OEHHA potency was developed under the expedited cancer potency value method (OEHHA, 1992). “Cancer potency is based on mammary tumor adenocarcinoma observed in female rats, the most sensitive species/sex combinations tested. Because survival was poor for the study in female rats, the potency was derived using a time-to-tumor analysis” (OEHHA, 1992).

U.S. EPA downgraded the status of 1,1-DCA from B2 to C in 1990 based on professional judgment. The Proposition 65 Carcinogen Identification Committee considered delisting 1,1-DCA as a substance known to the State of California to cause cancer. The panel unanimously voted that “1,1-DCA has been clearly shown through scientifically valid testing according to generally accepted principles to cause cancer and therefore should remain on the list” (Portale & Associates, 1999).

An OEHHA Air Toxics evaluation observed that “Cancer potency for 1, 1-dichloroethane is based on mammary gland adenocarcinomas observed in female rats, the most sensitive of the species/sex combinations tested. Because female rat survival was poor in this study, the potency was derived using a time-to-tumor analysis. Expedited Proposition 65 methodology (with cross-route extrapolation) was used to derive a cancer potency factor” (OEHHA, 1999a). The OEHHA estimated cancer potency is 0.0057 (mg/kg-day)^-1 (OEHHA, 1992).

CALCULATION OF THE PHG

Calculations of concentrations of chemical contaminants in drinking water associated with negligible risks for carcinogens or noncarcinogens must take into account the toxicity of the chemical itself, as well as the potential exposure of individuals using the water.

Exposure Considerations

Tap water is used directly as drinking water and also is used for showering. The inhalation exposure while showering may contribute more to the daily dose than drinking, depending on the volatility of the chemical. McKone (1987) has developed a mathematical model for predicting volatile organic chemical concentrations in shower air.
based on water concentration, water flow rates and ventilation. This model was
developed largely using the chemical trichloroethylene. Application of this model to
1,1-DCA predicts that the inhalation dose will be approximately equal to the ingested
dose. Therefore the equivalent volume of water (L_{eq}) is assumed to be 4 L/d; 2 L/d is
ingested and a dose equal to 2 L/d is inhaled in the shower plus other household uses of
water. The dose from dermal absorption is judged to be negligible.

Noncarcinogenic Effects

Calculation of a public health-protective concentration (C, in mg/L) for a chemical in
drinking water for noncarcinogenic endpoints follows the general equation:

$$C = \frac{\text{NOAEL} \times \text{BW} \times \text{RSC}}{\text{UF} \times L_{eq}/d}$$

where,

- NOAEL/LOAEL = no-observed-adverse-effect-level or lowest-observed-adverse-
effect-level (a LOAEL of 273 mg/kg-d in this case);
- BW = adult body weight (a default of 70 kg);
- RSC = relative source contribution (a default of 20 percent);
- UF = uncertainty factors (in this case, 10 each for intra- and inter-species
 extrapolations, and 10 to estimate a NOAEL from a LOAEL);
- L_{eq}/d = daily water consumption rate (4 L_{eq}/d).

Therefore,

$$C = \frac{273 \text{ mg/kg-d} \times 70 \text{ kg} \times 0.2}{1000 \times 4 \text{ L}_{eq}/d} = 1 \text{ mg/L} = 1000 \text{ ppb}$$

A public-health protective concentration of 1,1-DCA in drinking water to protect against
non-cancer effects is 1000 ppb, based on higher mortality in male rats (NCI, 1978).

Carcinogenic Effects

For carcinogens, the following general equation can be used to calculate the public
health-protective concentration (C) for 1,1-DCA in drinking water (in mg/L):

$$C = \frac{\text{BW} \times \text{R}}{\text{CSF} \times L_{eq}/d} = \text{mg/L}$$
where,

\[BW = \text{adult body weight (a default of 70 kg)}; \]
\[R = \text{de minimis level for lifetime excess individual cancer risk (a default of } 10^{-6}); \]
\[\text{CSF} = \text{cancer slope factor (0.0057 (mg/kg-d)^{-1})}; \]
\[L_{eq/d} = \text{daily volume of water consumed (4 L_{eq/d}).} \]

Therefore,

\[C = \frac{70 \text{ kg} \times 10^{-6}}{0.0057 \text{ (mg/kg-d)^{-1}} \times 4 \text{ L}_{eq/d}} = 0.003 \text{ mg/L} = 3 \text{ ppb} \]

The PHG is proposed to be set at 0.003 mg/L (3 µg/L, or 3 ppb), based on mammary tumors in female Osborne-Mendel rats, because this level is much lower than the value derived for non-cancer effects, based on decreased survival.

RISK CHARACTERIZATION

The existing OEHHA cancer potency was used to develop the proposed PHG for 1,1-DCA. The value based on the non-cancer endpoint, increased death rates in male rats, is over 300 times greater. The only observed adverse developmental endpoint was delayed ossification of the sternaebrae, indicative of retarded fetal development. No specific teratogenic effects were observed. However, no multi-generation reproductive studies have been conducted for 1,1-DCA.

The proposed PHG of 3 ppb was calculated based on the carcinogenic potency of 1,1-DCA. In calculating the PHG, a de minimis theoretical excess individual cancer risk level of \(10^{-6}\) was assumed. The corresponding levels for cancer risk levels of \(10^{-5}\) or \(10^{-4}\) are 30 and 300 ppb, respectively. These calculations assume lifetime (70 year) consumption of 2 L/d of 1,1-DCA in drinking water, plus daily exposure to an equal amount via inhalation from other household uses of the water.

Sensitive subpopulations have been considered. Although toxicological data are extremely limited, we have identified no sensitive subpopulations, and see no reason to suspect special sensitivity in such groups as infants, pregnant women, and the elderly. Potentially sensitive populations cited in HSDB (2001) include persons with existing skin disorders or impaired pulmonary function (for occupational exposures involving high concentrations). Neither of these potentially sensitive populations is considered to be at special risk of toxic effects of 1,1-DCA at the concentrations that have been reported in California ground water (up to 30 ppb; DHS, 1999).
OTHER REGULATORY STANDARDS OR GUIDELINES

There is no federal MCL for 1,1-DCA. The California Department of Health Services established an MCL of 0.005 mg/L (5 ppb) for 1,1-DCA in 1988 (DHS, 1988). The California MCL was based on noncancer effects at the lowest dose level to which male rats were exposed in the National Cancer Institute bioassay of 1,1-DCA (NCI, 1978), with a very large uncertainty factor.

Table 13 lists enforceable standards and recommended guidelines for other states taken from the Hazardous Substance Database (HSDB, 2001).

Table 13. Other State Drinking Water Standards or Guidelines for 1,1-TCA

<table>
<thead>
<tr>
<th>STATE</th>
<th>CONCENTRATION µg/L</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Jersey</td>
<td>50</td>
<td>Standard</td>
</tr>
<tr>
<td>Maine</td>
<td>5</td>
<td>Guideline</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>70</td>
<td>Guideline</td>
</tr>
<tr>
<td>Minnesota</td>
<td>70</td>
<td>Guideline</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>81</td>
<td>Guideline</td>
</tr>
<tr>
<td>Florida</td>
<td>700</td>
<td>Guideline</td>
</tr>
<tr>
<td>Michigan</td>
<td>840</td>
<td>Guideline</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>850</td>
<td>Guideline</td>
</tr>
</tbody>
</table>

HSDB, 2001
REFERENCES

