OFFICE OF ENVIRONMENTAL HEALTH HAZARD ASSESSMENT

Proposition 65

Reconsideration of a Chemical Listed under Proposition 65 as Known to Cause Reproductive Toxicity

Chemical Listed via the Labor Code Mechanism:

Chloroform

August 2016

Reproductive and Cancer Hazard Assessment Branch

Office of Environmental Health Hazard Assessment California Environmental Protection Agency

AUTHORS AND REVIEWERS

The Office of Environmental Health Hazard Assessment's (OEHHA) Reproductive and Cancer Hazard Assessment Branch was responsible for the preparation of this document.

Primary Authors

Farla L. Kaufman Ph.D.Marlissa Campbell, Ph.D.Staff ToxicologistStaff ToxicologistReproductive Toxicology and Epidemiology SectionReproductive and Cancer Hazard Assessment Branch

Contributing Author

Allegra N. Kim, Ph.D. Research Scientist III Reproductive Toxicology and Epidemiology Section Reproductive and Cancer Hazard Assessment Branch

OEHHA Reviewers

Allan Hirsch Chief Deputy Director

Martha Sandy, Ph.D. Chief, Reproductive and Cancer Hazard Assessment Branch

James M. Donald, Ph.D. Chief, Reproductive Toxicology and Epidemiology Section Reproductive and Cancer Hazard Assessment Branch

Technical Support

Brian Rodriguez, MPH Melissa T. Ibarra, MPH Jamie L. Larson BS Reproductive and Cancer Hazard Assessment Branch

Acting Director

Lauren Zeise, Ph.D.

Contents

Contents
Acronyms and abbreviations7
Background9
1. Introduction
1.1. Compound identification, physical properties and uses
1.2. Use and exposure information12
2. Human Studies of Reproductive and Developmental Toxicity of Chloroform
2.1. Notes on Exposure Assessment in Epidemiologic Studies of Chloroform13
2.2. Notes on the Tables and Figures Presenting Human Studies of Reproductive Outcomes
3. Animal Studies of Reproductive and Developmental Toxicity of Chloroform
4. Summary
References
Appendix A. Tables of Associations between Chloroform and Other Disinfection By- Products Exposure and Reproductive Outcomes in Human Studies
Appendix B. Tables of Exposure Measures, Uptake Factors Used In Estimating Internal Dose, and Windows of Exposure in Human Studies
Appendix C. OEHHA (2005) Re-analysis of Data from Two Chloroform Epidemiological Studies: Wennborg et al. (2000) and Infante-Rivard (2004)
Appendix D. Parameters for Literature Searches on the Reproductive Toxicity of Chloroform
Attachment 1: OEHHA (2004) Evidence of Developmental and Reproductive Toxicity of Chloroform

List of Tables

Table 1. Reproductive Outcomes Assessed in Human Studies of Chloroform (CHL) Exposure, Grouped by Exposure Measure.

Table 2. Summary of Selected Study Design Elements and Measured or Estimated Chloroform (CHL) Levels in Human Reproductive Studies.

Table 3a. Detailed Summaries for Human Studies of Chloroform (CHL) Exposure and Reproductive Outcomes: Preterm Birth (PTB), Small for Gestational Age (SGA), Low Birth Weight (LBW), and Birth Weight (BW).

Table 3b. Associations between Chloroform (CHL) Exposure and Preterm Birth (PTB), Small for Gestational Age (SGA), Low Birth Weight (LBW), and Birth Weight (BW) in Human Studies.

Table 4a. Detailed Summaries of Human Studies of Chloroform (CHL) Exposure and Reproductive Outcomes: Spontaneous Abortion (SAB), Stillbirth (SB), Birth Defects (BD), Fertility and Menstrual Cycle Function.

Table 4b. Associations between Chloroform (CHL) Exposure and Spontaneous Abortion (SAB), Stillbirth, Birth Defects and Fertility in Human Studies.

Table 5a. Detailed Summaries of Human Studies of Chloroform (CHL) Exposure and Male Reproductive Outcomes.

Table 5b. Associations between Chloroform (CHL) Exposure and Sperm Parameters in Human Studies.

Table 6. Studies of Developmental Toxicity of Chloroform in the Rat, Inhalation Route.

Table 7. Study of Developmental Toxicity of Chloroform in the Mouse, Inhalation Route.

Table 8. Studies of Developmental Toxicity of Chloroform in the Rat, Oral Route.

Table 9. Study of Developmental Toxicity of Chloroform in the Mouse, Oral Route.

Table 10. Study of Developmental Toxicity of Chloroform in the Rabbit, Oral Route.

Table 11. Study of Developmental Toxicity of Chloroform in Zebrafish, in vitro.

Table 12. Studies of Female Reproductive Toxicity of Chloroform in Rats, Inhalation Route.

Table 13. Study of Female Reproductive Toxicity of Chloroform in Mice, Inhalation Route.

Table 14. Studies of Female Reproductive Toxicity of Chloroform in Rats, Oral Route.

Table 15. Studies of Female Reproductive Toxicity of Chloroform in Mice, Oral Route.

Table 16. Study of Female Reproductive Toxicity of Chloroform in Rabbits, Oral Route.

Table 17. Study of Female Reproductive Toxicity of Chloroform in Beagle Dogs, Oral Route.

Table 18. Study of Male Reproductive Toxicity of Chloroform in Mice, Inhalation Route.

Table 19. Study of Male Reproductive Toxicity of Chloroform in Rats, Oral Route.

Table 20. Study of Male Reproductive Toxicity of Chloroform in Mice, Oral Route.

Table 21. Study of Male Reproductive Toxicity of Chloroform in Beagle Dogs, Oral Route.

Table 22. Study of Multigeneration Reproductive Toxicity of Chloroform in Mice, Oral Route.

Appendix A. Tables of Associations between Chloroform and Other Disinfection By-Products Exposure and Reproductive Outcomes in Human Studies.

Table A3c. Associations between Chloroform (CHL) and Other Disinfection By-Products Exposure and Preterm Birth (PTB), Small for Gestational Age (SGA), Low Birth Weight (LBW), and Birth Weight (BW) in Human Studies.

Table A4c. Associations between Chloroform (CHL) and Other Disinfection By-Products Exposure and Spontaneous Abortion (SAB), Stillbirth, Birth Defects, Fertility and Menstrual Cycle Function in Human Studies.

Table A5c. Associations between Chloroform (CHL) and Other Disinfection By-Products Exposure and Sperm Parameters in Human Studies.

Appendix B. Tables of Exposure Measures, Uptake Factors Used In Estimating Internal Dose, and Windows of Exposure in Human Studies.

Table B1. Exposure Measures for Chloroform (CHL), Total Trihalomethane (TTHM), Bromodichloromethane (BDCM), and Dibromochloromethane (DBCM) in Human Studies of Reproductive Outcomes: (A) Water Concentration, (B) Water Concentration and Estimated Internal Dose.

Table B2. Uptake Factors and Percent Reductions Used in Calculations of Estimated Internal Dose in Human Studies of Chloroform (CHL) Exposure.

Table B3. Windows of Exposure Assessed in Human Studies of Chloroform Exposure and Reproductive Outcomes.

List of Figures

Figure 1. Preterm Birth (PTB). Forest plot of the association between chloroform (CHL) exposure [water concentration] and PTB.

Figure 2. Preterm Birth (PTB). Forest plot of the association between chloroform (CHL) exposure [estimated internal dose] and PTB.

Figure 3. Small for Gestational Age (SGA). Forest plot of the association between chloroform (CHL) exposure [water concentration] and SGA.

Figure 4. Small for Gestation Age (SGA). Forest plot of the association between chloroform (CHL) exposure [estimated internal dose] and SGA.

Figure 5. Low Birth Weight (LBW) and Very Low Birth Weight (VLBW). Forest plot of the association between chloroform (CHL) exposure [water concentration] and LBW and VLBW.

Figure 6. Low Birth Weight (LBW) and Very Low Birth Weight (VLBW). Forest plot of the association between the change in chloroform (CHL) exposure [water concentration] and LBW and VLBW.

Figure 7. Low Birth Weight (LBW). Forest plot of the association between chloroform (CHL) exposure [estimated internal dose] and LBW.

Figure 8. Birth Weight (BW). Forest plot of the association between chloroform (CHL) exposure [water concentration] and BW.

Figure 8. Birth Weight (BW). Forest plot of the association between chloroform (CHL) exposure [water concentration] and BW (cont'd).

Figure 9. Birth Weight (BW). Forest plot of the association between chloroform (CHL) exposure [estimated internal dose] and BW.

Figure 10. Schematic of Protocol for Multigeneration Reproductive Toxicity Study with Satellite Components Used by Borzelleca and Carchman, 1982.

Acronyms and abbreviations

adj ass BCAA BD BDCAA BDCM BrTHM btwn BW CHL conc DBAA DBCAA DBCAA DBCAA DBCAA d diff dist e.g. exp	adjusted association bromochloroacetic acid birth defects bromodichloroacetic acid bromodichloromethane - CHCl ₂ Br total brominated trihalomethanes (BDCM+DBCM+TBM) between birth weight chloroform (trichloromethane) - CHCl ₃ concentration dibromoacetic acid dibromochloroacetic acid dibromochloroacetic acid dibromochloromethane - CHClBr ₂ disinfection by-product dichloroacetic acid day difference distribution for example exposure
freq GA GSTM1	frequency gestational age glutathione S-transferase Mu 1
GSTT1 HAA	glutathione S-transferase theta-1 haloacetic acid
HAA5 HAA9	sum of 5 HAAs = MCAA + DCAA + TCAA + MBAA + DBAA 9 species of HAA - MCAA, DCAA, TCAA, MBAA, DBAA, TBAA, BCAA, DBCAA, BDCAA
HR incl info IQR LBW LGA MBAA MCAA MX N N N N N N N N D OR PTB RR	hazard ratio included information interquartile range low birth weight large for gestation age monobromoacetic acid monochloroacetic acid halogenated furanone population size sample size neural tube defect odds ratio preterm birth (preterm delivery) relative risk

SAB SB	spontaneous abortion still birth
SGA	small for gestational age – also referred to as intrauterine growth restriction (IGR, IUGR), fetal growth restriction (FGR)
STD	sexually transmitted diseases
suppl	supplement
TBAA	tribromoacetic acid
ТВМ	bromoform (tribromoform) - CHBr ₃
TCAA	trichloroacetic acid
THM	trihalomethane
TTHM	total trihalomethanes (sum of the 4 THM = CHL + BDCM + DBCM + TBM)
VLBW	very low birth weight
w/	with
w/in	within

Background

Proposition 65¹ requires the State of California to publish a list of chemicals known to cause cancer or reproductive toxicity. This list must be updated at least once a year. Reproductive toxicity includes developmental toxicity, and female and male reproductive toxicity. Chemicals added to the list as known to cause reproductive toxicity affect one or more of these endpoints.

Chloroform was added to the list as known to cause reproductive toxicity in 2009 because it was identified by reference as such in the California Labor Code. Proposition 65 thus required its inclusion on the list, as discussed in greater detail below. There are three additional ways for a chemical to be added to the Proposition 65 list:

- 1. The Developmental and Reproductive Toxicant Identification Committee (DARTIC) finds that the chemical has been clearly shown to cause reproductive toxicity.
- 2. An organization designated as an "authoritative body" by the DARTIC has identified it as causing reproductive toxicity².
- 3. An agency of the state or federal government requires that it be labeled or identified as causing reproductive toxicity.

Reason for Reconsideration of Listing

Because of changes in federal regulations, chloroform no longer meets the criteria for inclusion on the list on the basis of the Labor Code mechanism. Following the process for the first of the three listing mechanisms cited above, OEHHA is presenting chloroform to the DARTIC for a decision as to whether it has been clearly shown through scientifically valid testing according to generally accepted principles to cause reproductive toxicity. If the Committee makes that determination, the chemical will remain on the list.

Chloroform was added to the list on the basis of a Threshold Limit Value (TLV) developed by the American Conference of Governmental Industrial Hygienists (ACGIH)

¹ The Safe Drinking Water and Toxic Enforcement Act of 1986: Health and Safety Code section 25249.5 *et seq.,* passed by voter initiative.

² Title 27, California Code of Regulations, section 25306(I). The authoritative bodies are: U.S. Environmental Protection Agency, U.S. Food and Drug Administration, National Institute for Occupational Safety and Health, National Toxicology Program solely as to final reports of the National Toxicology Program's Center for Evaluation of Risks to Human Reproduction, and International Agency for Research on Cancer solely as to transplacental carcinogenicity.

that was based in part on developmental toxicity. The TLV provided a basis for listing via the Labor Code at the time because:

- Proposition 65 provides that the list of chemicals known to the state to cause reproductive toxicity "shall include at a minimum those substances identified by reference in Labor Code Section 6382(b)(1) and those substances identified additionally by reference in Labor Code Section 6382(d)³".
- California Labor Code Section 6382(d) further provides that "...any substance within the scope of the federal Hazard Communication Standard (29 C.F.R. Section 1910.1200) is a hazardous substance subject to this chapter".
- Until 2012, the federal Hazard Communication Standard (HCS) incorporated TLVs as a definitive source for establishing that a chemical is hazardous.

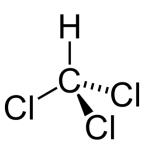
In March 2012, the federal Occupational Safety and Health Administration amended the HCS to remove reference to ACGIH TLVs as a mandatory basis for establishing that chemicals are hazardous. Consequently, a TLV based on reproductive or developmental toxicity no longer provides the basis for listing a chemical as known to the state to cause reproductive toxicity under Proposition 65.

Reconsideration Procedure

Chloroform is being brought to the DARTIC because it does not meet the criteria for inclusion on the list by any of the other listing mechanisms contained in the statute.

The Office of Environmental Health Hazard Assessment (OEHHA) has, through a contract with the Sheldon Margen Public Health Library at the University of California, Berkeley, conducted literature searches to identify studies that potentially provide information on the reproductive toxicity of chloroform. The searches covered the three major reproductive toxicity endpoints, namely developmental toxicity and male and female reproductive toxicity. The databases searched and parameters used in these searches are described in Appendix D.

The results of these searches were reviewed by OEHHA staff and all studies that provided data on reproductive toxicity were identified. The design parameters and results of these studies on male reproductive, female reproductive and developmental toxicity are summarized in tables as described below. The complete study reports for


³ Health and Safety Code section 25249.8(a)

chloroform have been provided to the DARTIC and are available to the public upon request.

For completeness, the original ACGIH document that specifically supported development of the chloroform TLV has also been provided to the DARTIC in electronic form. This document was not used in the process that resulted in the 2009 listing of chloroform under Proposition 65. Rather, the inclusion of the chloroform TLV based in part on a reproductive toxicity endpoint in the document, "Threshold Limit Values for Chemical Substances and Physical Agents in the Environment, American Conference of Governmental Industrial Hygienists (ACGIH)" (latest edition) resulted in the listing. The relevant entry from that document also has been provided in electronic form to the committee. In addition, chloroform was previously considered for listing by the DARTIC in 2004 and again in 2005 after additional information and analysis of data were provided at the DARTIC's request. Chloroform was not identified by the DARTIC at that time as causing reproductive toxicity. The hazard identification materials provided to the DARTIC in 2004 and 2005 are also being provided to the current Committee members (see Attachment 1 and Appendix C, respectively).

1. Introduction

1.1. Compound identification, physical properties and uses

Chloroform (1,1,1-Trichloromethane) Molecular Formula: CHCl₃, CAS Number 67-66-3

Chloroform (CHL) is a colorless liquid with a pleasant odor. Its physical properties are as follows (NIOSH Pocket Guide to Chemical Hazards <u>http://www.cdc.gov/niosh/npg/npgd0127.html</u>):

Molecular Weight	Boiling Point	Freezing Point	Solubility
119.4	143°F	-82°F	(77°F): 0.5%
Vapor Pressure	Ionization Potential	Specific Gravity	
160 mmHg	11.42 eV	1.48	

1.2. Use and exposure information

The major use of chloroform is in production of chlorodifluoromethane, in turn a major precursor of tetrafluoroethylene. It is a common laboratory solvent and reagent, a byproduct of chlorine water disinfection, and was formerly used as a surgical anesthetic.

2. Human Studies of Reproductive and Developmental Toxicity of Chloroform

2.1. Notes on Exposure Assessment in Epidemiologic Studies of Chloroform

Information on exposures to chloroform is discussed in Sections B.2 and C.4.1 of the 2004 OEHHA Hazard Identification Document, "Evidence on the Developmental and Reproductive Toxicity of Chloroform" (Attachment 1). Additional more recent relevant exposure information is briefly summarized here.

In 2002, U.S. EPA lowered the total trihalomethane drinking water standard from 0.10 mg/L to 0.08 mg/L for large surface water systems and in 2004 for smaller systems ("Stage 1 and Stage 2 Disinfectants and Disinfection Byproducts Rules", available at https://www.epa.gov/dwreginfo/stage-1-and-stage-2-disinfectants-and-disinfection-byproducts-rules). Analysis of the National Health and Nutrition Examination Survey (NHANES) data showed a significant decline (76%) in blood chloroform levels between 1999-2004; however, a similar decrease was not seen in the other trihalomethanes levels (LaKind et al., 2010; Riederer et al., 2014).

Well-controlled exposure studies have identified many factors that affect blood chloroform levels in humans, including showering and bathing, washing dishes by hand, and ingestion of hot beverages made with tap water, etc., with showering and bathing shown to be a strong if not the strongest predictor of blood chloroform levels (Lynberg et al., 2001; Nuckols et al., 2005; Backer et al., 2008). Additionally, genetic participants with GSTT1-null (inactive enzyme) have been shown to have higher post-shower blood chloroform concentrations than GSTT1-positive participants (Backer et al., 2008). GSTT1-1 is polymorphic in humans, with approximately 20-25% of Caucasian and 50% of Asians having a homozygous deletion of this gene, resulting in the null genotype (Landi et al., 1999).

Recent studies have used blood chloroform levels as measures of exposure. Although blood chloroform decreases within a relatively short timeframe (minutes to hours), a steady-state concentration is thought to exist due to frequency of exposure throughout the day, from activities such as showering and bathing, and slow partitioning out of adipose tissue (Blount et al., 2011).

Few epidemiologic studies have measured chloroform at the tap water in each participant's residence. Chloroform levels can change with distance from the municipal water treatment plant. With an increased amount of organic matter in the system, chloroform levels will likely increase by the time the water is delivered to a residence at increasing distance from the treatment plant. The amount of organic matter can vary depending on season. Therefore, relying on chloroform measurements taken at the treatment plant would likely introduce exposure misclassification. However, this misclassification should be non-differential in that the probability of being misclassified should not differ across groups of study participants. Products containing triclosan have been shown to react with free chlorine in drinking water to increase the formation of chloroform (Rule et al. 2005). Fiss et al. (2007) found that reactions between triclosan in household consumer products (such as antimicrobial soaps) and free chlorine at the tap leads to exposure to reaction products such as chloroform, chlorinated phenols and chlorinated phenoxy-phenols. In model simulations for formation of chloroform from tap water (at the maximum contaminant level of 80 μ g/L for trihalomethanes) and triclosan-containing products, Fiss et al. (2007) calculated that exposure from inhalation and dermal routes could lead to exposures of 6.8–28 mg/year, or an increase in an individual's overall exposure by 15-40%. Since the use of many triclosan-containing products is widespread, this could conceivably lead to considerable misclassification of exposure.

Imprecise exposure assessment resulting in non-differential misclassification of exposure would likely bias the estimate of any association of risk towards the null (i.e., to not detecting an effect even if one were present).

2.2. Notes on the Tables and Figures Presenting Human Studies of Reproductive Outcomes

The tables and figures in this document include almost all the studies presented in the 2004 HID, as well as studies published from 2004 into 2015. Two studies in the 2004 HID which are not included here are Tylleskar-Jensen (1967), a case study of eclampsia published in Danish and cited in Reprotext 2004 but not translated by OEHHA, and a study of semen quality (Fenster et al., 2003) that presented results for total trihalomethanes only, in which chloroform was not the dominant trihalomethane in the water.

Three studies in which chloroform was not included in the statistical analysis assessing risk of exposure were included in these tables. In the studies of Lewis et al. (2006, 2007) chloroform accounted for ~90 percent of total trihalomethane concentration but the statistical analysis was conducted only for total trihalomethane concentration. In the study by Patelarou et al. (2011), a very well-conducted study, chloroform concentrations were very low and thus were not included in the statistical analysis. Hence, this study does not appear in Tables 3a, 3b or A3a.

To facilitate consideration of this complex data set, the tables and figures for the human studies of reproductive outcomes are presented in order of increasing detail. Thus, Table 1 is a list of the studies and outcomes, organized by the measure of exposure, which provides a high level overview of the scope of the dataset.

Table 2 provides more detailed information of each study concerning study design and exposure, organized chronologically. This table, however, is still intended as an overall reference for the dataset.

Figures 1-9 are forest plots of specific reproductive outcomes organized by outcome and by measure of exposure:

- Figure 1 Preterm birth by water concentration;
- Figure 2 Preterm birth by estimated internal dose;
- Figure 3 Small for gestational age by water concentration;
- Figure 4 Small for gestational age by estimated internal dose;
- Figure 5 Low birth weight and very low birth weight by water concentration;
- Figure 6 Low birth weight and very low birth weight by change in water concentration;
- Figure 7 Low birth weight and VLBW by estimated internal dose;
- Figure 8 Birth weight by water concentration;
- Figure 9 Birth weight by estimated internal dose.

The studies in each figure are organized by increasing chloroform exposure based on the lowest value for each study's highest exposure category.

Table 3a provides a detailed summary of each of the studies examining preterm birth, small for gestational age, low birth weight or birth weight, ordered chronologically. Similarly, Table 4a provides summaries for the studies of spontaneous abortion, stillbirth, birth defects, fertility and menstrual cycle function, with Table 5a providing the summaries for studies of sperm quality.

Tables 3b, 4b, and 5b provide the findings of associations between chloroform exposure levels and risk estimates for the studies in Tables 3a, 4a, and 5a. These tables are organized by increasing water chloroform concentration exposure, based on the lowest value for each study's highest exposure category. If the study did not present risk estimates for water chloroform concentration, then ranking was based on the next most relevant measure (e.g., integrated uptake values). Companion tables presented in Appendix A as Tables A3c, A4c and A5c correspond to Tables 3c, 4c and 5c,with the addition of the risk estimates for other trihalomethanes, in addition to those for chloroform.

Additionally, Table B1 in Appendix B presents measured concentrations for chloroform exposures as well as those for total trihalomethanes, bromodichloromethane, and dibromochloromethane.

The complete list of Tables included in Appendices presenting information from these human studies is as follows:

Appendix A:

Table A3c. Associations between Chloroform (CHL) and Other Disinfection By-Products Exposure and Preterm Birth (PTB), Small for Gestational Age (SGA), Low Birth Weight (LBW), and Birth Weight (BW) in Human Studies.

Table A4c. Associations between Chloroform (CHL) and Other Disinfection By-Products Exposure and Spontaneous Abortion (SAB), Stillbirth, Birth Defects, Fertility and Menstrual Cycle Function in Human Studies.

Table A5c. Associations between Chloroform (CHL) and Other Disinfection By-Products Exposure and Sperm Parameters in Human Studies.

Appendix B:

Table B1. Exposure Measures for Chloroform (CHL), Total Trihalomethane (TTHM), Bromodichloromethane (BDCM), and Dibromochloromethane (DBCM) in Human Studies of Reproductive Outcomes: (A) Water Concentration, (B) Water Concentration and Estimated Internal Dose.

Table B2. Uptake Factors and Percent Reductions Used in Calculations of Estimated Internal Dose in Human Studies of Chloroform (CHL) Exposure.

Table B3. Windows of Exposure Assessed in Human Studies of Chloroform Exposure and Reproductive Outcomes.

Studies that examined uptake of chloroform (or other trihalomethanes) through various routes of exposure used different terminology to represent estimated internal dose (e.g. internal uptake, total integrated uptake, etc.). In most of the figures and tables presented in this HID, for ease of reading and comparison across studies, this document generally used the term "estimated internal dose" to indicate uptake. The exception is the detailed summary tables (Tables 3a, 4a, and 5a) in which the terms used in the studies were retained in order for the reader to more easily read the table in conjunction with the study publications.

Unless otherwise noted, low birth weight was defined as birth weight less than 2,500 grams, small for gestational age was the lowest 10th centile of birth weight for each gestational week, and preterm birth was <37 weeks gestation.

The sample sizes are presented using the abbreviation N for the initial study population and n for the resulting sample population after any exclusion or loss to follow-up, etc. All odds ratios and risk ratios where the confidence interval does not include 1, or analyses where the p value is < 0.05 are shown in bold.

All results are presented as adjusted for covariates/confounders unless otherwise noted.

Under the column "Covariates/Confounders" (Tables 3a, 4a, and 5a) the variables adjusted for in the analysis are noted. Other variables considered but not adjusted for in the models are noted at the bottom of that column.

In most studies, covariates were retained in the models if they were statistically significant or if they changed the effect estimate (odds ratio or β -coefficient) by greater than 10%. If a study used different criteria for the inclusion of covariates it was noted in the table.

Most studies assessed maternal residence from birth records and did not account for maternal residential mobility during pregnancy. Therefore, it is only noted in the comments section of the detailed summary tables (Tables 3a, 4a, and 5a) when a study did take this into account.

Some studies collected information concerning exposure to trihalomethanes at work. However, few studies that collected this information quantified it and included it in the statistical analysis. Therefore, as with residential mobility, work exposure is only noted in the comments section of the detailed summary tables when the study did take this exposure into account.

None of the studies adjusted for multiple comparisons.

Unless otherwise noted, estimated internal dose (including total uptakes, etc.) incorporated estimated uptake from ingestion, inhalation and dermal exposure.

Findings for other disinfection by-products were only presented if results were statistically significant. However, significant associations for total trihalomethanes were not routinely presented in the tables since in almost all the studies chloroform accounted for the majority of the total trihalomethane concentration and the results were similar.

The studies were reviewed for their disclosure statements with respect to any declared conflict of interest. Almost all the studies included a statement in which the authors declared "no conflict of interest or "no competing interests" and/or "no competing financial interests". One of the older studies (Dahl et al., 1999) and the study by Zhou et al. (2010) translated from Chinese did not include such a statement.

The following groups of studies, noted by different symbols, were conducted using the same participants or a subset of the same participants. These symbols are used throughout the tables to indicate these related studies.

 * Botton et al., 2015; Villanueva et al., 2011, Patelarou et al., 2011
 Botton et al. used a subset of the participants from a mother-child cohort study in Spain (Infancia y Medio Ambiente (INMA)) (Villanueva et al.).
 Although Botton et al. also included participants from another cohort in Greece (RHEA) (Patelarou et al., 2011), the chloroform levels for the Greek cohort were mostly undetectable and thus were excluded from the analyses. † Hoffman et al., 2008; Savitz et al., 2005

Hoffman et al. included a subset of the cohort enrolled in Savitz et al. Savitz et al., 2006 is a peer-reviewed article with a subset of findings published in Savitz et al., 2005, thus this HID only cites the more complete 2005 publication.

‡ Lewis et al., 2007; Lewis et al., 2006

These study populations were from the same database of vital records and were almost exactly the same participants.

* * King et al., 2000; Dodds and King, 2001

These study populations were from the same population-based perinatal database. The same environmental monitoring data was used by both studies for exposure assessment.

- † Zeng et al., 2014; Zeng et al., 2013
 Zeng et al., 2013 used a subset of study participants included in Zeng et al., 2014.
- ‡ ‡ Grazuleviciene et al., 2013; Danileviciute et al., 2012; Grazuleviciene et al., 2011 Each study used different subsets of subjects from the same prospective cohort (Kaunas HiWATE).

Table 1. Reproductive Outcomes Assessed in Human Studies of Chloroform (CHL) Exposure, Grouped by Exposure Measure.

Studies Grouped by Exposure Measure¹

Exposure Measure ¹	Outcome (number of studies by any exposure measure)												
	РТВ (9)	SGA (15)	LBW (9)	BW (10)	SAB (3)	SB (4)	BD (3)	Sperm Quality (4)	Other (3)				
Water Concentration													
Iszatt et al. 2014			X (and VLBW)			Х							
Iszatt et al. 2013								Х					
Rivera-Nuñez and Wright 2013	Х	Х		Х									
Summerhayes et al. 2012		Х		Х									
Patelarou et al. 2011*	Х	Х	Х										
Zhou et al. 2010				Х									
Hoffman et al. 2008 †		Х		Х									
Lewis et al. 2007 ‡	Х												
Lewis et al. 2006 ‡			Х										
Hinckley et al. 2005	Х	Х	Х										
Porter et al. 2005		Х											
Toledano et al. 2005			X (and VLBW)			X							
Dodds et al. 2004			,			Х							
Infante-Rivard 2004		Х											
Wright et al. 2004	Х	Х		Х									
Windham et al. 2003									X (Menstrual cycle function)				
Dodds and King 2001 * *							X						
King et al. 2000 * *						X							
Waller et al. 1998					X								
Kramer et al. 1992	X	X	X										

Abbreviations: BD - birth defects; BW - birth weight; CHL - chloroform; LBW - low birth weight; PTB - preterm birth; SAB - spontaneous abortion; SB - stillbirth; SGA - small for gestational age; VLBW - very low birth weight.

¹ Studies with the same symbol (e.g., *) are drawn from the same population or cohort. See "Introductory notes for tables" for an explanation of the relationship of study populations among the studies marked with a given symbol.

Table 1. Reproductive Outcomes Assessed in Human Studies of Chloroform (CHL) Exposure, Grouped by Exposure Measure

(cont'd).

St	u	ji	es	(G	iro	D	u	р	e	d	ł	bу	/
_														

Exposure Measure					Outcome				
	РТВ	SGA	LBW	BW	SAB	SB	BD	Sperm Quality	Other
Estimated Internal Dose ²									X (Postnatal
Botton et al. 2015* ³									weight gain)
Smith et al. 2015				Х					
Zeng et al. 2014 † † ^{3,4}								Х	
Grazuleviciene et al. 2013 ± ±							Х		
Costet et al. 2012 3,5	Х	Х							
Danileviciute et al. 2012 ‡ ‡		Х	X						
Levallois et al. 2012 3,5		Х							
Grazuleviciene et al. 2011 ‡ ‡		Х	Х	Х					
Iszatt et al. 2011 ^{3,5}							Х		
Villanueva et al. 2011*	Х	Х	Х	Х					
Savitz et al. 2005 † ^{3,5}	Х	X		X	X				
Blood Level									
Zeng et al. 2013 † †								Х	
Air Samples									
Chang et al. 2001								Х	
Questionnaire re: Occupational	l Exposure								
Wennborg et al. 2000				Х	Х				
Dahl et al. 1999									Х
									(Fertility)

² Generally these studies estimated the internal dose of CHL as the sum of uptakes from the dermal, inhalation, and ingestion routes of exposure.

 ³ Results for individual routes of exposure were also reported.
 ⁴ Zeng et al. (2014) did not report total dose; only results for routes of exposure through ingestion and showering/bathing were reported.

⁵ Risks were also calculated for CHL concentration in water.

	Stud	ly		Exposure						
Author Year of Study	Design	Location	Outcomes/ Sample Size	Timing	Assessment	CHL Level ¹	Other DBPs Measured and Analyzed ²			
Botton et al.* Prospective 2015 cohort	Spain (3 locations)	Postnatal weight growth Total n = 2,216	Entire pregnancy	Monitoring data	Median (µg/L): Gipuzkoa = ~12, Sabadell = ~20, Valencia = ~0	TTHM BrTHM				
				Estimated internal dose	Range (μg/d): Gipuzkoa = ~0-0.05, Sabadell = ~0-1.4, Valencia = ~0-2.1					
Smith et al. Prospective 2015 cohort	England	BW n = 7,438	Each trimester Entire pregnancy	Monitoring data	Time-weighted average conc: Mean (SD) (μg/L) = 37.8 (3.8)	THMs ³ HAAs BrTHM				
				Estimated internal dose	Mean (SD) (µg/d) = 1.61 (1.46)					
Iszatt et al. 2014	Retrospective cohort Intervention - enhanced coagulation water treatment (EC)	England	Total live births n = 429,599 LBW n = 27,664 VLBW n = 4,209 SB n = 2,279	Entire pregnancy	Monitoring data	Mean (SD) (μg/L): Before EC = 38.6 (4.2) After EC = 19.4 (1.0)	TTHM BDCM DBCM			
Zeng et al. † † 2014	Prospective cohort	China	Sperm parameters n = 324	Time of semen sample relative to days of abstinence	Monitoring data	Mean (µg/L) =13.71	TTHM BrTHM			
					Estimated internal dose	Ingestion: IQR (μ g/d) = 0.005–0.019 Showering/bathing: IQR (μ g/d) = 0.064–0.246				
Grazuleviciene Prospective et al. ‡ ‡ cohort 2013	Lithuania	$\frac{\text{Birth Defects}}{\text{Heart}} = 57$ $\frac{\text{Musculo-}}{\text{skeletal}} = 37$	1 st , 2 nd , and 3 rd month 1 st trimester	Monitoring data	Mean (SD) (μg/L): all sites = 7.8 (10.2) 3 plants = 0.9 (1.0) 1 plant = 17.7 (9.0)	THMs TTHM HAAs ⁴ MX ⁴				
			Urogenital $n = 23$ Total $n = 3,074$		Estimated internal dose	Range (µg/d) = 0.001–2.109	-			

Abbreviations: BDCM - bromodichloromethane; BrTHM - total brominated trihalomethanes; BW - birth weight; CHL - chloroform; conc - concentration; d – day; DBCM - dibromochloromethane; DBP - disinfection by-products; EC - enhanced coagulation; exp - exposure; HAA - haloacetic acid; IQR - interquartile range; IUGR - intrauterine growth restriction; L – liter; LBW - low birth weight; NTD neural tube defect; PTB - preterm birth; SB - stillbirth; SD - standard deviation; SGA - small for gestational age; MX - halogenated furanone (trichloromethane); TBM - bromoform; TCAA - trichloroacetic acid; THMs - trihalomethanes; TTHM - total trihalomethanes (sum of CHL, BDCM, DBCM, and TBM); VLBW - very low birth weight. Total n - number of individuals included in the final analysis.

* Studies with the same symbol (e.g. *) are drawn from the same population or cohort. See "Introductory notes for tables" for an explanation of the relationship between studies.

OEHHA August 2016

¹ CHL level measured in monitored water samples unless otherwise noted.

 $^{^{2}}$ Other DBPs which were included in the statistical analysis unless otherwise noted.

³ In every instance where THMs appears in this table, statistical analyses were conducted on each of the THMs separately.

⁴ Measured concentration occurred only at very low levels, and was therefore not included in the statistical analysis.

	Stud	ly			Exposure					
Author Year of Study	Design	Location	Outcomes/ Sample Size	Timing	Assessment	CHL Level ¹	Other DBPs Measured and Analyzed ²			
Iszatt et al. 2013	Case-control	England	Sperm concentration and motility cases $n = 642$ controls $n = 926$	Sampled 3–5 days after abstinence	Monitoring data	Mean (SD) (μg/L): cases = 25.9 (19.0) controls = 27.3 (19.1)	TTHM BrTHM			
Rivera-Nuñez and Wright 2013	Retrospective cohort (semi-ecologic)	Massachusetts	SGA n = 68,409 BW n = 651,512 PTB n = 37,136 Total n = 672,120	Each trimester	Monitoring data	Mean (µg/L) = 30.6	THMs TTHM BrTHM HAAs			
Zeng et al. † † 2013	Cross-sectional	China	Sperm parameters Serum testosterone n = 401	Time of semen sample relative to days of abstinence	Blood conc	Mean (µg/L) = 0.057 Median = 0.050	THMs TTHM BrTHM			
Costet et al. 2012	Prospective cohort	France	SGA n = 171 PTB n = 105 Total n = 3,226	Each trimester	Monitoring data	Mean (SD) (µg/L) = 9.3 (7.0)	THMs TTHM Urinary TCAA			
					Estimated internal dose	IQR (µg/d) = <0.068–<0.237				
Danileviciute et al.‡ ‡ 2012	Nested case- control	Lithuania	SGA n = 96 LBW n = 59 Total n = 682	Each trimester Entire pregnancy	Monitoring data	Mean (SD) (µg/L): all sites = 7.8 (10.2) 3 plants = 0.9 (1.0) 1 plant = 17.7 (9.0)	THMs TTHM HAAs ⁴ MX ⁴			
					Estimated internal dose Assessed GSTT1 and GSTM1 genotype	Median (µg/d) = 0.1424 Range = 0.0013–2.13				
Levallois et al. 2012	Population-based case-control	Quebec City	SGA cases n = 571 controls n = 1,925	Each trimester	Monitoring data	Mean (SD) (µg/L): cases = 43.3 (40.7) controls = 41.1 (39.2)	THMs TTHM BrTHM HAAs			
					Estimated internal dose	IQR (µg/d) = <42.24–169.81				
Summerhayes et al. 2012	Retrospective cohort	Australia	SGA n = 31,813 BW n = 314,982 Total n = 314,982	Each trimester Entire pregnancy	Monitoring data	Mean (SD) (µg/L) = 33.6 (16.0) Median = 30.9 Range = 3.4–121.5	TTHM BDCM DBCM BrTHM HAAs ⁵			

⁵ Not included in the statistical analysis.

	Stud	ly			Exposure					
Author Year of Study	Design	Location	Outcomes/ Sample Size	Timing	Assessment	CHL Level ¹	Other DBPs Measured and Analyzed ²			
Grazuleviciene et al. ‡ ‡ 2011	Prospective cohort	5	Monitoring data	Mean (SD) (µg/L): all sites = 7.8 (10.2) 3 plants = 0.9 (1.0) 1 plant = 17.7 (9.0)	THMs TTHM HAAs ⁴ MX ⁴					
					Estimated internal dose	Range (µg/d): 0.0013–2.13				
Izsatt et al. 2011	Case-control England <u>Birth Defect</u> 1 st trimester Hypospadias cases n = 354 controls n = 336	1 st trimester	Monitoring data	Median (μg/L) = 2.9 Range = 0.0–90	THMs TTHM BrTHM					
	cont	controls n = 336		Estimated internal dose	IQR (µg/d) = 0–101					
Patelarou et al.* ⁶ 2011	Prospective cohort	Greece	SGA n = 73 LBW n = 76 PTB n = 156 Total n = 1,359	Each trimester Entire pregnancy	Sampling of tap water in selected sites	Mean (SD) (µg/L) = 0.15 (0.15)	THMs BrTHM			
Villanueva et al.* 2011	Prospective cohort	(5 locations)	SGA n = 220 BW n = 2,074 LBW n = 95	Each trimester Entire pregnancy	Monitoring data and sampling of tap water from geographically representative areas	THM levels and percentiles were reported graphically	BrTHM			
			PTB n = 77		Estimated internal dose	Median appeared to be under 0.5 µg/d				
Zhou et al. 2010	Retrospective cohort	China	BW n = 1,385	Each trimester 1 st & 2 nd trimester Entire pregnancy	Monitoring data	Range (µg/L) of mean values = 6.0– 51.2	BrTHM HAAs			
Hoffman et al. † 2008	Prospective cohort	US (3 locations)	SGA n = 113 BW n = 1,854 Total n = 1,958	Each trimester	Sampling of tap water from geographically representative locations - weekly and intensive short-term sampling	Mean (SD) (µg/L) = 46.7 (13.3) at chlorinated sites 13.7 (3.3) at brominated sites	THMs TTHM HAAs			
Lewis et al. ‡ 2007	Population-based case-control	Massachusetts	PTB n = 2,813 Total n = 37,498	1 st & 2 nd trimester 4 weeks before birth Entire pregnancy	Monitoring data - weekly	TTHM (μg/L): Interquartile range = 59 Min, max of range = 28–87 CHL fraction of TTHM = 83–93%	ТТНМ			
Lewis et al. ‡ 2006	Retrospective cohort	Massachusetts	LBW n = 780 Total n = 36,529	Each trimester Entire pregnancy	Monitoring data - weekly	TTHM (μg/L): IQR = 59 Min, max of range = 28–87	ТТНМ			
						CHL fraction of TTHM = 83–93%				

⁶ No separate statistical analysis was conducted for CHL as the measured concentrations were very low. Statistical analysis was conducted only for BrTHM.

	Stud	ly		Exposure						
Author Year of Study	Design	Location	Outcomes/ Sample Size	Timing	Assessment	CHL Level ¹	Other DBPs Measured and Analyzed ²			
Hinckley et al. 2005	Retrospective cohort	Arizona	$\begin{array}{rrrr} IUGR n = & 4,396\\ LBW n = & 1,010\\ PTB n = & 4,008\\ Very PTB n = & 564\\ Total n = & 48,119 \end{array}$	Various time windows within the 3 rd trimester	Monitoring data	Mean not reported CHL categories (µg/L) = <10, 10–16, ≥16	THMs TTHM HAAs			
Porter et al. 2005	Retrospective cohort	Maryland	SGA n = 1,114 Total n = 15,315	Each trimester Entire pregnancy	Monitoring data	Mean (μg/L) (95% Cl): all sites = 34.1 (32.5, 35.7)	THMs TTHM HAAs			
Savitz et al. † 2005	cohort (3 locations) SGA n = 102 (up to week 20) BW n = 1,738 PTB n = 196 SAB n = 258		Sampling of tap water from geographically representative locations – weekly and intensive short-term sampling	Mean (μg/L) = - 45.6 at chlorinated sites - Below minimum reporting level at brominated sites - 11.9 at low DBP site	THMs TTHM BrTHM HAAs					
		Total n = 1,934		Estimated internal dose	Range (week 27-birth) (μg/d) = 0–>1.3 (in the highest quartile)					
Toledano et al. 2005	Retrospective cohort	United Kingdom	LBW n = 60,641 Very LBW n = 9,167 SB n = 4,852 Total n = 920,571	3 rd trimester (93 days before birth)	Monitoring data	Mean levels not reported CHL tertiles (µg/L) = <20, 20–40, >40	TTHM BDCM BrTHM			
Dodds et al. ⁷ 2004	Population-based case-control	Nova Scotia and Ontario	SB cases n = 112 controls n = 398 Total n = 510	1 st & early 2 nd trimester	Residential tap water sampled for each subject	Mean levels not reported CHL categories (µg/L) = 0, 1–49, 50–79, >80	TTHM BDCM			
Infante-Rivard 2004	Case-control	Montreal	SGA cases n = 458 controls n = 426 Total n = 884	Entire pregnancy	Monitoring data Assessed CYP2E1 and MTHFR C677Tgenotype	Mean (SD) (μg/L): cases = 11.84 (11.84) controls = 11.58 (16.31)	THMs TTHM			
Wright et al. 2004	Retrospective cohort	Massachusetts	SGA n = 17,359 BW n = 3,463 PTB n = 11,580 Total n = 187,731	3 rd trimester	Monitoring data	Median (µg/L) = 26 Range 0–135	THMs TTHM BDCM HAAs MX			
Windham et al. 2003	Prospective cohort	California	Menstrual cycle function n = 403	90 day window	Monitoring data	Mean not reported CHL categories (μ g/L) = 1 st quartile, 2 nd -3 rd quartile, 4 th quartile (≥17)	THMs TTHM BDCM DBCM TBM			

⁷ Daily exposure from ingestion, inhalation and absorption were also estimated but no values were presented. ACGIH TLV DART Chemical 24

	Study	/		Exposure						
Author Year of Study	Design	Location	Outcomes/ Sample Size	Timing	Assessment	CHL Level ¹	Other DBPs Measured and Analyzed ²			
							BrTHM			
Chang et al. 2001	Case report	Taiwan	Sperm Parameters n = 1	Sampled 4 days after abstinence	Reconstructed scenario of air exposure using passive and active sampling	Air samples = 8.5 ppm active sample 4.6 ppm passive sample				
Dodds and King * * 2001	Retrospective cohort	Nova Scotia	$\begin{array}{l} \underline{Birth\ Defects}\\ NTD\ n=\ 77\\ Cleft\ n=\ 82\\ Cardiovascular\\ n=\ 430\\ Chromosomal\\ abnormalities\\ n=\ 96\\ Total\ n=\ 49,842 \end{array}$	1 -3 months prior to pregnancy and 1 month after conception (time frames were specific to the birth defect	Monitoring data	Mean (μg/L) = 64.1	BDCM DCBM ⁴ TBM ⁴			
King et al. * * 2000	Retrospective cohort	Nova Scotia	SB n = 214 Total n = 49,756	Entire pregnancy	Monitoring data	Mean (µg/L) = 64.1	TTHM BDCM DCBM ⁴ TBM ⁴			
Wennborg et al. 2000	Retrospective cohort (BW) Case control (SAB)	Sweden	$\begin{array}{ll} BW & n = 654 \\ SAB & n = 73 \\ Total & n = 869 \\ (number of \\ pregnancies) \end{array}$	Pre-pregnancy	Interview questionnaire: work history with exp to CHL	No CHL levels measured				
Dahl et al. 1999	Retrospective cohort	Norway	Fertility measured as time to pregnancy n = 1408 pregnancies	6 months pre- pregnancy	Interview questionnaire: work performed w/ dental restorative materials and chemicals (number per week)	75% reported use of CHL-based materials				
Waller et al. 1998	Prospective cohort	California	SAB n = 499 Total n = 5,144	1 st trimester	Monitoring data Ingestion data	CHL reported as categories (µg/L): 0–3 = 13.6% 4–16 = 30.1% ≥17 = 17.6%	THMs TTHM			
Kramer et al. 1992	Population-based case-control	Iowa	$\begin{array}{c} \text{SGA}\\ \text{cases} n= 187\\ \text{controls} n= 935\\ \text{LBW}\\ \text{cases} n= 159\\ \text{controls} n= 795\\ \text{PTB}\\ \text{cases} n= 342\\ \text{controls} n= 1,710\\ \end{array}$	At time of birth	Monitoring data	Mean (SD) (μg/L) = 12.5 (38.7) Median = 1 Range = 0–350	THMs Total organic halides			

25

Study (Year)	CHL Water Concentration (µg/L)		Odds Ratio	Lower Cl	Upper Cl
Kramer et al. 1992	1–9 Entire Pregnancy		1.10	0.80	1.40
	≥10	<u>_</u>	1.10	0.70	1.60
Costet et al. 2012	5-<10		0.70	0.40	1.20
	10-<15	I	0.50	0.30	0.90
	≥15		0.80	0.40	1.40
Savitz et al. 2005†	>0.1–≤10.9		0.68	0.42	1.11
	>10.9–≤30.4		0.76	0.47	1.24
	>30.4–≤48.2	I	0.52	0.31	0.90
	>48.2		0.54	0.31	0.92
Rivera-Nuñez and Wright 2013	>5–21 2 nd Trimester	+	1.00	0.94	1.06
	>21–35	¦_ → _	1.08	1.02	1.14
	>35–52	¦	1.06	0.99	1.12
	>52	- -	1.00	0.94	1.07
Lewis et al. 2007 ^{±1}	40–60 Entire Pregnancy		0.92	0.82	1.02
	≥60	_ -	0.85	0.74	0.97
	40–60 2 nd Trimester		0.87	0.77	0.99
	≥60	_ _	0.82	0.71	0.94
Wright et al. 2004	>26–63		0.95	0.91	0.99
	>63–135		0.90	0.84	0.97
		l 0.25	I 1.75		

Figure 1. Preterm Birth (PTB). Forest plot of the association between chloroform (CHL) exposure [water concentration] and PTB. Confidence intervals (95%) are denoted by "CI." Studies are ordered based on the lowest value of each study's highest exposure category. Results represent third trimester exposure unless otherwise noted.

¹ Lewis et al. 2007 measured total trihalomethanes (TTHM), of which CHL constituted ~90%. Risk estimate is a hazard ratio.

Figure 2. Preterm Birth (PTB). Forest plot of the association between chloroform (CHL) exposure [estimated internal dose] and PTB. Confidence intervals (95%) are denoted by "CI." Studies are ordered based on the lowest value of each study's highest exposure category. Results represent third trimester exposure.

Study (Year)	CHL Estimated Internal Dose (µg/d)		Odds Ratio	Lower Cl	Upper Cl
Villanueva et al. 2011*	10% increase in total residential uptake ¹	•	1.00	0.99	1.01
Costet et al. 2012	0.068-<0.133		1.80	0.70	4.80
	0.133-<0.237	<	0.70	0.20	2.10
	≥0.237		1.00	0.40	2.90
Savitz et al. 2005†	>0–≤0.2		1.03	0.65	1.66
	>0.2–≤0.8	_	0.56	0.32	0.96
	>0.8–≤1.3		0.82	0.49	1.37
	>1.3		0.59	0.34	1.01
		I I I 0.25 1 1.75 2.5			

¹β-coefficients from the regression model were multiplied by the logarithm of 1.1 to derive an effect estimate for a 10% increase in exposure.

Study (Year) Co	CHL Water oncentration (μg/L)	Odds Ratio	Lower Cl	Upper Cl
Kramer et al. 1992	1–9 Entire Pregnancy	1.30	0.90	1.80
	≥10	1.80	1.10	2.90
Costet et al. 2012	5-<10	0.80	0.50	1.20
	10–<15	1.00	0.60	1.50
	≥15	0.90	0.50	1.40
Hinckley et al. 2005	10–16	1.02	0.94	1.11
	≥16 +	1.01	0.93	1.10
Infante-Rivard 2004	>23.7 Entire Pregnancy	1.06	0.63	1.79
Savitz et al. 2005†	>0.2–≤19.2	1.45	0.79	2.64
	>19.2–≤47.1	1.33	0.71	2.49
	>47.1	1.05	0.54	2.01
Hoffman et al. 2008†¹	Site 1: 44.3–49.0	1.40	0.60	3.10
	Site 1: 49.1–94.0	1.10	0.50	2.60
	Site 2: 11.6–15.6	• 4.90	1.50	15.80
	Site 2: 15.7–22.1	2.40	0.70	8.40
Porter et al. 2005		1.02	0.84	1.24
	2 nd quintile 3 rd quintile 4 th quintile 5 th quintile 15.96–27.26 27.27–51.07 >51.07	0.96	0.79	1.16
	4 th quintile	0.98	0.81	1.19
	5 th quintile <mark>-¦</mark>	1.07	0.88	1.29
Levallois et al. 2012	15.96–27.26	0.90	0.70	1.30
	27.27–51.07	1.00	0.80	1.40
	>51.07	1.20	0.90	1.70
Rivera-Nuñez and Wright 2013	>5 - 21	1.01	0.96	1.05
	>21–36	1.00	0.95	1.04
	>36–52	1.04	1.00	1.10
	>52	1.04	0.99	1.09
Summerhayes et al. 2012²	25.00–30.18	1.01	0.96	1.07
	56.03–148.94	1.12	1.05	1.18
Wright et al. 2004	>26–63	1.05	1.02	1.09
	>63–135	1.11	1.04	1.17

Figure 3. Small for Gestational Age (SGA). Forest plot of the association between chloroform (CHL) exposure [water concentration] and SGA. Confidence intervals (95%) are denoted by "CI." Studies are ordered based on the lowest value of each study's highest exposure category. Results represent third trimester exposure unless otherwise noted.

¹ Hoffman et al. 2008 analyzed CHL exposure at two sites. Site 1 consisted predominantly of chlorinated disinfection by-products (DBPs). Site 2 consisted predominantly of brominated DBPs.

² Summerhayes et al. 2012 reported risk estimates as relative risks. Water concentration values represent 5th and 10th decile exposure values.

ACGIH TLV DART Chemical for Reconsideration: Chloroform

Figure 4. Small for Gestational Age (SGA). Forest plot of the association between chloroform (CHL) exposure [estimated internal dose] and SGA. Confidence intervals (95%) are denoted by "CI." Studies are ordered based on the lowest value of each study's highest exposure category. Results represent third trimester exposure.

Study (Year)	CHL Estimated Internal Dose (µg/d)		Odds Ratio	Lower Cl	Upper Cl
Danileviciute et al. 2012‡ ‡¹	Above vs. Below Median Median: 0.1424		1.31	0.82	2.08
	Median: 0.1424 - Specific for GSTT1-1		1.18	0.71	1.97
	Median: 0.1424 - Specific for GSTT1-0		1.75	0.50	6.10
	Median: 0.1424 - Specific for GSTM1-1	←	0.88	0.44	1.78
	Median: 0.1424 - Specific for GSTM1-0		1.74	0.89	3.41
Villanueva et al. 2011*	10% increase in total residential uptake ²		1.00	0.99	1.01
Costet et al. 2012	0.068-<0.133	_	1.10	0.50	2.30
	0.133-<0.237		1.20	0.60	2.40
	≥0.237		1.00	0.50	2.10
Grazuleviciene et al. 2011‡‡	0.0249-0.2868		1.19	0.87	1.63
	0.2868-2.1328	_	1.22	0.89	1.68
	Continuous (0.1 µg/d)	-	1.03	1.00	1.09
Savitz et al. 2005†	>0–≤0.5	` >	1.16	0.63	2.14
	>0.5–≤1.2		1.26	0.68	2.33
	>1.2		1.14	0.62	2.09
Levallois et al. 2012	1.72–11.88		1.20	0.90	1.60
	11.89–34.30		1.10	0.80	1.50
	>34.30	·	1.30	1.00	1.80
		I I I 0.5 1 1.5 2	2		

¹ Danileviciute et al. 2012 examined the polymorphisms of glutathione S-transferase (GST), GSTT1 and GSTM1. "GSTT1-1" represents the presence of gene activity and "GSTT1-0" represents the absence of gene activity. Similarly, "GSTM1-1" represents the presence of gene activity and "GSTM1-0" represents the absence of gene activity.

² β-coefficients from the regression model were multiplied by the logarithm of 1.1 to derive an effect estimate for a 10% increase in exposure.

Figure 5. Low Birth Weight (LBW) and Very Low Birth Weight (VLBW). Forest plot of the association between chloroform (CHL) exposure [water concentration] and LBW and VLBW. Confidence intervals (95%) are denoted by "CI." Studies are ordered based on the lowest value of each study's highest exposure category. Results represent third trimester exposure unless otherwise noted.

Study (Year)	CHL Wate Concentration		Outcome					Odds Ratio	Lower Cl	Upper Cl
Kramer et al. 1992	1.0	Entire Dreameney	LBW	_				1.10	0.70	1.60
Ridiner et al. 1992	1-9	Entire Pregnancy								
	≥10		LBW		i			1.30	0.80	2.20
Hinckley et al. 2005	10–16		LBW			•		1.18	1.00	1.39
	≥16		LBW		i•	_		1.04	0.88	1.23
Toledano et al. 2005	20-40		LBW		•			1.05	1.03	1.07
	>40		LBW		¦ -			1.10	1.07	1.13
	20–40		VLBW		- - -			1.01	0.96	1.07
	>40		VLBW		i.			1.07	0.99	1.15
Lewis et al. 2006 ¹	40-<50	2 nd Trimester	LBW					1.10	0.81	1.49
	50-<60		LBW					1.08	0.79	1.49
	60-<70		LBW		<u> </u>	•		1.24	0.92	1.67
	≥70		LBW		¦ —	•	\longrightarrow	1.50	1.07	2.10
					ł					
				0.5	1	 1.5	 2			

¹ Lewis et al. 2006 measured total trihalomethanes (TTHM), of which CHL constituted ~90%. This study also examined third trimester exposure; for which the odds ratios were not significant.

Figure 6. Low Birth Weight (LBW) and Very Low Birth Weight (VLBW). Forest plot of the association between the change in chloroform (CHL) exposure [water concentration] and LBW and VLBW. Confidence intervals (95%) are denoted by "CI." Rate change is the percent change calculated as the exponential of the regression coefficient (e.g. rate ratio of after/before) minus 1 and multiplied by100. The timeframe for exposure is the entire pregnancy.

Study (Year)	Change in CHL Water Concentration (µg/L)	Outcome				Cł	Rate ange (%		Upper Cl
lszatt et al. 2014	Low: increase ≤10–decrease <10	LBW					-5	-9	-1
	Medium: decrease 10-<30	LBW					-5	-9	-1
	High: decrease 30–65	LBW					-9	-12	-5
	Low: increase ≤10–decrease <10	VLBW			•		-7	-17	3
	Medium: decrease 10-<30	VLBW				→	4	-7	16
	High: decrease 30–65	VLBW		•	i		-16	-24	-8
			I -25	 -15	-5 0	I 5			

Figure 7. Low Birth Weight (LBW). Forest plot of the association between chloroform (CHL) exposure [estimated internal dose] and LBW. Confidence intervals (95%) are denoted by "CI." Studies are ordered based on the lowest value of each study's highest exposure category. Results represent third trimester exposure.

Study (Year)	CHL Estimated Internal Dose (µg/d)					Odds Ratio	Lower Cl	Upper Cl
	Above vs. Below Median		1					
Danileviciute et al. 2012‡‡¹	Median: 0.1424		•			1.45	0.67	3.13
	Median: 0.1424 - Specific for GSTT1-1	-	•			1.35	0.57	3.20
	Median: 0.1424 - Specific for GSTT1-0		1		>	7.30	0.14	391
	Median: 0.1424 - Specific for GSTM1-1		1 <u>1</u> 1			0.35	0.10	1.28
	Median: 0.1424 - Specific for GSTM1-0		¦	•	\longrightarrow	5.06	1.50	17.05
Villanueva et al. 2011*	10% increase in total residential uptake ²		•			1.00	0.99	1.02
Grazuleviciene et al. 2011‡‡	0.0249–0.2868					2.12	1.11	4.02
	0.2868–2.1328					2.13	1.15	3.92
	Continuous (0.1 µg/d)		•			1.09	1.01	1.18
			1					
		0	1 2.5	I 5	 7.5			

¹ Danileviciute et al. 2012 examined the polymorphisms of glutathione S-transferase (GST), GSTT1 and GSTM1. "GSTT1-1" represents the presence of gene activity and "GSTT1-0" represents the absence of gene activity. Similarly, "GSTM1-1" represents the presence of gene activity and "GSTM1-0" represents the absence of gene activity.

 2 β -coefficients from the regression model were multiplied by the logarithm of 1.1 to derive an effect estimate for a 10% increase in exposure.

Figure 8. Birth Weight (BW). Forest plot of the association between chloroform (CHL) exposure [water concentration] and BW. Confidence intervals (95%) are denoted by "CI." Studies are ordered based on the lowest value of each study's highest exposure category. Results represent third trimester exposure unless otherwise noted.

Study (Year)	CHL Water Concentration (µg/L)				Change in BW (g)	Lower Cl	Upper Cl
Summerhayes et al. 2012 ¹	20.4–43.9 Entire Pregnan	су			-5	-9	-1
	20.4–43.9 1 st Trimester		+		-4	-7	-1.1
	20.4–43.9 2 nd Trimester		.		-3.4	-6.4	-0.3
	20.4-43.9		-		-2.6	-5.8	0.6
Savitz et al. 2005†	>0.1–≤10.9	←			-18	-86	51
	>10.9–≤30.4		•	_	-6	-75	62
	>30.4–≤48.2	_	•	\rightarrow	12	-56	80
	>48.2			\rightarrow	28	-39	96
Hoffman et al. 2008†²	Site 1: 44.3–49.0			\rightarrow	26	-51	104
	Site 1: 49.1–94.0	-	•	\rightarrow	24	-56	103
	Site 2: 11.6–15.6	~ •			-66	-194	62
	Site 2: 15.7–22.1	-	i	>	69	-61	199
Rivera-Nuñez and Wright 2013	>5–21		+		-1	-7	5
	>21–36		- - -		-9	-15	-2
	>36–52		-		-13	-19	-7
	>52		<u>→</u>		-15	-21	-8
Wright et al. 2004	>26–63		-		-14	-19	-9
	>63–135				-18	-26	-10
		 −75	l 0	 75			

¹ Summerhayes et al. 2012. Water concentration values represent inter-quartile range increase in exposure during the entire pregnancy. Exposure level values for other timeframes of exposure did not vary from these values by more than ~2 µg/L.

² Hoffman et al. 2008 analyzed CHL exposure at two sites. Site 1 consisted predominantly of chlorinated disinfection by-products (DBPs). Site 2 consisted predominantly of brominated DBPs.

Figure 8. Birth Weight (BW). Forest plot of the association between chloroform (CHL) exposure [water concentration] and BW (cont'd). Confidence intervals (95%) are denoted by "Cl."

Study (Year)	CHL Water Concentration (µg/L	.) ·					Odds Ratio ¹	Lower Cl	Upper Cl
Zhou et al. 2010	2 nd quartile	3 rd trimester		-			1.37	0.99	1.88
	3 [⊯] quartile					>	1.67	0.98	2.85
	4 th quartile			· ·			1.82	1.10	3.02
	2 nd quartile	Entire Pregnancy	· .	-	<u>_</u>		0.96	0.60	1.53
	3 rd quartile						1.45	0.88	2.40
	4 th quartile						1.64	0.90	3.00
			<u> </u>	-					
			0.25	1	1.75	2.5			

¹Above versus below the median.

Figure 9. Birth Weight (BW). Forest plot of the association between chloroform (CHL) exposure [estimated internal dose] and BW. Confidence intervals (95%) are denoted by "CI." Studies are ordered based on the lowest value of each study's highest exposure category. Results represent third trimester exposure.

Study (Year)	CHL Estimated Internal Dose (μg/d)							Change in BW (g)	Lower Cl	Upper Cl
Villanueva et al. 2011*	10% increase in total residential uptake ¹				•			-0.07	-1.00	0.85
Grazuleviciene et al. 2011‡‡	Continuous (0.1 µg/d)	←	•					-57.8	-111.6	-4.0
Savitz et al. 2005†	>0–≤0.2				÷ •		\rightarrow	10	-58	78
	>0.2–≤0.8	-			•i		_	-4	-72	63
	>0.8–≤1.3				1	•	\rightarrow	37	-31	105
	>1.3			-	!	•	\rightarrow	32	-36	100
Smith et al. 2015	Total: ≥0.91–<1.56		-	•	<u>+</u>			-14.8	-37.7	8.1
	Total: ≥1.56				<u>i</u>			-8.7	-31.8	14.3
	Pakistani Origin: ≥0.91–<1.56				+•			5.1	-27.1	37.4
	Pakistani Origin: ≥1.56	←	•		1			-42.8	-78.2	-7.4
	White British: ≥0.91–<1.56	_		•	<u>+</u>			-27.0	-66.1	12.1
	White British: ≥1.56							9.5	-26.8	45.8
					-					
		 -75			 0		 75			

¹ The β -coefficient (g) from the regression model was multiplied by the logarithm of 1.1 to derive an effect estimate for a 10% increase in exposure.

Studv/ Outcomes Covariates/ Study Desian/ Exposure Exposure Results Comments Confounders Location Sample sizes of Interest Measurement Methods Dosages Botton et al.* Prospective Postnatal Water Sampling: All the following Beta coefficients (95% CI) Models adj for: THM conc in the woman's Residential THM conc of postnatal weight gain (0cohort weight CHL values were residence during pregnancy 2015 growth were collected through approximated from 6 months) for an entire Cohort ranged from median value of 1 (from 2 mothersampling campaigns of a figure in the pregnancy IQR increase of Maternal age $\mu g/L$ in Crete to 117 $\mu g/L$ in Sabadell child cohort 4 measures tap water, and from total integrated CHL uptake Spain (3 study publication Gender sites) and studies of weight selected public buildings $(\mu q/d)$: Gestational age Greece between for all study areas and CHL water conc Parity Exp data included extensive Hospital delivery and regulatory monitoring $(\mu g/L)$: - through all routes for all Maternal predetailed water use collected sites = -9.30 (-87.3, 68.7) data in Sabadell cohort recruitment 1 vear of pregnancy prospectively (e.g. water at week 10-13 Median = weight source, filter use, exp at work, age Number of THM Gipuzkoa ~12 - through ingestion for all Paternal weight showering/bathing, swimming, of pregnancy samples: Sabedell ~20 sites = -40.3(-122, 41)Paternal height etc.) Valencia ~0 2003-2008 Gipuzkoa = 421 Maternal Sabadell = 198- through ingestion for education Data came from a large cohort Valencia = 162specific sites study providing wide variability n = 2.216 term Range = Maternal births Crete = 72Gipuzkoa ~0-20 Gipuzkoa = smoking during in exp (mother-child Sabadell ~0-40 9.63 (-174, 193) pregnancy Data collected almost Valencia ~0-50 Sabadell = Examined residential mobility pairs) -151 (-288, -15) every month in Gipuzkoa Other covariates only 5% of mothers reported a Valencia and Sabadell, 3 time Crete - CHL levels considered: change in residence during Valencia = 36.7 (-87, 160) pregnancy (between week 12 2003-2005 points in Valencia, and 4 were mostly n = 594time points in Crete undetected and Breastfeeding and week 32) excluded from CHL Respiratory Sabadell Exposure Measure: infection before Excluded population was not analysis 2004-2006 THM conc were 6 months significantly different from the n = 473determined at residence Total integrated Bathing and final population in terms of exp, for all months of CHL uptake showering in the outcome, and potential Gipuzkoa through all routes first months of confounders pregnancy 2006-2008 $(\mu g/d)$: life n = 407Interviews and Formula water Percent of women remaining after exclusion for missing data questionnaires were Range = type Crete collected at different time Gipuzkoa ~0-0.5 was Gipuzkoa (67%), Sabadell 2007-2008 Sabadell ~0-1.4 (76%), Valencia (75%) points for the different n = 742locations ranging from Valencia ~0-2.1 <12 weeks destation to Tap water consumption varied the 3rd trimester across sites, but overall few women consumed tap water Information included: during pregnancy water type (municipal/bottled/private Data collection differed for all well); home and away study sites from home water use; cooking water use: filter There was a lack of information use (assumed 90% on postnatal THM exp; reduction in THM): however, excluding infants ACGIH TLV DART Chemical 36 **OEHHA** for Reconsideration: Chloroform August 2016

Table 3a. Detailed Summaries for Human Studies of Chloroform (CHL) Exposure and Reproductive Outcomes: Preterm Birth (PTB), Small for Gestational Age (SGA), Low Birth Weight (LBW), and Birth Weight (BW).

Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
			frequency and duration of showering and bathing; swimming pool use; and water-based fluid consumption				consuming formula with tap water, or adjusting for bathing/showering only marginally changed the results seen for Sabadell
			Residential THM conc and uptake through ingestion, showering, and				Other DBP analyzed: TTHM and BrTHM
			bathing during the whole pregnancy were calculated				Beta coefficients (95% CI) of postnatal weight gain (0–6 months) for an IQR increase of THM and BrTHM ingestion in
			Estimated THM blood conc was determined				Sabadell (µg/d):
			using the product of residential THM conc, daily personal water use				BrTHM = -146 (-280, -12.3)
			and uptake factors				Results were similar for TTHMs and BrTHM

•						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
Smith et al. 2015 England	Prospective birth cohort 2007–2010 N = 11,928 Singleton births BW n = 7,438 term births (after exclusions including: PTB (531); missing data, including water use data (2,100); THM levels (98); covariate data)	BW	Water Sampling: Routine monitoring of THM (2006–2011) Sampling occurred 9 times per year on average, for each of the water supply zones Exposure Measure: Average individual and total THM conc were estimated by trimester as a time-weighted mean of the months for that trimester Baseline questionnaire on water consumption and activities completed via interview with study administrator included: typical daily consumption of tap water, bottled water, tea, coffee, etc. at home, work/study or elsewhere water filtering at home and work time spent showering, bathing and swimming	Time-weighted average CHL water conc (µg/L): Mean (SD) for the entire pregnancy = 37.8 (3.8) Total integrated CHL uptake (µg/d): Mean (SD) for the entire pregnancy: = 1.61 (1.46) Tertiles of total integrated CHL uptake (µg/d) for the entire pregnancy: 1) <0.91 2) \geq 0.91-<1.56 3) \geq 1.56	Mean difference in term BW (g) (95% Cl) for total integrated CHL uptake for the entire pregnancy (μ g/d) (Supplemental material Table S4): Total population: 1) referent 2) -16.3 (-39, 6.5) 3) -20.9 (-44.6, 2.8) Pakistani origin: 1) referent 2) 10.3 (-21.2, 41.9) 3) -48.3 (-84.6, -12.1) p-value for trend = 0.025 White British: 1) referent 2) -13.3 (-52.9, 26.3) 3) 9.0 (-23.5, 46.5) p-value for interaction = 0.011 Mean difference in term BW (g) (95% Cl) for total integrated CHL uptake during the 3 rd trimester (μ g/d):	Models adj for: Caffeine intake Education Fasting and post load glucose Ethnicity Smoking Parity Age Body Mass Index (BMI) Index of Multiple Deprivation Gestational age at delivery Infant sex	 Integrated uptake for CHL accounted for 86% of the integrated TTHM uptake Compared to White British women, women of Pakistaniorigin drink less water from all sources combined, spend less time bathing but more time showering, and very few went swimming (2% Pakistani-origin vs 14% White British) Longer bathing duration was associated with BW reductions for Pakistani-origin, but not White British Cold tap water consumption was associated with increased BW for Pakistani-origin infants only Exp data included extensive detailed water use collected prospectively (e.g. water source; filter use, exp at work, showering/bathing, swimming, etc.) Other DBP analyzed include: TTHM, BrTHM, BDCM, HAA3 (BDCAA, TCAA, and DCAA), BDCAA, DBP7(sum of TTHM and BDCAA, TCAA, and DCAA) TBM was not modeled individually as it had many data points below the limit of detection (LOD) HAA samples were collected quarterly from the 8 water supply zones from 2007 to
	fo	r Reconsider	ation: Chloroform			August 2016	

Birth (PTB), Small for Gestational Age (SGA), Low Birth Weight (LBW), and Birth Weight (BW) (cont'd). Study/ Study Design/ Outcomes Exposure Exposure Results Covariates/ Comments Sample sizes Measurement Methods Location of Interest Dosages Confounders 2010 Total population: Only 3 HAAs had sufficient 1) referent detectable data points (DCAA, 2) -14.8 (-37.7, 8.1) TCAA, BDCAA) 3)-8.7 (-31.8, 14.3) There was no evidence of an Pakistani origin: association between BW and 1) referent ingestion of HAAs alone, or combined with THMs and 2) 5.1 (-27.1, 37.4) 3) -42.8 (-78.2, -7.4) HAAs, via drinking water consumption p-value for trend = 0.035 p-value for interaction = OR (95% CI) by tertile of total 0.023 integrated BrTHM uptake $(\mu g/d)$: White British: 1) referent Entire pregnancy 2) -27.0 (-66.1, 12.1) Pakistani origin 3) 9.5 (-26.8, 45.8) 1) referent 2) -6.5 (-38.0, 25.0) 3) -56.4 (-93.1, -19.6) 1st trimester Total population 1) referent 2) -24.5 (-47.3, -1.7) 3) -21.6 (-45.7, 2.5) Pakistani origin 1) referent 2) -19.1 (-50.5, 12.3) 3) -51.7 (-88.8, -14.5) 2nd trimester Pakistani origin 1) referent 2) 0.4 (-31.3, 32.1) 3) -56.3 (-92.7, -19.9) 3rd trimester Pakistani origin 1) referent 2) -7.5 (-39.0, 24.1)

Table 3a. Detailed Summaries for Epidemiologic Studies of Chloroform (CHL) Exposure and Reproductive Outcomes: Preterm

Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
							3) -52.8 (-89.3, -16.3)
							OR (95% CI) by tertile of total integrated BDCM uptake (μg/d):
							Entire pregnancy Pakistani origin 1) referent 2) -11.5 (-43.3, 20.2) 3) -49.8 (-86.3, -13.4)
							<u>1st trimester</u> Pakistani origin 1) referent 2) -8.6 (-40.6, 23.4) 3) -44.1 (-80.5, -7.7)
							2 nd trimester Pakistani origin 1) referent 2) 6.5 (-25.8, 38.8) 3) -60.8 (-96.5, -25.1)
							<u>3rd trimester</u> Pakistani origin 1) referent 2) -1.2 (-33.2, 30.9) 3) -48.7 (-84.8, -12.5)

•				• • •		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
lszatt et al.	Retrospective	LBW	Water Sampling:	CHL water conc		Unadjusted rates	TTHM change was strongly
	cohort	(<2,500g)	Routine THM monitoring	(µg/L):		presented, as	correlated with CHL change (r
2014			of public water supply:			infant sex, parity,	= 0.99)
	Birth and SB	Very LBW	- at geographically			and maternal age	
England	records	(<1500 g)	random samples - a minimum of 4 times	Mean (SD) =		were found not to affect the rates	The background mean TTHM conc decrease was 15.1 µg/L
	Two sample	(SB	per year	Before (2000–2002)			in non-EC water zones; with a
	periods:	outcomes		38.6 (4.2)			statistically significant greater
	2000–2002	reported in	Two time periods for	After (2005–2007)			mean decrease of 30.5 μg/L in
	and 2005–	Table 4a)	water sampling: 3-year	19.4 (1.0)			EC water zones
	2007		period before and 3-year period after EC	CHL distribution			Overall statistically significant
	Intervention		intervention	change (µg/L):			reduction in conc of TTHM,
	component -			onango (µg/=).			CHL, BrTHM, DBCM
	enhanced		Exposure Measure:	Mean (SD) =			
	coagulation		Postcode of maternal	Overall			Change in average CHL
	water		residence at birth was	-19.2 (17.6)	Percent change (95% CI)		accounted for 94% of the
	treatment (EC)		linked to water zone	No EC	for rates before and after		change in TTHM after EC
	(a process that		boundary in use during	-14.0 (17.4)	EC (calculated as the		(calculated from Table 1 in the
	improves		the year of birth	EC	exponential of the		publication)
	removal of DBP		Births in the first 6 weeks	-29.2 (13.2)	regression coefficient (i.e., rate ratio of after/before)		Of the BrTHM, the mean
	precursors,		of the year were linked to	Categories for	minus 1 and multiplied by		change in conc with EC was
	reducing DBP		the water zone boundary	changes in CHL	100) (for the entire		only significant for BDCM
	formation		of the preceding year	water conc (based	pregnancy)):		(borderline $p = 0.05$)
	potential)		3,55	on TTHMs) (µg/L):	1 - 3		()
	EC was		Water zone boundary		LBW		Statistically significant
	introduced to 4		information was linked to	 Low increase 	1) -5 (-9, -1)		difference between categories
	water		THM conc	increases ≤10 to	2) -5 (-9, -1)		of change in TTHM conc in EC
	treatment		A	decreases <10	3) -9 (-12, -5)		and non-EC water zones
	works (88 of 258 water		A water zone is a supply area with approximately	2) Medium decrease–	VLBW *		No information on individual
	zones) in		uniform water quality,	decreases 10 to	<u>VLBW</u> 1) -7 (-17, 3)		water use or water
	2003–2004		with a population	<30	2) 4 (-7, 16)		consumption pattern changes
	2000 2001		≤100,000	3) High decrease-	3) -16 (-24, -8)		concumption patient changee
	N= 472,526		,	decreases 30	-, - , -,		Other DBP analyzed: TTHM,
	(live births)		Two exp metrics were	to 65	*significant interaction		BrTHM, BDCM, DBCM, TBM
			constructed for each		between before/after EC		
	LBW		water zone –		and CHL change p = 0.02		Statistically significant changes
	n = 27,664	1)					were observed for some of the
			status				BDCM and DBCM conc,
	VLBW n = 4,209	2)	conc change for THMs				although there were no significant interactions between
	11 = 4,209						before/after and changes in

BW (≥2,500 g)

ACGIH TLV DART Chemical for Reconsideration: Chloroform

OEHHA August 2016 conc (Supplemental material

Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
	n = 401,040						Data 4 and 5)
							LBW Percent change (95% Cl) for rates before and after EC: BDCM 1) -3 (-8, 2) 2) -8 (-12, -5) 3) -7 (-11, -4) DBCM 1) -7 (-10, -3) 2) -9 (-14, -5) 3) -5 (-9, -1) <u>VLBW</u> Percent change (95% Cl) for rates before and after EC: BDCM
							1) -12 (-22, 0) 2) -10 (-18, -1)
							3) -3 (-12, 8)
							DBCM 1) -9 (-17, -1) 2) -13 (-23, -1) 3) -2 (-12, 9)

Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
Rivera-Nuñez and Wright	"Retrospective cohort study with a semi-	PTB SGA	<u>Water Sampling:</u> 276 public water systems (PWS)	CHL water conc (µg/L):	<u>PTB</u> OR (95% CI) by quintile of 2 nd trimester CHL exp:	Models adj for: Maternal age	Study is an extension of Wright et al., 2004 which included births in 1995–1998
2013	ecologic study		Quarterly town DBP	2 nd trimester	1) referent	Race/ethnicity	
Massachusetts	design"	BW	averages were calculated from all available	Mean = 30.1, Median = 27.0	 2) 1.00 (0.94, 1.06) 3) 1.08 (1.02, 1.14) 	(except in SGA models)	The correlation between CHL and TTHM conc was high
	Birth certificate data		monitoring data collected 1995–2004	Range = 0–265.9	4) 1.06 (0.99, 1.12) 5) 1.00 (0.94, 1.07)	Education Prenatal care	(<i>r</i> = 0.97)
	1996–2004		Towns with annual THM	3 rd trimester Mean = 30.6	Associations for PTB and	source of payment	Mean CHL was 80.3% of 2 nd and 3 rd trimester mean TTHM
	n = 672,120		measurements were assigned the same conc	Median = 27.4 Range = 0–265.9	1 st trimester CHL exp were comparable to those shown	ZIP code Median	levels (30.1/37.5 and 30.6/38.1 µg/L respectively; Table 2)
	(live singleton		for each quarter	Range = 0-200.9	above (Supplemental	household	
	births)		Residents of towns using private wells and towns	Quintiles of CHL	material Table 3)	income Marital status	Potential misclassification where annual DBP
	PTB n = 37,136		that did not disinfect were assigned DBP exp of 0	water exp (µg/L) 3 rd trimester:	<u>SGA</u> OR (95% CI) by quintile of	Water source Disinfection	measurements were assigned the same conc for each quarter
	(5.7%)		(births n = 72,180)	1) ≤5	3 rd trimester CHL exp: 1) referent	TTHM/HAA5	in towns where only annual measurements were made
	SGA		(Supplemental material)	2) >5–21	2) 1.01 (0.96, 1.05)	conc	
	n = 68,409 (11.1%)		<u>Exposure Measure:</u> Town level exp for 1 st ,	3) >21–36 4) >36–52	3) 1.00 (0.95, 1.04) 4) 1.04 (1.00, 1.10)	Other covariates	Other DBP analyzed: THM4, BDCM, BrTHM, HAAs, DBP9
	BW		2 nd , and 3 rd trimester	5) >52	5) 1.04 (0.99, 1.09)	considered:	(sum of TCM, BDCM, DBCM, TBM, TCAA, DCAA, MBAA,
	n = 477,101		Residential zip code at birth was linked to PWS	1 st and 2 nd trimester (for PTB analyses):	Associations for 2 nd trimester exp were	Smoking Parity	MCAA, and DBAA)
			To estimate 3 rd trimester	1) ≤5 2) >5–21	comparable to those shown above (Supplemental	Prenatal care adequacy	After adjustment for HAA5 (sum of TCAA, DCAA, MBAA,
			exp for infants born in the 2^{nd} or 3^{rd} month of a	3) >21–35	material Table 2)	(Kotelchuck	MCAA, DBAA) and other
			quarter, DBP quarterly	4) >35–52 5) >52	BW	Index) Maternal medical	covariates: - BrTHM was associated with
			values for the town of residence were used		Change (g) (95% CI) by quintile of 3 rd trimester CHL	and reproductive health factors	reduced BW (mean BrTHM conc was ~1/5 of mean CHL
			Births in the 1 st month of a quarter were given		exp: 1) referent	(e.g. hydramnios	conc) - CHL was no longer
			DBP levels of the		2) -1 (-7, 5)	preeclampsia	associated with a decreased BW
			previous quarter (Supplemental material;		3) -9 (-15, -2) 4) -13 (-19, -7)	pregnancy weight gain)	- CHL association with PTB
			Wright and Rivera- Nuñez, 2011)		5) -15 (-21, -8)	Season	was stronger
			2 nd trimester levels were				Sensitivity analyses using unexposed as the referent
			based on the quarter prior to that used for the				showed a statistically significant decrease in adj BW
			3 rd trimester value	40			associated with TTHM exp
			ART Chemical ration: Chloroform	43		OEHHA August 2016	

, ,	•			0 (),	0 (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
			Quarter measurements were an average across all sampling locations Births before 29 weeks were not assigned a 3rd trimester value				(including adjustment for HAA5), as well as a statistically significant increased risk of PTB (Supplemental material Table 6) <u>SGA</u> OR (95% CI) by quintile of 3^{rd} trimester BrTHM exp: 1) referent 2) 1.00 (0.97, 1.04) 3) 1.06 (1.02, 1.10) 4) 1.08 (1.04, 1.12) 5) 1.05 (1.00, 1.09) OR (95% CI) by quintile of 3^{rd} trimester BDCM exp: 1) referent 2) 1.04 (1.00, 1.08) 3) 1.08 (1.03, 1.12) 4) 1.09 (1.04, 1.14) 5) 1.09 (1.04, 1.13) <u>BW</u> Change (g) (95% CI) by quintile of 3^{rd} trimester BrTHM exp: 1) referent 2) -10 (-16, -4) 3) -17 (-21, -8) 4) -19 (-26, -14) 5) -13 (-22, -10) Change (g) (95% CI) by quintile of 3^{rd} trimester BDCM exp: 1) referent 2) -11 (-17, -5) 3) -14 (-21, -8) 4) -20 (-26, -14) 5) -16 (-22, -10)

			• • •	• • •	• •	, ,	
Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
							Change (g) (95% Cl) by quintile of 3 rd trimester DBP9 exp: 1) referent 2) -39 (-62, -18) 3) -42 (-64, -19) 4) -45 (-68, -22) 5) -39 (-62, -16) Significant findings were observed for some HAAs

Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
Costet et al. 2012 France	Prospective birth cohort Medical records 2002–2006 N = 3,421 n = 3,226 (live singleton births) PTB n = 105 SGA n = 171	PTB SGA (as Fetal Growth Restriction*) * defined as BW <5 th percentile of the cohort's expected BW distribution	 Water Sampling: THM conc taken from database of water distribution networks Routine monitoring of THMs began in 2004 Sampling frequency based on population size 258 of 369 networks recorded at least 1 THM measurement in 2002– 2006 2,847 women had THM measurements: - 68.1% had at least 1 annual measurement - 41.1% had at least 2 annual measurements - 19.1% had monthly measurements Hierarchical models were used to impute missing monthly levels Separate models used for each water source (groundwater, surface, mixed) Exposure Measure: Average THM levels were estimated by trimester as a time weighted mean of the months for that trimester 	CHL water conc (μ g/L): Mean (SD) All sites = 9.3 (7.0) Quartiles of CHL water conc (μ g/L): 1) <5 2) 5-<10 3) 10-<15 4) ≥15 Quartiles of total integrated CHL uptake (μ g/d): 1) <0.068 2) 0.068-<0.133 3) 0.133-<0.237 4) ≥0.237	PTB OR (95% CI) by quartile of 3^{rd} trimester CHL water conc (µg/L): 1) referent 2) 0.7 (0.4, 1.2) 3) 0.5 (0.3, 0.9) 4) 0.8 (0.4, 1.4) OR (95% CI) by quartile of 3^{rd} trimester total integrated CHL uptake (µg/d): 1) referent 2) 1.8 (0.7, 4.8) 3) 0.7 (0.2, 2.1) 4) 1.0 (0.4, 2.9) SGA OR (95% CI) by quartile of 3^{rd} trimester CHL water conc (µg/L): 1) referent 2) 0.8 (0.5, 1.2) 3) 1.0 (0.6, 1.5) 4) 0.9 (0.5, 1.4) OR (95% CI) by quartile of 3^{rd} trimester total integrated CHL uptake (µg/d): 1) referent 2) 0.8 (0.5, 1.2) 3) 1.0 (0.6, 2.1)	Models adj for: Parity Marital status Diabetes before and during pregnancy Hypertension before or during pregnancy Tobacco use Alcohol consumption Other covariates considered: Obstetric history Educational level Dietary habits	Average composition of TTHMs (%): CHL - 22 BDCM - 25 DBCM - 33 TBM - 20 Estimated participation rate = 80% 99.4% were followed through the end of pregnancy CHL conc (µg/L): mean (SD) and % of water distribution networks in: ground water 3.8 (3.2), 19.3; surface water 12.5 (6.5), 47.9; mixed water 8.0 (6.8), 32.8 Exp data included extensive detailed water use collected prospectively (e.g. bottled water, hot beverages, showering /bathing, swimming, etc.) Ingestion levels were only measured at the beginning of pregnancy; however, sensitivity analysis simulating a 25% increase in tap water consumption between the 1 st and 2 nd trimester did not significantly affect the results Info on showering, bathing, and swimming was only available for 1,505 subjects at 2 year follow-up
			Self-administered questionnaires: Taken in early pregnancy RT Chemical ration: Chloroform	46		OEHHA August 2016	No information on exp at work was included; however, 82% of mothers reported drinking bottled water at work

Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
			Daily water intake, percent of bottled water				A large proportion of women had only 1 annual THM measurement
			Total integrated uptake: exp estimated using inhalation, ingestion,				Other DBP analyzed: BDCM, TBM, DBCM, TTHM
			dermal absorption (including showering/bathing,				<u>SGA</u> OR (95% CI) by quartile of 1 st trimester total integrated DBCM
			swimming)				uptake (µg/d): 1) referent
			Coefficient factor of 0.3 used for hot beverages				2) 1.7 (0.8, 3.7) 3) 2.4 (1.1, 5.1)
			Length and frequency of shower/bath/swimming collected at 2 year follow- up				4) 1.3 (0.6, 3.0)

Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
	• •		Measurement Methods Water Sampling: 4 treatment plants: all groundwater sources, each sampled at 3 distances from each plant (near the plant, at 5 and ≥10 km), 4 times/year for 3 years (85 samples in total) Mean quarterly conc was calculated for each plant Exposure Measure: Used geocoded maternal address at birth to determine CHL exp conc Average level was calculated for entire pregnancy and each trimester Internal dose (uptake): (inhalation, ingestion and dermal absorption) was calculated from algorithms using interview data (collected prospectively for most of the women - ~76%, 24% within the 1 st month of delivery) on trimester-specific water consumption including: - size and number of glasses of tap water per day (including cold and boiled water), use of	-	ORs (95% CI) for 3^{rd} trimester CHL above vs below the median internal dose (µg/d): <u>SGA</u> 1.31 (0.82, 2.08) <u>LBW</u> 1.45 (0.67, 3.13) Maternal Polymorphisms: <u>SGA</u> Specific for GSTM1-1 0.88 (0.44, 1.78) Specific for GSTM1-0 1.74 (0.89, 3.41) Specific for GSTT1-1 1.18 (0.71, 1.97) Specific for GSTT1-0 1.75 (0.50, 6.10) <u>LBW</u> Specific for GSTM1-1 0.35 (0.10, 1.28) Specific for GSTM1-0 5.06 (1.50, 17.05) Specific for GSTT1-1 1.35 (0.57, 3.20) Specific for GSTT1-0 7.30 (0.14, 391) (ORs specific for GSTM1-0 were also significant for the entire pregnancy) GSTM1 gene interaction was significant for the		 Individual THMs were highly correlated (r = 0.91–0.99) CHL accounted for ~80% of the TTHMs Exp data included extensive detailed water use collected prospectively (included filter use, exp at work, hot beverages, showering/ bathing, swimming, etc.) Considered genotype for 2 relevant genes Accounted for residential mobility by restricting analysis to women who did not change residence during pregnancy Small sample size Low prevalence of GSTT1-0 genotype = 16.4% Prevalence of GSTM1-0 = 48.7% Authors report results are preliminary and require confirmation in a larger sample with greater contrast in THM conc and internal doses Halogenated DBPs (9 HAAs, 2 haloketones, chloropricrin, chloral hydrate and MX) were measured but not included in the analysis since they were present only in low or sub µg/L,
			glasses of tap water per day (including cold and boiled water), use of bottled water at home, at		GSTM1 gene interaction was significant for the entire pregnancy and each		measured but not included in the analysis since they were
			bottled water at home, at work,other - number and average length of showers and baths, swimming		entire pregnancy and each specific trimester: <u>3rd trimester interaction</u> : 15.86 (2.75, 91.40)		if detected at all Other DBP analyzed include: TTHM, BDCM, DBCM
			pool visits RT Chemical ation: Chloroform	48		OEHHA August 2016	

Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
			Estimated uptake factors were used for ingestion (including heated water), inhalation and dermal exp				<u>SGA</u> OR (95% CI) for 1 st trimester DBCM above vs below the median internal dose (μg/d): 2.19 (1.20, 3.99)
			Glutathione S- transferase mu 1 (GSTM1) and glutathione S-transferase theta 1 (GSTT1)-null genotypes were identified by multiplex polymerase				OR (95% Cl) for 3 rd trimester DBCM above vs. below the median internal dose (µg/d): <i>Specific for GSTT1-1</i> 1.89 (1.01, 3.54) <i>Specific for GSTT1-0</i> 1.04 (0.31, 3.53)
			chair reaction (PCR) (null genotypes = GSTM1-0 and GSTT1-0)				LBW ORs (95% CI) for BDCM above vs below the median internal uptake (µg/d):
							Specific for GSTM1 gene Entire pregnancy interaction: 5.16 (1.01, 26.52)
							<u>3rd trimester interaction:</u> 5.29 (1.03, 27.15)

Study/ Study Design/ Location Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
Levallois et al. Population based case-	SGA	Water Sampling: 16 water systems: 9	CHL water conc (µg/L):		Models adj for:	CHL was highly correlated with TTHM ($r = 0.99$)
2012 control Quebec City, Birth certificate	(births <u>></u> 37 weeks, sex-specific	surface water sources, 7 groundwater sources	Mean (SD):		Maternal age Calendar week Highest	Using multiple routes of exp assessment and modeling did
Canada database	10 th percentile	Sampled 46 sites monthly for 4 THMs and	cases = 43.3 (40.7)		education level obtained	not result in higher ORs as compared with exp using water
2006–2008 cases	as per Canadian standards of	9 HAAs in the 9 surface water systems, and 7 sites in the 7	controls = 41.1 (39.2)		Annual household income	conc High participation rate (cases =
n = 571 (singleton	BW for gestational	groundwater systems	Quartiles of CHL water conc (µg/L):	OR (95% CI) by quartile of 3 rd trimester CHL water	Pre-pregnancy BMI	91%, controls = 93%)
births - 111 of which were LBW)	age)	Systems were divided into subsystems with at least 1 sampling site in	1) <15.96 2) 15.96–27.26	conc (μg/L): 1) referent 2) 0.9 (0.7, 1.3)	Parity History of LBW Maternal	Exp data included extensive detailed water use (e.g. hot beverages, bottled water, filter
controls		each subsystem	3) 27.27–51.07 4) >51.07	3) 1.0 (0.8, 1.4) 4) 1.2 (0.9, 1.7)	smoking during	use, showering/bathing, etc.)
n = 1925		Considered spatial and temporal factors in estimation of tap water	Quartiles of CHL uptake (µg/d):	OR (95% CI) by quartile of 3 rd trimester integrated	pregnancy Passive smoking at home	Extensive monthly sampling scheme allowing consideration of spatial and temporal
		exp (using closest sampling site in the subsystem and sampled		CHL uptake by route of exp (µg/d):	Coffee consumption Alcohol	variability Validation study (n = 115) was
		closest to specific trimester being studied)	Ingestion: 1)	Ingestion: 1) referent	consumption History of chronic	conducted for spatial assignmen≿of THM values to a
		Exposure Measure: Internal dose:	1.72 2) .72–11.88	2) 1.2 (0.9, 1.6) 3) 1.1 (0.8, 1.5) 4) 1.3 (1.0, 1.8)	disease Preeclampsia	residence Authors re p orted no significant difference was found between
		 ingestion, inhalation, and dermal absorption, calculated from 	3) 1.89–34.30	p-trend = 0.10	Other covariates considered:	measurements of TTHMs or HAA9 in the particpants' tap
		interview info including:	4) 34.30	Total Pathway: 1) referent 2) 0.9 (0.7, 1.2) 2) 4 (0.7, 1.2)	Maternal ethnicity	water and estimated values using the study's sampling strategy
		- volume and # of glasses of tap water per day, hot and cold	Total Pathway: 1)	3) 1.0 (0.7, 1.3) 4) 1.0 (0.8, 1.4) p-trend = 0.67	Working status Marital Status Medical problem	Pharmacokinetic models were used in expcassessment
		beverages, bottled water - water handling	42.24 2) 2.24–80.21	Results for quartiles of CHL inhalation/dermal exp were	during pregnancy Risky	Interviews 4 vere conducted a median of \sim 9 weeks after birth
		(filtering, boiling, storage in fridge) -frequency and duration of showering and	3) 0.22–169.81 4) 169.81	reported but had no significant results	occupational exp	8 Other DBP analyzed: BDCM, BrTHM, TTHM, DCAA, TCAA, THAA
Λ/		bathing)	50		ОЕННА	Significant findings were observed for some HAAs

			5 ()/	5 ()/	5 (,, ,	
Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
Summerhayes et al.	Retrospective cohort	SGA	<u>Water sampling:</u> Sydney/Illawarra water	CHL water conc (µg/L):	<u>SGA</u>	Models adj for:	68% of zone/month values were missing
2012 New South Wales, Australia	Birth records linked to birth defects registry 1998–2004 N = 362,013 (live singleton births)	BW	utility has a 3-level hierarchical structure with 14 delivery systems containing 33 distribution systems and 180 water supply zones Monthly THM monitoring rotated through 3–6 sites in each distribution	Mean (SD) = 33.6 (16.0) Median = 30.9 Range = 3.4 – 121.5 (Supplemental material)	RR (95% CI) for an IQR increase in 3 rd trimester CHL exp in water (25 μg/L): 1.04 (1.02, 1.06) Similar associations were reported for the entire pregnancy RR (95% CI) for the 5 th and	Maternal age Indigenous status Maternal country of birth Infant's gender Smoking anytime during pregnancy Parity	CHL was correlated with BDCM ($r = 0.90$) DBCM ($r = 0.27$) Calculation of distribution- system-level exp used average w/in zones (68% of zone/month were missing), then average across zones, etc.
	n = 314,982 (excluded infants with BD, SB, multiple births, data,		system on a 3–6 month cycle THM exp was assigned at the distribution system level	Analyzed by each trimester and entire pregnancy	10 th deciles of CHL water exp in the 3 rd trimester (μ g/L): 5 th decile = 1.01 (0.96, 1.07) 10 th decile =	Hypertension Maternal diabetes Preeclampsia Gestational diabetes Antenatal visit	THM exp was higher in women living in areas supplied by chlorinated water vs chloraminated water (86% of women)
	gestational age <22 or > 43 weeks, births with a BW >5 SDs of the average for		THM data were averaged w/in each zone (68% of values were missing), then across zones w/in a distribution system (13% of values were missing)		1.12 (1.05, 1.18) Larger associations were seen for SGA <3 rd percentile	Year of birth Season of birth Area-based measure of mother's socioeconomic	The association between CHL and SGA was larger for nonsmokers Large sample size
	gestational age, or with missing BW or gestational age data, etc.)		for a distribution/month THM conc During the study period, 5,341 THM observations were available		Interaction between THMs and smoking In stratified analysis the association between SGA and 3 rd trimester exp	status (SES)	A two-pollutant model was examined with DBCM (as a dichotomous variable due to the small range of exp conc) and found that the effects of CHL on SGA were independent
	SGA n = 31,813		Exposure measure: Maternal residence at time of delivery was		increased slightly in nonsmokers and was protective in smokers		of DBCM Sensitivity analyses were conducted to test robustness of
			geocoded and mapped to distribution systems		<u>BW</u> (Supplemental material) Linear regression model of change in mean BW (g)		the results (including influence of disinfection type and potential threshold effects) for the association between THMs and SGA
					(95% CI) with an IQR increase in CHL exp for entire pregnancy (25 μg/L): -5.0 g (-8.6, -1.4)		Possible misclassification of SES, assigned using an area- based measure at the census

level (approximately 80-200

Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
							households)
							Higher proportions of SGA births were seen in mothers from lower SES (13.2%)
							Other DBP analyzed, include: TTHM, BDCM, DBCM
							Significant association observed for BDCM and SGA
							A significant increase in mean BW (g) was seen with an IQR increase in DBCM for the entire pregnancy (2 µg/L): 4 (2, 5)
							RR (95% CI) for the 5 th and 10 th deciles of BDCM water exp in the 3 rd trimester (μ g/L):
							5 th decile = 1.04 (0.99, 1.09)
							10 th decile = 1.10 (1.04, 1.16)

0.1.		•	-	-		0	0
Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
Grazuleviciene et al. ‡ ‡	Prospective cohort	SGA	Water Sampling: 4 treatment plants: all	CHL water conc (µg/L)		Models adj for:	CHL accounted for ~80% of the TTHM
		LBW	groundwater sources,	Mean (SD):		<u>SGA</u>	
2011	All pregnant		each sampled at 3				Individual THM conc were
	women in	BW	distances from each	All sites $= 7.8$		Previous preterm	highly correlated ($r = 0.91 -$
Lithuania	Kaunas city		plant (near the plant, at 5 and ≥10 km), 4	(10.2)		delivery Maternal	0.99)
	2007–2009		times/year for 3 years (85 samples in total)	At 3 plants with low THM levels =		education Marital status	Participation rate = 79%
	N = 5,405			0.9 (1.0)	OR (95% CI) by tertile of	Smoking	Median gestational age at
	0.044		Mean quarterly conc was		3 rd trimester total integrated	Alcohol	interview = 8 weeks
	n = 3,341		calculated for each plant	At 1 plant with	CHL uptake:	consumption	Fur data included automative
	(excluded multiple		Exposure Measure:	high THM levels = 17.7 (9.0)	<u>SGA</u>	BMI Maternal age	Exp data included extensive detailed water use collected
	pregnancies,		Used geocoded maternal	= 17.7 (9.0)	1) Referent	Maternal age Parity	prospectively (included filter
	invalid data for		address at birth to	Internal dose for	2) 1.19 (0.87, 1.63)	Birth year	use, exp at work, hot
	THM exp,		determine CHL exp conc	CHL (µg/d):	3) 1.22 (0.89, 1.68)	, <u>,</u>	beverages, showering/
	newborn					LBW	bathing, swimming, etc.)
	>4,500 g, etc.)		Average level was	Range = 0.0013-	Continuous (0.1 µg/d)		
	001		calculated for entire	2.1328	1.04 (1.00, 1.09)	Gestational age*	Dose response association with
	SGA n = 270		pregnancy and each	Tertiles:	LBW	(squared) Marital status	significant effect measures
	n = 270		trimester	1) 0.0013–	1) Referent	Maternal	Outcomes also stratified by
	LBW		Internal dose (uptake):	0.0249	2) 2.12 (1.11, 4.02)	education	gender and maternal ethnicity
	n = 156 term		(inhalation, ingestion and	2) 0.0249–	3) 2.13 (1.15, 3.92)	Chronic	genuer and material en meny
	births		dermal absorption) was	0.2868	, , , ,	diseases	54.9% of the subjects received
			calculated from	3) 0.2868–	Continuous (0.1 µg/d):	BMI	water from the plant with
			algorithms using interview data (collected	2.1328	1.09 (1.01, 1.18)	Blood pressure Smoking	highest THM levels
			prospectively		Similar findings were seen	Alcohol	Questionnaire and birth
			for most of the women -		for each trimester and the	consumption	certificate data were compared
			~76%, 24% within the 1 st month of delivery) on		entire pregnancy	Previous preterm	for participants and non- participants
			trimester-specific water		Change in BW (g) (95%CI)	delivery	Approximated for residential
			consumption including: - size and number of		for every 1 µg/d increase in total integrated CHL uptake	Infant gender Birth year	Accounted for residential mobility by restricting analysis
			glasses of tap water per		for the 3 rd trimester:	Diffit year	to women who did not change
			day (including cold and		-57.8 (-111.6, -4.0)	* Gestational age	residence during pregnancy
			boiled water), use of			was determined	31 3 3 3
			bottled water at home, at		This was also significant for	by ultrasound	Collected questionnaire info
			work, other		the 1 st trimester and the		repeatedly on 10% of subjects
			- number and average		entire pregnancy		finding no sign difference in
			length of showers, baths, swimming				water use habits or other covariates
			pool visits				oovanales
	A		ART Chemical	53		OEHHA	
			ration: Chloroform			August 2016	

			U (<i>1</i>	0 ()		,, ,	
Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
			Estimated uptake factors were used for ingestion (including heated water), inhalation and dermal				Incorporated individual water use info in estimating personal exp and internal dose
			exp				Low spatial variability of THM levels in all treatment plants
							Other DBP analyzed: BDCM, DBCM, TTHM
							Significant association between 3 rd trimester DBCM exp and LBW
							LBW OR (95% CI) by tertile of 3 rd trimester total integrated DBCM uptake (µg/d):
							1) referent 2) 2.44 (1.05, 5.70) 3) 2.42 (1.03, 5.66)

•	•						
Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
Patelarou et al. *	Prospective cohort	PTB	<u>Water Sampling</u> : 18 sampling points (2	CHL water conc (µg/L):	Exp calculations were limited to the use of 3	Models adjusted for:	Brominated THMs accounted for >80% of TTHM
2011	"Rhea" cohort	SGA	points randomly selected from each of 6 urban	Mean (SD):	brominated THMs because CHL levels were very low;	Maternal age	Very low levels of CHL and other THMs
Greece	2007–2008	LBW	water zones and 1 point in 6 rural areas)	All sampling sites = 0.15 (0.15)	therefore, no results were reported for CHL	at delivery Maternal education	Particpation rate = ~91%
	N = 1,760		Home tap water was also sampled 4 times (72	Urban = 0.14 (0.11)	No association was seen between residential and	Smoking Marital status	Estimated exp through multiple routes
	n = 1,359 (pregnant women after		samples in total) Exposure Measure:	Rural = 0.17 (0.20)	total uptake exp with reproductive outcomes for either trimester or average	Greek ethnicity Parity Infant sex	Exp data included extensive water use collected
	excluding multiple births, SB, women		Women assigned a water supply zone by reported address at time of interview		total pregnancy	Gestational age was included in	prospectively (e.g. filter use, exp at home and work, bottled water use, showering/bathing,
	with incomplete questionnaire data, etc.)		Exp level per month based on individual			linear regression models with infant size metrics (weight,	swimming, dishwashing, etc.) Main water source was ground water
	PTB n = 156		levels of TTHM and BrTHM modeled using generalized additive			length, head circumference)	Sampled tap water from individual homes over time
	SGA n = 73 LBW		models of water plant zone and spline of the month of sampling				Assessed temporal variation- THM conc did not differ over 3 years
	n = 76		Face-to-face, computer- aided questionnaire, collected prospectively, per trimester: - drinking water source;				Assessed spatial variation – THM conc differed significantly by water supply zones and by season
			tap/bottled/spring water at home and other places - average daily consumption				Prospective study with follow- up data after birth
			 average frequency and duration for showering and bathing swimming pool 				Other DBP analyzed: levels of specific THMs were too low to analyze individually
			attendance - type of water used to cook - use of filter both for				
			drinking and cooking water				
			ART Chemical ration: Chloroform	55		OEHHA August 2016	

•			5 ()/	5 (U (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results		Covariates/ Confounders	Comments
			- usual method of					
			dishwashing (by hand/dishwashing					
			machine/both)					
			- use of gloves for					
			dishwashing by hand - frequency and duration					
			of dishwashing per day					
			Fluid consumption was					
			assessed from interviews					
			- during the 3 rd month of					
			pregnancy - during the 2 nd trimester					
			(food frequency					
			questionnaire)					
			 during the 3rd trimester questions on average 					
			daily consumption					
			Internal dose:					
			- exp through ingestion,					
			dermal, and inhalation					
			by sum of residential THM conc and self-					
			reported water use					
			from interview					

	ıdy/ cation	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
Villa al. '	anueva et *	Prospective cohort	PTB	<u>Water Sampling:</u> THM levels were	Not reported for overall cohort, but	No significant associations between any THM and	Models adj for:	Residential ingestion uptake was very low (11% of total
201	1	2000–2008	SGA	sampled from locations determined to be	graphically represented for	PTB, SGA, LBW or BW	<u>PTB</u> SGA covariates	uptake) with most uptake resulting from
Spa (5 a	ain areas)	Hospital data	LBW BW	geographically representative of study areas	each area by different uses (e.g. ingestion,	Effect estimates for a 10% increase in 3 rd trimester total integrated CHL uptake	Sex BW	showering/bathing In Granada, 132 women's
(,	N = 5,621		THM conc were	showering/bathing)	(µg/d):	<u>SGA</u> Parity	water use during pregnancy was collected retrospectively,
		n = 2,074 live births		determined from sampling campaigns of tap water and regulatory	Figure 1 in the article indicates median and 75 th	<u>PTB</u> OR (95% CI) = 1.00 (0.99, 1.01)	Maternal height and weight Weight gain	6–8 years after delivery (final number of women included in the analysis = 84)
		PTB - 3.7%		monitoring data	percentile of total residential uptake	SGA	Smoking during pregnancy	Exp data included extensive
		SGA - 10.6% LBW - 4.6%		Number of samples varied between areas (128–421)	of CHL (ingestion + showering/bathing) were well below	OR (95% CI) = 1.00 (0.99, 1.01)	Cohort BW and LBW	detailed water use collected prospectively (e.g. sources of drinking water, filter use, exp at
		LDVV - 4.0 %		Samples were collected	1 µg/d for each area	<u>LBW</u> OR (95% CI) =	SGA covariates, Sex	work, showering/bathing, swimming, etc.)
				to represent the period between the minimum	Area median THM	1.00 (0.99, 1.02)	Weeks of gestation (linear	Women who changed
				and maximum conception dates of study subjects for each area	levels ranged from 5.9 (Valencia) to 114.7 μg/L	<u>BW</u> β-coefficient (g) (95% CI) = -0.07 (-1.00, 0.85)	and quadratic) Various area	residence between weeks 12 and 32 were excluded from the analyses (5% overall) to
				Swimming pools were	(Sabadell, of which >30% was CHL	Results varied by area but	specific results were adj for	minimize exp misclassification
				sampled in the municipalities that accounted for ≥70% of	[estimates based on Figure 1])	none were significant	some of the following variables:	Analyses included models that adj simultaneously for all trimesters with no significant
				each cohort			Maternal education	results
				Exposure Measure: THM conc was assigned to the distribution system			Marital status Paternal weight Social class	Misclassification was likely higher for estimated exp from swimming pools as a reduced
				of each woman's residence			Season of conception	number of samples were measured from selected pools
				Interview at 32 weeks - water use during			Temporal and geographic variation	and were taken a few years after the pregnancies
				pregnancy including: - sources of drinking			Variables also	Included extensive questionnaire data on water
				water inside and outside the home - use of a home water			considered: Maternal age	consumption, however, calculated consumption seems fairly low
		AC	CGIH TLV DA	filter	57		Country of origin (Supplemental OEHHA	
		fo	r Reconsider	ation: Chloroform			August 2016	

Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
Location	Sample sizes	of Interest	Measurement Methods - changes in water ingestion in pregnancy - frequency and duration of showering, bathing, and swimming pool use (indoor, outdoor, winter, summer) - tap water ingestion was also ascertained at 12 weeks Integrated Uptake: 12- and 32-week tap water intakes were averaged to compute ingested THMs Estimated daily THM blood conc determined by the product of residential THM levels, daily personal use and uptake factors	Dosages		Confounders material)	Participation rate was 45%– 98% Other DBP analyzed: BrTHM (BDCM, DBCM, and TBM were measured but not included separately in the analysis)

Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
Zhou et al. 2010 China	Retrospective cohort Birth records 2008–2009 N =1,385 (Women living in a water supply area of a single large scale water plant, and their term singleton infants)	BW	2) 3)	CHL water conc (μg/L) Range of mean values (SD) = 6.0 (2.5)–51.2 (36.1) highest levels occurred during the summer Each trimester, 1 st + 2 nd trimester, and the entire pregnancy were analyzed Quartiles of average daily CHL exp: P1–P25 P26–P50 P51–P75 P76–P100 Actual values for quartiles were not presented; however, the study reported CHL exp ranged from 6.53– 41.98 (μg/L) BW exp was categorized as above/below the median	OR (95% Cl) by quartile of CHL exp during the 3^{rd} trimester: 1) referent 2) 1.37 (0.99, 1.88) 3) 1.67 (0.98, 2.85) 4) 1.82 (1.10, 3.02) OR (95% Cl) by quartile of CHL exp during the entire pregnancy: 1) referent 2) 0.96 (0.60, 1.53) 3) 1.45 (0.88, 2.40) 4)1.64 (0.90, 3.00) Other significant findings included OR (95% Cl): - CHL exp during the 1 st trimester in the 2 nd quartile: 1.74 (1.10, 2.77) - CHL exp during the 1 st and 2 nd trimester in the 3 rd quartile: 1.62 (1.05, 2.50)	Models adj for: Total gestation days Gender Mother's age Gravidity Education # of prenatal examinations Birth season Other covariates considered: Occupation Prenatal residence Postpartum residence Time of last menstrual period Parity Illness during pregnancy Term-infant gender Body weight Body length Presence of malformations	Article was translated from Chinese Accounted for residential mobility by limiting participants to those who lived in the area during pregnancy Small sample size Other DBP analyzed include: DBCM, BDCM, TBM, BrTHM, DCAA, TCAA OR (95% CI) by quartile of BrTHM exp during the 3 rd trimester: 1) referent 2) 1.40 (0.99, 1.98) 3) 1.21 (0.81, 1.81) 4) 1.51 (1.05, 2.17) Significant findings were observed for some HAAs

Study/	Study Design/	Outcomes	Exposure	Exposure	Results	Covariates/	Comments
Location	Sample sizes	of Interest	Measurement Methods	Dosages		Confounders	
Hoffman et	Prospective	SGA	Water sampling	CHL water conc		Models adj for:	CHL and BDCM were highly
al.†	cohort		3 sites represented:	(µg/L)			correlated at the brominated
		BW	1- moderate chlorinated	Mean (SD) in 2 nd		ML models	site $(r = 0.9)$
2008	Community		DBPs (CHL was the	trimester, by site:		Maternal age	
	outreach and		dominant species)	1) 46 7 (12 2)	ODe (05% CI) by tertile of	(site 1 only)	CHL conc in the 1 st tertile at
US (3	prenatal clinics		2- moderate brominated DBPs	1) 46.7 (13.3)	ORs (95% CI) by tertile of the 3 rd trimester average	Race/ethnicity	site 1 was similar to or greater than the 3 rd tertile conc at site 2
communities)	2000–2004		3- low levels of all DBPs	2) 13.7 (3.3) 3) < reporting limit	residential CHL exp by site:	Income (site 1 only)	than the 3 rd tertile conc at site 2
	2000-2004		5-10W levels of all DBF 3		residential of L exp by site.	Education (site	SGA proportion was higher at
	N = 2,766		Sites 1 and 2 used	Tertiles of	<u>SGA</u>	1 only)	the brominated site and mean
	(singleton		chloramination rather	residential CHL	<u></u>	Employment	BW was higher at the
	births)		than free chlorine for	exp (µg/L) in 3 rd	Site 1	status (site 1	chlorinated site
	,		termination disinfection	trimester, by site:	Maximum likelihood (ML)	only)	
	n = 1,958			-	models (Supplemental	Marital status	Water sampling was done at
	(excluded		Water samples collected	Site 1	material):	Pre-pregnancy	multiple areas in the distribution
	pregnancies:		weekly from sites 1 and	1) 19.9–44.2	1) referent	BMI (site 1	system and confirmed to be
	incomplete		2, and biweekly from site	2) 44.3–49.0	2) 1.4 (0.6, 3.1)	_only)	uniform throughout
	interview data;		3 at a representative	3) 49.1–94.0	3) 1.1 (0.5, 2.6)	Parity	
	lost to follow up		location within the	Cite 0	Bayesian models:	Caffeine intake	Used weekly or biweekly
	that ended in a loss; <25 or		distribution system	Site 2 1) 6.4–11.5	1) referent 2) 1.9 (0.5, 8.1)	Bayesian models	samples so temporal variability is more likely to be represented
	>42 weeks		DBP conc below the	2) 11.6–15.6	3) 1.7 (0.4, 7.1)	Other DBP	is more likely to be represented
	gestation, etc.)		minimum reporting level	3) 15.7–22.1	0) 111 (011, 111)	species	Use of chloramination results in
	geolation, etc.)		for each analytic method	0, 1011	Site 2	Maternal age,	minimal additional DBP
	<u>SGA</u>		were set to 0		ML models:	Race/ethnicity	formation within the distribution
	n = 113				1) referent	Income	system (sites 1 and 2) thus
			Exposure measure:		2) 4.9 (1.5, 15.8)	Education	minimizing spatial variability
	<u>BW</u>		2 exp metrics were		3) 2.4 (0.7, 8.4)	Employment	
	n = 1,854 (term		considered for TTHM:		Bayesian models:	status	Exp data included detailed
	birth)		1) Estimated residential		1) referent	Marital status	water use collected
	Additional		tap water conc 2) Estimated integrated		2) 4.2 (0.6, 33.7) 3) 3.6 (0.5, 30.1)	Pre-pregnancy BMI	prospectively (included sources of drinking water, filter use, exp
	analyses were		uptake for TTHMs:		3) 3.0 (0.3, 30.1)	Parity	at work, showering/bathing,
	reported in		- tap water conc		BW	Caffeine intake	etc.); however, estimates were
	Savitz et al.		combined with detailed				only presented for TTHM
	2005		exp information collected		Site 1		
			at baseline by phone		ML models:		Bayesian models were used to
			interview (at 16 weeks		1) referent		allow for simultaneous
			gestation and at follow-		2) 26 (-51, 104)		modeling of highly correlated
			up between 20–25		3) 24 (-56, 103)		exp such as other DBPs
			weeks)		Bayesian models:		Authors state that estimates of personal exp did not show
			 ingestion, showering, and bathing were 		1) referent 2) 58 (-51, 165)		stronger associations than
			included		3) 49 (-62, 156)		residential conc
			- · · · · · · ·		-, (, ,		
	AC	GIH TLV DA	RT Chemical	60		OEHHA	
	f	. D	attan. Oblansfams			A	

OEHHA August 2016

Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
	·				Site 2 ML models: 1) referent 2) -66 (-194, 62) 3) 69 (-61, 199) Bayesian models: 1) referent 2) 64 (-146, 278) 3) 70 (-146, 294)		Small sample size Research was supported by the American Water Works Association Research Foundation and US EPA Other DBP analyzed include: BDCM, DBCM, TTHM, and
					"Estimates of personal exp to individual DBP species were also examined, and results were similar to those for residential concentrations (results not shown)"		 CAA, DCAA, TCAA, BCAA, BDCAA, DBCAA, BAA, DBAA, TBAA, and HAA5 A significant association was seen between 3rd trimester average residential TTHM exp ≥80 vs < 80 and SGA: RR (95% CI) = 2.0 (1.1, 3.6) Significant findings were observed for some HAAs

Study/	Study Design/	Outcomes	Exposure	Exposure	Results	Covariates/	Comments
Location	Sample sizes	of Interest	Measurement Methods	Dosages		Confounders	
Lewis et al. ‡	Population- based case-	PTB	Water Sampling: Abstracted THM data	TTHM water conc (µg/L):		Models adj for:	CHL contributed 83–93% (average = 89%) of TTHM
2007	control		from Massachusetts Department of	Interquartile range=		Infant sex Marital status	monthly averages
Massachusett	data		Environmental Protection 2003 records for 27 communities receiving	59 Min–max of range = 28–87		Kessner Index (prenatal care adequacy)	CHL was measured; however, effects of exp were only analyzed for TTHM
	1999–2001 N = 39,593		water from a single supplier (894 samples)	CHL fraction of TTHM = 83–93%	HR (95% CI) by tertile of	Maternal age Maternal	Exp measures were based on weekly THM samples
	(singleton		Weekly TTHM monitoring		entire pregnancy TTHM exp:	race/ethnicity Maternal	
	births) n = 37,498		data from 4 sites based on maternal residence at birth applied	Tertiles of TTHM exp (µg/L): 1) <40	1) referent 2) 0.92 (0.82, 1.02) 3) 0.85 (0.74, 0.97)	education Parity Birth interval	Controls were matched to cases by gestational age
	(births: excluding		to 24 out of 27 communities	2) 40–60 3) <u>></u> 60	per 10 µg/L:	Maternal	Collected data on multiple covariates
	births <35 or >45 weeks		Exposure Measure:	-,	0.95 (0.92, 0.99)	Previous PTB or SGA child	Study was able to examine exp
	gestation; <500 or >5000 g;		Exp measures averaged over 1 week to 1 month		HR (95% CI) by tertile of 2 nd trimester TTHM exp:	Prenatal care source of	over time
	missing information;		TTHM exp consisted of:		1) referent 2) 0.87 (0.77, 0.99)	payment Conception	Multiple exp time intervals were used for assessments
	etc.)		 maternal residence gestational age 		3) 0.82 (0.71, 0.94)	season Birth season	Very large and diverse study
	<u>PTB</u> n = 2,813		 environmental sample per gestational period (each trimester and 4, 		Per 10 µg/L: 0.95 (0.92, 0.99)	Community per capita income Previous	population
			2, 1 weeks before birth)		During the last 4 weeks before birth for women with	diseases Previous	
			Calculated trimester specific and pregnancy average exp		a government source of payment for prenatal care	trimester TTHM exp	
					1) referent 2) 1.07 (0.85, 1.34) 3) 1.39 (1.06, 1.81)		
					Per 10μg/L: 1.03 (0.96, 1.11)		
					High exp in 2 nd trimester was associated with PTB when stratified by race (African American: HR (95% CI) = 0.62 (0.46 ,		
			ART Chemical	62	0.84).	OEHHA	

Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
Lewis et al. ‡ 2006	Population- based case- control	LBW (defined as term LBW -	<u>Water Sampling</u> Abstracted data from Massachusetts	TTHM water conc (µg/L):		Models adj for: Gestational age	CHL contributed to 83–93% of (average = 89%) TTHM monthly average
Massachusetts	Birth certificate data	<2500 g and >36 weeks gestation)	Department of Environmental Protection records for 27	Interquartile range= 59		Infant sex Marital status Kessner Index	Seasonal variation with peaks in May–Aug
	1999–2001		communities from a single supplier (894 samples)	Min, max of range = 28–87		Maternal age race/ethnicity	Exp measures were based on weekly THM samples
	N = 40,514 (singleton births)		3 communities conducted their own chloramination,	CHL fraction of TTHM = 83–93%		education Parity Maternal	Unique conditions of water system for exp classification
	n = 36,529 (excluding		24 received chloramination from a single facility	Quintiles of 2 nd trimester TTHM exp (µg/L):	OR (95% CI) by quintile of 2 nd trimester TTHM exp:	smoking Prenatal care source of	that may reduce non-differential misclassification
	births <32 or >45 weeks gestation; <500		Weekly average of 4 sampling sites that	1) <40 2) 40–<50	1) referent 2) 1.10 (0.81, 1.49)	payment Conception season	Multiple exp time intervals were used for assessments
	or >5000 g; missing information;		captured nearly all individual site values was used for the single	3) 50–<60 4) 60–<70 5) <u>></u> 70	3) 1.08 (0.79, 1.49) 4) 1.24 (0.92, 1.67) 5) 1.50 (1.07, 2.10)	Birth season Per capita income	Study was able to examine exp over time
	etc.) LBW		average for the 24 communities supplied by the same facility		Per 10 µg/L increase: 1.08 (1.00, 1.17)	Previous preterm or SGA infant Previous	Did not distinguish between various pathways of exp
	n = 780		Exposure Measure: Exp measures were		OR (95% CI) by quintile and race of 2 nd trimester	trimester TTHM exp Maternal disease	
			averaged over 1 week to 1 month		TTHM exp: <u>Caucasian:</u>	factors (anemia cardiac disease	
			TTHM exp estimates were based on: - maternal residence at		1) referent 2) 1.11 (0.69, 1.78) 3) 1.10 (0.67, 1.79)	diabetes hydramnios chronic	
			birth - gestational age - environmental		4) 1.22 (0.76, 1.97) 5) 1.37 (0.80, 2.36)	hypertension pregnancy- related	
			sampling data Exp estimates were		Per 10 µg/L increase: 1.06 (0.95, 1.20)	hypertension Rh sensitivity sickle cell	
			calculated for each trimester and pregnancy average		<u>Non-Caucasian:</u> 1) referent 2) 1.08 (0.73, 1.61) 3) 1.09 (0.72, 1.66)	anemia uterine bleeding)	
	A	CGIH TLV DA	RT Chemical	63	4) 1.27 (0.86, 1.87) 5) 1.60 (1.03, 2.47)	Other covariates considered: OEHHA	
			ation: Chloroform			August 2016	

Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
					Per 10 μg/L increase: 1.10 (1.00, 1.22)	Interval since the previous live birth Previous infant who weighed >4000g Previous SGA infant	

Studv/ Study Desian/ Outcomes Exposure Covariates/ Comments Exposure Results Location Sample sizes of Interest Measurement Methods Dosages Confounders Retrospective PTB Water Sampling: Mean CHL water PTB and Very PTB Models adj for: Hinckley et al. Large sample size Data from 3 community cohort conc was not 2005 Verv PTB water treatment facilities Authors reported that no SGA By comparing subjects within reported Birth records (<32 weeks) were used to calculate associations were the same community with 3rd trimester exp respect to exp levels, may have Arizona observed: no ORs were Paritv 1998-2002 SGA (as Education reduced potential residual presented intrauterine Total and individual Smoking confounding N = 48.119growth THMs were measured SGA Kessner index (live births and retardation quarterly for each facility, Tertiles of CHL exp Considered multiple time fetal deaths) (IUGR*) and monthly at some OR (95% CI) by tertile for LBW periods of exp $(\mu g/L)$: facilities for certain years 3rd trimester CHL exp: SGA LBW (at > 1) <10 1) referent Maternal age The community studied was n = 4.346Other DBP 37 weeks) 2) 10–16 2) 1.02 (0.94, 1.11) Race selected in order to minimize 3) ≥16 3) 1.01 (0.93, 1.10) Ethnicity misclassification due to spatial measurements were also Education variability within the distribution (exclusions: *term or taken at varving because frequencies, depending Continuous -Parity systems preterm values for the babies that on the facility 1.00 (1.00, 1.01) Smoking lowest 10th fell below Kessner index Large temporal variability and DBPs were measured at low spatial variability for DBPs percentile were the LBW 2-4 locations within the within water distribution not available published for extreme value for the distribution system of OR (95% CI) by tertile for systems gestational lowest 10th each facility 3rd trimester CHL exp: ages, births percentile of 1) referent Other DBP analyzed: BDCM, <23 weeks birth weight Procedures were used to DBCM, TTHM, HAA5, DBAA, 2) 1.18 (1.00, 1.39) gestation were by race, impute missing exp data 3) 1.04 (0.88, 1.23) DCAA. TCAA excluded; for ethnicity, Native Exposure Measure: Continuous -Significant findings were and American gestation Subjects were matched 1.00 (1.00, 1.01) observed for some HAAs births <29 to a water treatment age weeks were facility by zip code of mother's residence at excluded) birth PTB n = 4.008

Table 3a. Detailed Summaries for Epidemiologic Studies of Chloroform (CHL) Exposure and Reproductive Outcomes: Preterm Birth (PTB), Small for Gestational Age (SGA), Low Birth Weight (LBW), and Birth Weight (BW) (cont'd).

Very PTB

n = 564

LBW

n = 1010

Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
Porter et al. 2005 Maryland	Retrospective cohort Birth certificate data 1998-2002 N = 18,087 (singleton births) n = 15,315 (restricted to African American, Caucasian, and Hispanic American infants; excluded infants born <25 or >42 weeks gestation) <u>SGA</u> n = 1,114	SGA (as IUGR*) * defined as affecting an infant whose birth weight was below the 10 th percentile for gestational age (adjusted for sex and race) using standards from the US Census data"	Water Sampling: Monthly conc of TTHM and individual THMs (including CHL) at 4 sampling points in study obtained from the water utility company for 1997– 2002Sampling points represented varying distances from the water treatment facilityExposure Measure: Women whose residences were in zip codes corresponding to the water utility's point measurements were included in the analysis.Measurements were averaged biweekly TTHM levels based on estimated gestational periodTTHM measurements from 1997 were used for infants born in the 1 st 3 quarters of 1998	CHL water conc (µg/L): Mean (95% Cl) = 34.1 (32.5, 35.7) Quintiles of CHL exp (µg/L): (specific quintile ranges not mentioned)	OR (95% CI) by quintile of CHL exp for the entire pregnancy: 1) Referent 2) 1.24 (1.02, 1.50) 3) 1.08 (0.88, 1.32) 4) 1.12 (0.92, 1.36) 5) 1.04 (0.85, 1.27) OR (95% CI) by quintile of 3 rd trimester CHL exp: 1) Referent 2) 1.02 (0.84, 1.24) 3) 0.96 (0.79, 1.16) 4) 0.98 (0.81, 1.19) 5) 1.07 (0.88, 1.29)	Models adj for: Marital status Mother's age Kessner index Tobacco use Other covariates considered: Maternal weight gain Child's race/ethnicity Alcohol use Mother's residence	TTHM values fluctuated by season, summer months were higher Other DBP analyzed: BDCM, DBCM, TBM, TTHM, BAA, CAA, DBAA, DCAA, CAA, TCAA, HAA5 Significant findings were observed for some HAAs

Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
Savitz et al. †	Prospective	PTB	Water Sampling:	CHL water conc		Model adj for:	CHL was dominant THM
	cohort		3 sites represented:	(µg/L) by site:			species at chlorinated DBP site
2005		SGA				<u>SGA</u>	(range = $20-120 \ \mu g/L$) with the
	Prenatal clinics		1) moderate chlorinated	Mean (range) =		Maternal race	highest levels in summer
US (3 locations)	and community outreach	BW	DBP (CHL was the dominant species);	1) 45.6 (14.7–124) 2) below minimium		(black) Education	Sites were chosen for their use
1004110113)	outreach	(SAB	2) moderate brominated	reporting level		Smoking	of chloramination for terminal
	2000–2004	outcome	DBP	(maximum 2.4)		BMI	disinfection as it results in
		reported in	3) low levels of all DBP	3) 11.9 (3.0–		Live birth history	minimal additional DBP
	N = 2,766	Table 4a)		52.7)			formation within the distribution
	(women)		Sites 1 and 3 used		<u>SGA</u>	<u>PTB</u>	system
			chloramination rather	<u>SGA</u>		Maternal caffeine	
	n = 1,934 (oxoluding		than free chlorine for terminal disinfection	Quartiles of 3rd	OR (95% CI) by quartile of 3 rd trimester CHL water	consumption Income	Extensive water sampling was done, including at multiple
	(excluding multiple		terminal disinfection	trimester CHL water	conc (µg/L):	BMI	areas in the distribution system
	gestations,		For each site, water	conc (µg/L):	οθης (μβ/Ε).	Live birth history	and confirmed to be uniform
	missing data,		samples were measured	····· (··g/ =/·		,	throughout
	etc.)		weekly at a location that	1) >0.0–≤0.2	1) referent	Other covariates	C C
			reflected DBP conc	2) >0.2–≤19.2	2) 1.45 (0.79, 2.64)	considered:	Exp data included extensive
	PTB		throughout the system	3) >19.2–≤47.1	3) 1.33 (0.71, 2.49)		detailed water use collected
	n = 196			4) >47.1	4) 1.05 (0.54, 2.01)	Maternal age	mostly prospectively (e.g. water
	SGA		<u>Exposure_Measure</u> : Tap water exp was the	Quartiles of 3rd		Age at mother's interview	source; filter use, exp at work, showering/bathing, etc.)
	n = 102		average weekly sample	trimester total	OR (95% CI) by quartile of	Parity	showering/batting, etc.)
	11 - 102		values over time of	integrated CHL exp	3 rd trimester total integrated	Infant gender	A biomarker study was
	BW		pregnancy	(µg/d):	CHL exp (µg/d):	Employment	conducted on a small sample of
	n = 1,738					Ethnicity	women; however, a simple
			Daily exp, collected	1) 0	1) referent	Marital status	linear relationship between
			prospectively:	2) >0–≤0.5	2) 1.16 (0.63, 2.14)	Diabetes	CHL water conc and blood
			Ingestion - residential tap water	3) >0.5–≤1.2 4) >1.2	3) 1.26 (0.68, 2.33) 4) 1.14 (0.62, 2.09)	Previous	levels was not evident
			conc water x	4) >1.2	4) 1.14 (0.02, 2.09)	alcohol intake	Authors note that site
			consumption (number	PTB/ BW	<u>PTB</u>	Vitamin use	characteristics (e.g.
			and cup size per day of			Study site	demographic) or the
			tap, filtered, hot, and	Quintiles of 3 rd	OR (95% CI) by quintile of	Season	recruitment methods across the
			cold water) x uptake	trimester CHL water	3 rd trimester CHL water		sites may have led to biases in
			factors	conc (µg/L):	conc (µg/L):	<u>BW (Term)</u>	the estimated effects of DBP
			Total integrated exp - Including ingestion,	1) ≥0.0–≤0.1	1) referent	Maternal race (black)	Multiple comparisons
			inhalation and dermal	2) >0.1–≤10.9	2) 0.68 (0.42, 1.11)	Gestational age	
			absorption (water conc	3) >10.9–≤30.4	3) 0.76 (0.47, 1.24)	(included both as	Research was supported by the
			x duration x uptake	4) >30.4–≤48.2	4) 0.52 (0.31, 0.90)	gestational age	American Water Works
			factors)	5) >48.2	5) 0.54 (0.31, 0.92)	and gestational	Association Research
			[inhalation and dermal			age squared)	Foundation and US EPA
			from showering and	67		Maternal caffeine	
			RT Chemical ation: Chloroform	67		OEHHA	
	10					August 2016	

		. .	-	_			•
Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
		CGIH TLV DA	bathing] Estimated DBP levels for hot, cold, unfiltered, and filtered water were adjusted based on empirical laboratory experiments	Quintiles of 3^{rd} trimester total integrated CHL exp (µg/d): 1) 0 2) >0-≤0.2 3) >0.2-≤0.8 4) >0.8-≤1.3 5) >1.3	OR (95% CI) by quintile of 3^{rd} trimester total integrated CHL exp (µg/d): 1) referent 2) 1.03 (0.65, 1.66) 3) 0.56 (0.32, 0.96) 4) 0.82 (0.49, 1.37) 5) 0.59 (0.34, 1.01) <u>BW</u> Mean change (95% CI) by quintile of 3^{rd} trimester CHL water conc (µg/L): 1) referent 2) -18 (-86, 51) 3) -6 (-75, 62) 4) 12 (-56, 80) 5) 28 (-39, 96) Mean change (95% CI) by quintile of 3^{rd} trimester total integrated CHL exp (µg/d): 1) referent 2) 10 (-58, 78) 3) -4 (-72, 63) 4) 37 (-31, 105) 5) 32 (-36, 100)	consumption Education Income Smoking BMI Employment Diabetes status Live birth history	Other DBP analyzed: THM4, BDCM, HAA9, BrTHM, HAA5, BrHAA, TOX SGA OR (95% CI) by quartile of 1 st trimester BDCM water exp (μ g/L): 1) referent 2) 0.51 (0.26, 0.99) 3) 0.89 (0.50, 1.59) 4) 1.04 (0.60, 1.8) Significant elevated ORs were observed for TTHM above and below 80 μ g/L at all sites, with the highest OR observed for site 1 – 2.45 (1.09, 5.50) (Supplemental table 8.15) Significant findings were observed for some HAAs <u>PTB</u> OR (95%CI) by quintile of 1 st trimester BDCM water exp (μ g/L): 1) referent 2) 0.78 (0.48, 1.26) 3) 0.78 (0.47, 1.28) 4) 0.58 (0.34, 0.96) 5) 0.73 (0.45, 1.21) OR (95% CI) by quintile of 3 rd trimester BDCM water exp (μ g/L): 1) referent 2) 0.63 (0.38, 1.04) 3) 0.47 (0.27, 0.83) 4) 0.69 (0.41, 1.15)

Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
							5) 0.96 (0.60, 1.54)
							OR (95% Cl) by quintile of 1 st trimester BrTHM water exp (μg/L): 1) referent 2) 0.90 (0.56, 1.45) 3) 0.69 (0.41, 1.16) 4) 0.48 (0.27, 0.84) 5) 1.01 (0.63, 1.62)
							OR (95% Cl) by quintile of 3 rd trimester BrTHM water exp (μg/L): 1) referent 2) 0.58 (0.35, 0.97) 3) 0.45 (0.25, 0.78) 4) 0.51 (0.29, 0.88) 5) 1.03 (0.65, 1.63)
							OR (95% CI) by quintile of 1 ^s trimester BrTHM total integrated exp (μg/d): 1) referent
							2) 0.84 (0.51, 1.38) 3) 0.49 (0.27, 0.86) 4) 0.81 (0.49, 1.34) 5) 0.92 (0.56, 1.51)

Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
			-	-	Results ORs (95% CI) by categories of 3 rd trimester CHL exp, for all water utilities combined (µg/L) (Supplemental material Table 4.12): <u>LBW</u> 1) Referent 2) 1.05 (1.03, 1.07) 3) 1.10 (1.07, 1.13) <u>VLBW</u> 1) Referent 2) 1.01 (0.96, 1.07) 3) 1.07 (0.99, 1.15)		CommentsLarge sample sizeHierarchical links built into the model so exp was estimated with comparable precision across zones and quartersPossibility of high exp misclassification due to weighted averagesNo data on gestation ageIf CHL affects gestation length, this relationship could either contribute to or obscure the observed relationship between CHL and BWOther DBP analyzed: TTHM, BDCM, BrTHM did not show any association with LBW or VLBW (data not shown)
			weighted average THM				
			conc for last 93 days			- - · · · · ·	
			RT Chemical	70		OEHHA	
	foi	r Reconsider	ation: Chloroform			August 2016	

Study/ Study Design/ Outcomes Results Covariates/ Exposure Exposure Comments Location Sample sizes of Interest Measurement Methods Dosages Confounders before birth were categorized into 3 levels

Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
Infante-Rivard 2004 Montreal	Case-Control University- based medical center 1998–2000 N = 985 (singleton births >24 weeks gestation) n = 884 Cases n = 458 controls n = 426	SGA* *(Defined as IUGR in the study - BW below 10 th percentile matched for gestational age, race, and sex)	Water Samples THM conc from regulatory data collected by municipalities189 distribution systems Average daily measuresExposure measure: TTHM exp according to place of residenceIndividual THM exp as average level from treatment plant averaged over pregnancy periodCumulative index was the cumulative level over the pregnancy period (sum of conc x duration in days at specific level)Average level at tap multiplied by # of glasses of tap water per day averaged over the pregnancy (1 version included a weight of 0.9 for filter use or refrigeration)Face to face interview: (within 2 days of delivery) - maternal residence - drinking water source - use and type of domestic water filter - # of glasses of water (average/d) at home and elsewhere - usual way of	CHL water conc (μ g/L): Mean (SD): cases = 11.84 (18.19) controls = 11.58 (16.31) 90 percentile cutoff (23.7 μ g/L) for average CHL conc for the entire pregnancy: 1) \leq 90th percentile 2) > 90th percentile 2) > 90th percentile CHL levels + categories for mother and newborn variants of <i>CYP2E</i> 1 and <i>MTHFR C677T</i> : 1) wild type 2) 1 or 2 variant alleles	OR (95% CI) of entire pregnancy CHL water conc: 1) Referent 2) 1.06 (0.63, 1.79) No increased risks were observed using other exp indices for drinking water or showering (data not shown) ORs (95% CI) for relation to entire pregnancy CHL water conc according to newborn and maternal polymorphisms – <u>Newborn:</u> CYP2E1*5(G1259C) 1) 0.99(0.57, 1.74) 2) 5.62(0.82, 38.39) <i>MTHFR</i> C677T 1) 1.78 (0.82, 3.87) 2) 0.83 (0.38, 1.54) <u>Mother:</u> CYP2E1*5(G1259C) 1) 0.88 (0.50, 1.54) 2) 4.40 (0.73, 26.42) <i>MTHFR</i> C677T 1) 1.00 (0.46, 2.18)	Models adj for: Gestational age Sex Race Pregnancy weight gain Prepregnancy BMI 3 rd trimester smoking Primiparity Preeclampsia History of IUGR Other covariates considered: Parity Preeclampsia history Smoking in pregnancy	Controls born at the same hospital were matched to cases on gestational week, sex and race Substantial number of women drank bottled water Controls reported higher use of domestic water filters Genetic data included Accounted for residential mobility Exp data included detailed water use (e.g. water source, filter use, refrigeration, showering, bottled water use, etc.) Extensive control for confounding Small sample size in exposed category using 90 th percentile Limited water contaminant measures of distribution systems, no specific location within distribution system when multiple locations within system were sampled Other DBP analyzed: BDCM, DBCM, TBM, TTHM
	A		RT Chemical	72		OEHHA	

Table 3a. Detailed Summaries for Epidemiologic Studies of Chloroform (CHL) Exposure and Reproductive Outcomes: Preterm Birth (PTB), Small for Gestational Age (SGA), Low Birth Weight (LBW), and Birth Weight (BW) (cont'd).

Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
			consuming water from tap - # and duration of showers/week		2) 1.12 (0.56, 2.32) The author reported statistical heterogeneity in the risk of SGA between newborn carriers and noncarriers of the CYP2E1 variant for exp to average levels of CHL (data not shown)		

Studv/ Study Desian/ Outcomes Exposure Covariates/ Comments Exposure Results Location Sample sizes of Interest Measurement Methods Dosages Confounders Kramer et al. Population-PTB Water Sampling: CHL water conc CHL conc $\geq 10 \mu g/L$ tended to Models adj for: based malation based case-controWater samples taken $(\mu q/L)$: be found in towns in the from a 1987 municipal 1992 control SGA* Maternal age extreme northern and southern water survey Mean (SD) = 12.5 Number of sections of the state, but Birth certificate LBW lowa (38.7)previous undetectable conc and conc Water samples based on children between 1 and 9 µg/L were data *defined as towns that had single widely scattered throughout Median = 1Marital status 1989-1990 weighing source for drinking water Education lowa defined by surface water less than Range = 0-350Prenatal care All live the 5th supply from a single OR (95% CI) by categories Maternal CHL conc were reported as intake or ground water of entire pregnancy water high as 350 µg/L as cities with singleton percentile Categories of CHL smoking infants born to supply of one or more exp (µq/L) (percent CHL conc: <10,000 inhabitants did not for wells of a single aquifer non-Hispanic gestational of water supplies): Stratified analysis have to conform to the TTHM white women PTB: by water source standard of 100 µg/L age, based 1) Undetectable 1) referent to control for 19 years of age on Exposure measure: or older from California Exp based on maternal 2)1.1 (0.8, 1.4) effects of When analysis was restricted to (45.7)chlorinated water only, the towns with standards residence at birth 2) Low: 1–9 3)1.1 (0.7, 1.6) pesticides in 1,000-5,000 for non-(41.7)drinking water highest level of CHL exp (≥10 Births were from 1989 3) High: ≥ 10 ug/L) had an OR (95% CI) of inhabitants that Hispanic SGA: derived all their whites and 1990 while water (12.6)1) referent 1.8 (1.03, 3.0) public drinking samples were from 1987 2)1.3 (0.9, 1.8) water from a data 3)1.8 (1.1, 2.9) When stratified by type of water source to control for pesticides single source (birth data from 1989 and LBW: in drinking water, SGA analysis PTB of CHL ≥10 µg/L still had an 1990 were used 1) referent cases n = 342as smoking questions 2)1.1 (0.7, 1.6) elevated OR in water from controls n =were included on birth 3)1.3 (0.8, 2.2) shallow and deep wells 1,710 certificates only after As the 1987 survey was 1987) IUGR* conducted during a drought, the TTHM levels in 1989 and (excluding births ≤22 1990 would be expected to be weeks or ≥46 higher due to the higher conc of weeks organic material gestation) Authors attempted to control for unmeasured factors, such as cases n = 187controls n = lifestyle differences, through restriction to towns with 1,000-935 5.000 inhabitants LBW cases n = 159Gestational age was determined from the mother's controls n =795 last menstrual period as reported on the birth certificate 74

Table 3a. Detailed Summaries for Epidemiologic Studies of Chloroform (CHL) Exposure and Reproductive Outcomes: Preterm Birth (PTB), Small for Gestational Age (SGA), Low Birth Weight (LBW), and Birth Weight (BW) (cont'd).

ACGIH TLV DART Chemical for Reconsideration: Chloroform

OEHHA August 2016

Table 3a. Detailed Summaries for Epidemiologic Studies of Chloroform (CHL) Exposure and Reproductive Outcomes: Preterm Birth (PTB), Small for Gestational Age (SGA), Low Birth Weight (LBW), and Birth Weight (BW) (cont'd).

Study/ Location	Study Design/ Sample sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
	*for the purposes of this assessment						Cases were not mutually exclusive
	IUGR will be considered as SGA						THM exp levels were based on a one-time 1987 municipal water survey Total organic halides were measured in 62% of water supplies
							OR (95% CI) for SGA for exp to the highest levels of total organic halides (≥100 µg/L) = 1.8 (0.9,3.4)
							90.6% of those exposed to CHL ≥10 µg/L were also exposed to total organic halides ≥100 µg/L
							Other DBP analyzed: BDCM, DBCM, TBM

Study/	Exposure	Reference				
Location	Level	Level	PTB	SGA	LBW	BW (g) (95% CI)
Danileviciute et al. ‡‡ 2012 Lithuania	Estimated internal dose (µg/d) CHL ≥0.1424 (median level)	<0.1424		Entire pregnancy 1.31 (0.82, 20.9) GSTM1-1 0.84 (0.42, 1.68) GSTM1-0 1.78 (0.90, 3.50)	Entire pregnancy 1.24 (0.57, 2.68) GSTM1-1 0.34 (0.09, 1.22) GSTM1-0 4.08 (1.20, 13.9) Test for interaction:	
				GSTT1-1 1.30 (0.78, 2.17) GSTT1-0 0.99 (0.28,3.58) <u>3rd trimester</u> 1.31 (0.82, 2.08) GSTM1-1 0.88 (0.44, 1.78) GSTM1-0 1.74 (0.89, 3.41)	12.88 (2.27, 73.2) GSTT1-1 1.9 (0.5, 2.82) GSTT1-0 7.48 (0.13, 409) <u>3rd trimester</u> 1.45 (0.67, 3.13) GSTM1-1 0.35 (0.10, 1.28) GSTM1-0 5.06 (1.50,17.05)	
				GSTT1-1 1.18 (0.71, 1.97) GSTT1-0 1.75 (0.50, 6.10)	Test for interaction: 15.86 (2.75,91.40) GSTT1-1 1.35 (0.57, 3.20) GSTT1-0 7.30 (0.14, 391)	
Botton et al.* 2015 Spain (3 study sites) and Greece	Estimated internal dose (µg/d) <u>All sites:</u> CHL IQR inc Ingestion (µg/d)					Entire pregnancy Postnatal weight gain -9.30 (-87.3, 68.7)
	All sites: CHL IQR inc					-40.3 (-122, 41)

Abbreviations: BDCM - bromodichloromethane; BrTHM - total brominated trihalomethanes; BW - birth weight; CHL - chloroform; CI - confidence interval; conc - concentration; DBCM - dibromochloromethane; dec - decrease; FGR - fetal growth restriction; inc - increase; LBW - low birth weight; med - medium; PTB - preterm birth; SGA - small for gestational age; TCAA – trichloroacetic acid; TTHM - total trihalomethanes; VLBW - very low birth weight.

Study/	Exposure	Reference		Odds Ratio (95% CI)		
Location	Level	Level	РТВ	SGA	LBW	BW (g) (95% CI)
	By site: Gipuzkoa CHLIQR incSabadell CHLIQR incValencia CHLIQR inc					9.63 (-174, 193) -151 (-288, -15) 36.7 (-87, 160)
Grazuleviciene et al. 2011 ‡ ‡ Lithuania	Estimated internal dose (µg/d) 0.0249–0.2868 0.2868–2.1328 Continuous (per 0.1 µg/d increase)	0.0013-0.0249		<u>3rd trimester</u> 1.19 (0.87, 1.63) 1.22 (0.89, 1.68) 1.04 (1.00, 1.09)	<u>3rd trimester</u> 2.12 (1.11, 4.02) 2.13 (1.15, 3.92) 1.09 (1.01, 1.18)	3 rd trimester Change in BW in grams of infants below 3,500 g for every 1 μg/d increase in internal dose: -57.8 (-111.6, -4.0)
Smith et al. 2015 England	Estimated internal dose (μg/d) CHL ≥0.91–<1.56 ≥1.56	<0.91				Entire pregnancy Total population: -16.3 (-39.0, 6.5) -20.9 (-44.6, 2.8) Pakistani origin: 10.3 (-21.2, 41.9) - 48.3 (-84.6, -12.1) White British:
						-13.3 (-52.9, 26.3) 9.0 (-23.5, 46.5) <u>3rd trimester</u> Total population: -14.8 (-37.7, 8.1) -8.7 (-31.8, 14.3) Pakistani origin: 5.1 (-27.1, 37.4) -42.8 (-78.2, -7.4)
Kramer et al. 1992 Iowa	<u>Water conc (μg/L)</u> CHL 1–9 ≥10	ND <1	Entire pregnancy 1.1 (0.8, 1.4) 1.1 (0.7, 1.6)	Entire pregnancy 1.3 (0.9, 1.8) 1.8 (1.1, 2.9)	Entire pregnancy 1.1 (0.7, 1.6) 1.3 (0.8, 2.2)	White British: -27.0 (-66.1, 12.1) 9.5 (-26.8, 45.8)

Study/	Exposure	Reference	Odds Ratio (95% CI)			
Location	Level	Level	PTB	SGA	LBW	BW (g) (95% CI)
Costet et al. 2012 France	<u>Water conc (µg/L)</u> CHL 5–<10 10–<15 ≥15	< 5	3 rd trimester 0.7 (0.4,1.2) 0.5 (0.3,0.9) 0.8 (0.4,1.4)	<u>3rd trimester (as FGR)</u> 0.8 (0.5, 1.2) 1.0 (0.6, 1.5) 0.9 (0.5, 1.4)		
	<u>Estimated internal dose</u> (μg/d) CHL 0.068–<0.133 0.133–<0.237 ≥0.237	< 0.068	1.8 (0.7, 4.8) 0.7 (0.2, 2.1) 1.0 (0.4, 2.9)	1.1 (0.5, 2.3) 1.2 (0.6, 2.4) 1.0 (0.5, 2.1)		
	Nested TCAA Study Estimated internal dose via ingestion (µg/d) CHL 0.001-<0.006 0.006-<0.015 ≥0.015	0–0.001	0.7 (0.3, 1.5) 0.8 (0.4, 1.8) 1.2 (0.6, 2.5)	1.0 (0.6, 1.7) 0.8 (0.4, 1.5) 1.2 (0.7, 2.2)		
Hinckley et al. 2005 Arizona	<u>Water conc (μg/L)</u> CHL 10−16 ≥16	<10	No OR were presented Authors reported no associations were observed	<u>3rd trimester</u> 1.02 (0.94, 1.11) 1.01 (0.93, 1.10)	<u>3rd trimester</u> 1.18 (1.00, 1.39) 1.04 (0.88, 1.23)	
Infante-Rivard 2004	Water conc (µg/L) CHL >23.7	<u><</u> 23.7		Entire pregnancy 1.06 (0.63, 1.79)		
Montréal, Canada 1) Wild 2) 1 or	Gene-environment interaction: 90 th percentile CHL conc + categories for mother and newborn variants of CYP2E1 and MTHFR C677T: type 2 variant alleles					
	Newborn CYP2E1*5 CHL >23.7	<u><</u> 23.7		(0.57, 1.74) (0.82, 38.39)		
	MTHFR CHL >23.7	≤23.7		(0.82, 3.87) (0.38, 1.54)		
	Maternal CYP2E1*5 CHL >23.7	≤23.7		(0.50, 1.54) (0.73, 26.42)		

Study/						
Location	Level	Level	РТВ	SGA	LBW	BW (g) (95% CI)
	MTHFR CHL >23.7	≤23.7		(0.46, 2.18) (0.56, 2.32)		
Porter et al. 2005 Maryland	$\label{eq:water conc (\mu g/L)} \ \ \ \ \ \ \ \ \ \ \ \ \ $	1 st quintile		Entire pregnancy 1.24 (1.02, 1.50) 1.08 (0.88, 1.32) 1.12 (0.92, 1.36) 1.04 (0.85, 1.27)		
				<u>3rd trimester</u> 1.02 (0.84, 1.24) 0.96 (0.79, 1.16) 0.98 (0.81, 1.19) 1.07 (0.88, 1.29)		
Toledano et al. 2005 United Kingdom (3 study sites)	<u>Water conc (μg/L)</u> <u>LBW</u> CHL 20–40 >40	<20			<u>3rd trimester</u> 1.05 (1.03, 1.07) 1.10 (1.07, 1.13)	
	<u>VLBW</u> CHL 20–40 >40	<20			1.01 (0.96, 1.07) 1.07 (0.99, 1.15)	
Savitz et al. † 2005 US (3 study sites)	Water conc (µg/L) CHL >0.1-≤10.9 >10.9-≤30.4 >30.4-≤48.2 >48.2	≥0-≤0.1	<u>3rd trimester</u> 0.68 (0.42, 1.11) 0.76 (0.47, 1.24) 0.52 (0.31, 0.90) 0.54 (0.31, 0.92)	Used quartiles <u>3rd trimester</u> 1.45 (0.79, 2.64) 1.33 (0.71, 2.49) 1.05 (0.54, 2.01)		3 rd trimester -18 (-86, 51) -6 (-75, 62) 12 (-56, 80) 28 (-39, 96)
	Estimated internal dose (µg/d) CHL >0-≤0.2 >0.2-≤0.8 >0.8-≤1.3 >1.3	0	1.03 (0.65, 1.66) 0.56 (0.32, 0.96) 0.82 (0.49, 1.37) 0.59 (0.34, 1.01)	<u>Used quartiles</u> 1.16 (0.63, 2.14) 1.26 (0.68, 2.33) 1.14 (0.62, 2.09)		10 (-58, 78) -4 (-72, 63) 37 (-31, 105) 32 (-36, 100)
Hoffman et al. † 2008 3 US communities	Site 1 (chlorinated) water conc (μg/L) CHL 44.3–49.0 49.1–94.0	19.9–44.2		Bayesian models <u>3rd trimester</u> 1.9 (0.5, 8.1) 1.7 (0.4, 7.1)		Bayesian models 3 rd trimester 58 (-51, 165) 49 (-62, 156)

Study/	Exposure	Reference				
Location	Level	Level	PTB	SGA	LBW	BW (g) (95% CI)
	<u>Site 2 (brominated)</u> water conc (μg/L) CHL 11.6–15.6 15.7–22.1	6.4–11.5		4.2 (0.6, 33.7) 3.6 (0.5, 30.1)		64 (-146, 278) 70 (-146, 294)
Levallois et al. 2012 Quebec City, Canada	Water conc (µg/L) CHL 15.96–27.26 27.27–51.07 >51.07	<15.96		<u>3rd trimester</u> 0.9 (0.7, 1.3) 1.0 (0.8, 1.4) 1.2 (0.9, 1.7)		
	Estimated internal dose via total pathway (µg/d) CHL 42.24–80.21 80.22–169.81 >169.81	<42.24		0.9 (0.7, 1.2) 1.0 (0.7, 1.3) 1.0 (0.8, 1.4)		
Rivera-Nuñez and Wright 2013	<u>Water conc (µg/L)</u> CHL >5–21 >21–36 >36–52	≤5	2 nd trimester 1.00 (0.94, 1.06) 1.08 (1.02, 1.14) 1.06 (0.99, 1.12)	<u>3rd trimester</u> 1.01 (0.96, 1.05) 1.00 (0.95, 1.04) 1.04 (1.00, 1.10)		3 rd trimester -1 (-7, 5) -9 (-15, -2) -13 (-19, -7)
Massachusetts	>52		1.00 (0.94, 1.07)	1.04 (0.99, 1.09)		-15 (-21, -8)
Summerhayes et al. 2012 New South Wales,	<u>Water conc (μg/L)</u> CHL IQR increase (25 μg/L)			<u>Relative Risk</u> <u>3rd trimester</u> 1.04 (1.02, 1.06)		Entire pregnancy -5.0 (-8.6, -1.4)
Australia	5 th decile 25.00–30.18 10 th decile 56.03–147.94	1 st decile 1.68–13.71		1.01 (0.96, 1.07) 1.12 (1.05, 1.18)		
Lewis et al. ‡ 2007 Massachusetts	<u>Water conc (µg/L)</u> TTHM (CHL = 83–93%) 40–<60 ≥60	<40	Hazard Ratios 2 nd trimester 0.87 (0.77, 0.99) 0.82 (0.71, 0.94)			
	Continuous (per 10 µg/L increase)		0.95 (0.92, 0.99) <u>Pregnancy average</u> 0.92 (0.82, 1.02) 0.85 (0.74, 0.97)			
			0.95 (0.91, 0.99)			

Table 3b. Associations between Chloroform (CHL) Exposure and Preterm Birth (PTB), Small for Gestational Age (SGA), Low Birth
Weight (LBW), and Birth Weight (BW) in Human Studies.

Study/	Exposure	Reference		Odds Ratio (95% CI)		
Location	Level	Level	PTB	SGA	LBW	BW (g) (95% CI)
			<u>4 weeks before birth</u> 1.07 (0.85, 1.34) 1.39 (1.06, 1.81) 1.03 (0.96, 1.11)			
Wright et al. 2004 Massachusetts	<u>Water conc (µg/L)</u> CHL >26–63 >63–135	0–26	<u>3rd trimester</u> 0.95 (0.91, 0.99) 0.90 (0.84, 0.97)	<u>3rd trimester</u> 1.05 (1.02, 1.09) 1.11 (1.04, 1.17)	/	<u>3rd trimester</u> -14 (-19, -9) -18 (-26, -10)
Lewis et al. ‡ 2006 Massachusetts	Water conc (µg/L) TTHM (CHL = 83–93%) 40-<50	_≤40			2 nd trimester 1.10 (0.81, 1.49) 1.08 (0.79, 1.49) 1.24 (0.92, 1.67) 1.50 (1.07, 2.10) 1.08 (1.00, 1.17) Caucasian 1.11 (0.69, 1.78) 1.10 (0.67, 1.79) 1.22 (0.76, 1.97) 1.37 (0.80, 2.36) 1.06 (0.95, 1.20) Non-Caucasian 1.08 (0.73, 1.61) 1.09 (0.72, 1.66) 1.27 (0.86, 1.87) 1.60 (1.03, 2.47) 1.40 (1.00, 1.22)	
Villanueva et al.* 2011 Spain (5 areas)	Total residential water conc (μg/L) CHL 10% increase		<u>3rd trimester</u> 1.00 (0.99, 1.01)	<u>3rd trimester</u> 1.00 (0.99, 1.01)	1.10 (1.00, 1.22) <u>3rd trimester</u> 1.00 (0.99, 1.02)	<u>3rd trimester</u> -0.07 (-1.00, 0.85)

¹ Hazard ratios for prenatal care paid for by government or Healthy Start.

Study/	Exposure	Reference	Odds Ratio (95% CI)			
Location	Level	Level	PTB	SGA	LBW	BW (g) (95% CI)
Iszatt et al. 2014	Water conc (µg/L) LBW CHL				Entire pregnancy LBW ²	
England	1) Low inc: ≤10 to dec <10 2) Med dec: 10–<30 3) High dec: 30–65 <u>VLBW</u> CHL				1) -5 (-9, -1) 2) -5 (-9, -1) 3) -9 (-12, -5) <u>VLBW</u> -7 (-17, 3)	
				/	4 (-7, 16) -16 (-24, -8)	
Zhou et al. 2010 China	<u>Water conc (µg/L)</u> CHL 2 nd quartile 3 rd quartile 4 th quartile	1 st quartile				Odds Ratio Entire pregnancy 0.96 (0.60, 1.53) 1.45 (0.88, 2.40) 1.64 (0.90, 3.00) 1st trimester 1.74 (1.10, 2.77) 0.90 (0.47, 1.74) 0.89 (0.44, 1.77)
						<u>3rd trimester</u> 1.37 (0.99, 1.88) 1.67 (0.98, 2.85) 1.82 (1.10, 3.02) <u>1st and 2nd trimester</u> 1.10 (0.71, 1.68) 1.62 (1.05, 2.50)
Wennborg et al. 2000	Women working in a laboratory with CHL	Women working in				0.93 (0.54, 1.60) Entire pregnancy 27 (-136, 190)
Sweden	n = 66	non- laboratory departments				2. (100, 100)

² Reported as rate change, which is the percent change calculated as the exponential of the regression coefficient (e.g. rate ratio of after/before) minus 1 and multiplied by 100.

Iszate tal. Respective cohort SB Water Sampling: Routine motioning of policie valor supply: - at geographically - an informut of 1 times periods and 2002-2002 CHL water some prevalue - an informut of 1 2002-2002 CHL water some prevalue - an informut of 1 2002-2002 CHL water some prevalue - an informut of 1 2002-2002 ULBW and periods and and 2002-2002 The water samples - a minimum of 4 statistical for mation - and periods for and 2002-2002 CHL water conc prevalue - an informut of 1 2002-2002 ULBW and periods and period before and 3-year period before and 3-period the year of birth CHL distribution change (up1): CHL distribution chand period before chandperiod before and mater action the year of b	Study/ Location	Study Design/ Sample Sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
Birth and SBVLBW records potnet reported in a minimum of 4 times periods 2000-2002		•		Routine monitoring of			were presented	
Two sample periodsTable 3a) per yearper year2002/ 38.6 (4.2)affect the rates(calculated from Table 1 of the paper)2000-2002 andwater sampling: 3-year period before and 3-year period before and 3-year period atter EC component -Mater (2005-2007)Other ovariates termoval of the year of birthDither ovariates termoval of the year of birthBackground mean TTHM conc dcrease of 15.1 µg/L in non- dcrease of 30.5 µg/L in termoval of the year of birthBackground mean TTHM conc dcrease of 15.1 µg/L in non- dcrease of 30.5 µg/L in termoval of the year of birthMean (SD) =Maan (SD) =Background mean TTHM conc dcrease of 30.5 µg/L in termoval of the year of birthMean (SD) =Maan (SD) =Maan (SD) =Maan (SD) =Mean (SD) =Maan (SD) =Mean (SD)			VLBW outcomes	- at geographically random samples			sex, parity, and maternal age	accounted for 94% of the
and 2005-2007water sampling: 3-year period after EC intervention19.4 (1.0)considered: considered: Multiple birth on non- Ethnicity (area level Census data)Background mean TT-HM conc decrease of 15.1 gg/L in non- Ethnicity (area level Census data)Background mean TT-HM conc decrease of 15.1 gg/L in non- Ethnicity (area level Census data)Intervention enhanced coagulationPostcode of matemal residence at birth was improves the year of birthMean (SD) =Analysis included an interaction ter attes before and after EC : -29.2 (13.2)Mean (SD) =Called an interaction ter attes before and after text scheme at birth was intervention design of the year of birthMean (SD) =Analysis included an interaction text scheme at birth was text scheme at boundary in use during the water zone boundary of the year or linked to the water zone boundary information to the preceding yearMean (SD) =Correct change (85% CI) text scheme at 51.5 (gg/L in non- EC : -29.2 (13.2)Correct change (85% CI) text scheme at 51.5 (gg/L in non- text scheme at 51.5 (gg/		periods -		per year	2002) 38.6 (4.2)		affect the rates	(calculated from Table 1 of the
Interventioninterventionchange (µg/L):level Čensus data)statistically significant greater mea decrease of 30.5 µg/L in EC water zonescoagulationPostcode of matemal 		and		water sampling: 3-year period before and 3-year	19.4 (1.0)		considered: Multiple birth	decrease of 15.1 µg/L in non-
coagulation water treatment (EC; a process that 		component -		intervention	change (µg/L):		level Census	statistically significant greater mean decrease of 30.5 µg/L in
a process that improves removal of DBPboundary in use during the year of bithNo EC: -14.0 (17.4)Percent change (95% CI) for rates before and after rate statio of after/before and after the intervention and across the exp across the expthat few social class factors changed over time, thus decreasing the possibility of reducting DBPformation potential) was introduced to 4Water zone boundary information water waterTHM social information was linked to treatment treatmentNo EC: -14.0 (17.4)Percent change (95% CI) for rates before and after tel claulated as the exponential of the regression coefficient (i.e., rate ratio of after/before) to inst 1 and multiplied by tools:the difference in rates before and after tel claulated as the coefficient (i.e., rate ratio of after/before) tools:the difference in rates before and after tel claulated as the coefficient (i.e., rate ratio of after/before) tools:the difference in rates before and after tel claulated as the coefficient (i.e., rate ratio of after/before) tools:the difference in rates before and after tel clauses before and after tel clause before and after tel clause before and after te		coagulation water		Postcode of maternal residence at birth was	Overall: -19.2		an interaction	Due to the intervention design
DBP precursors, reducing DBP formation 		a process that improves		boundary in use during	No EC: -14.0 (17.4)	for rates before and after	the difference in rates before and	that few social class factors changed over time, thus
formation potential) was introduced to 4of the preceding yearlevels (based on THMs (µg/L):minus 1 and multiplied by 100):Analysis was included to included toreduction in conc of TTHMs, 		DBP precursors,		of the year were linked to	Categories for	exponential of the regression coefficient (i.e.,	intervention and across the exp	residual confounding
water treatment works (88 of 258 waterinformation was linked to 		formation potential) was		of the preceding year	levels (based on	minus 1 and multiplied by	Analysis was	reduction in conc of TTHMs,
258 water zones) in 2003-2004A water zone is a supply area with approximately uniform water quality, with a populationincrease ≤10 2004income on birth outcome rates using variable for incomeNo information on individual water useN = 472,526 (live births)≤100,00010 to <30		water treatment		information was linked to	decreases-	2) 2 (-13, 20)	determine possible	
with a population10 to <30incomeOther DBPs analyzed: THMs, BDCM, DBCM, TBM, BrTHMN = 472,526 (live births)≤100,0003) High decreases - 30 to 65deprivation score at water zone levelTTHMs, BDCM, DBCM, TBM, 		258 water zones) in		area with approximately	increase ≤10 2) Medium	3) -4 (-10, 0)	income on birth outcome rates	
Two exp metrics were level n = 429,599 constructed for each Exposure metric (live births) water zone: included annual EC identified treatment average THM data SB status conc change for covering the entire		N = 472,526		with a population	10 to <30 3) High decreases -		income deprivation score	TTHMs, BDCM, DBCM, TBM,
EC identified treatment average THM data SB status conc change for covering the entire		n = 429,599		constructed for each	Exposure metric			
		SB		EC identified treatment status conc change for	average THM data covering the entire			

et al. ‡ ‡ coho	pregnant	BD	Water Sampling:	A H			
Lithuania Lithuania Lithu 2007 N = 3 (preg wom n = 3 <u>BD:</u> Hear n = 4 Muso skele n = 3	unas (2 nd) gest city in ; huania) 07–2009 3341 egnant men) 3,074 : art: = 57 sculo- bletal: = 37 ogenital:	From registry - based data, diagnosed after a live birth and before discharge from hospital: Heart Musculo- skeletal Urogenital	4 treatment plants: all groundwater sources, each sampled at 3 distances from each plant (near the plant, at 5 and ≥10 km), 4 times/year for 3 years (85 samples in total) Mean quarterly conc was calculated for each plant <u>Exposure Measure</u> : Geocoded maternal address at birth was used to determine CHL exp conc Average conc was calculated for 1 st , 2 nd , and 3 rd months, each trimester, and entire pregnancy Internal dose (total integrated uptake): (inhalation, ingestion & dermal absorption) was calculated from algorithms using interview data, on trimester-specific water consumption including: - size and number of glasses of tap water per day (including cold and boiled water), use of bottled water at home, at work, other - number and average length of showers and baths, swimming pool visits	CHL water conc (μ g/L) Mean (SD): At 3 plants with low THM levels = 0.9 (1.0) At 1 plant with high THM levels = 17.7 (9.0) (54.9% of subjects) Internal dose for 1 st trimester CHL exp: Range (μ g/d): 0.001–2.109 Tertiles (μ g/d): 1) 0.001–0.026 2) 0.026–0.288 3) 0.288–2.109	OR by tertiles of 1 st trimester internal CHL exp (µg/d): Heart: 1) referent 2) 1.05 (0.53, 2.08) 3) 1.37 (0.72, 2.63) P-trend: 0.245 Continuous (1 µg/d): 1.97 (0.90, 4.35) Musculoskeletal: 1) referent 2) 0.61 (0.29, 1.32) 3) 0.51 (0.22, 1.14) P-trend: 0.111 Continuous (1 µg/d): 0.43 (0.11,1.71) Urogenital: 1) referent 2) 2.21 (0.67, 7.23) 3) 2.50 (0.78, 8.06) P-trend: 0.118	Models adj for: Heart anomalies: Age BMI Chronic disease Alcohol consumption Fetus number Musculosketal anomalies: BMI Fetus number Previous Premature birth Infant sex Urogenital anomalies: Age BMI Chronic disease Previous premature birth Infant sex Other covariates considered: Ethnicity Education Parity Smoking "among others"	 Individual THMs were highly correlated (r = 0.91–0.99) Most women were interviewed during the 3rd trimester (76%); 24% within the 1st month after delivery Collected information on water filter use (yes/ no), however, no adjustment was included in the internal dose calculation based on use No significant difference was seen in filter use habits Accounted for residential mobility by restricting study to women who did not change residence during pregnancy Questionnaire information was collected repeatedly on 10% of subjects Exp data included extensive detailed water use collected prospectively (e.g. filter use, exp at work, showering and bathing, swimming) SB or pregnancy terminations due to congenital anomalies diagnosed prenatally were excluded from the sample Low spatial and temporal variability between the low and high sites Other measured DBPs did not vary across plants and were at low or sub µg/L levels
					Continuous (1 µg/d):		(including TBM,

Study/ Location	Study Design/ Sample Sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
Location	Sampie Sizes	or interest	Estimated uptake factors were used for ingestion (including heated water), inhalation and dermal exp	Dosages	2.22 (0.69, 7.17)	Conrounders	5 haloacetonitriles, 2 haloketones, chloropicrin, chloral hydrate, halogenated furanone) Thus, only TTHMs and 3 individual THMs (CHL, BDCM, DBCM) were evaluated BDCM was associated with heart anomalies OR (95% Cl) = 2.16 (1.05, 4.46) in the 1 st month of pregnancy, with a significant dose-response relationship p = 0.02 Significant associations were also seen for a continuous measure for the 1 st 3 months
							and the 1 st trimester
							Some significant associations were also seen for DBCM and heart anomalies (for a continuous measure), and musculoskeletal anomalies (for a categorical measure)

Study/ Location	Study Design/ Sample Sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
lszatt et al.	Case-control	Hypo- spadias	<u>Water Sampling:</u> 6 water companies	CHL water conc (µg /L):		Models adj for:	CHL was not the predominant THM
2011	Surgeon	·	provided THM data for			Family income	
England	recruited male children born in		140 water zones	Median = 2.9		Low birth weight Folate	THM data were available for 354 of the 468 case mothers
	1997–2002		Monitoring data for 1997 was unavailable - 1998	Quartiles of CHL water conc (µg/L):	OR (95% CI) for exp to CHL in water (µg/L):	supplement use	and 336 of the 485 control mothers
	2000–2003		data was used for infants			Maternal	
	NI 404 400		born in 1997 as spatial	1) 0.0–0.9	1) referent	smoking	Used a stochastic model based
	N = 191,438 male births		variation was greater	2) 1.0–2.9 3) 3.0–6.9	2) 1.17 (0.67, 2.03) 3) 0.99 (0.57, 1.69)	weeks 6–18 Maternal	on Bayesian hierarchical mixture distributions to estimate
			than temporal variation	4) 7.0–90	4) 0.84 (0.49, 1.46)	occupational	the mean conc for TTHM, CHL,
	n = 731 invited		Exposure Measure:			exp to	BDCM, DBCM by quarter for
	case mothers		Participants' water zones were geocoded using	Quartiles of CHL ingestion at home	OR (95% CI) for CHL ingestion at home (µg/d):	phthalates Swimming	each water zone
	cases		postal codes then linked	(µg/d):			Estimated type of water source
	n = 354		to their residential water			Other covariates	(e.g. ground, surface, etc.) for
	e e retue le		zone and to the THM	1) 0.0	1) referent	considered:	water zones used in the model
	controls n = 336		conc estimates	2) >0.0-1.4	2) 1.26 (0.79, 2.01)	Family history of	Exp data included detailed
	11 = 550		Annual average THM	3) 1.5–4.2 4) 4.3–65.0	3) 1.12 (0.70, 1.79) 4) 1.36 (0.84, 2.22)	hypospadias	water use (e.g. exp at work,
			levels were estimated	+) +.0-00.0	4) 1.00 (0.04, 2.22)	History of	activities such as dishwashing,
			from quarterly modeled data	Quartiles of CHL total uptake (µg/d):	OR (95% CI) for CHL total uptake (µg/d):	previous stillbirth	and swimming)
			uala	ioial uplake (µg/u).	uptake (µg/u).	Gestational	Monitoring data for 1997 was
			Computer assisted	1) 0–1.37	1) referent	diabetes	unavailable
			telephone interviews	2)1.38-4.78	2) 0.93 (0.56, 1.53)	High intake of	
			2000–2003	3) 4.79–13.98	3) 0.86 (0.52, 1.42)	cold tap water	Long interval between the end
				4)13.99–101	4) 0.74 (0.45, 1.21)	or bottled	of the pregnancy and the
			THM ingestion = amount of cold water		(from Supplemental material Table 9)	water	interview (2½–6 yrs)
			consumed at home		material rable 9)		No information on paternal exp
			during 1 st trimester x		Significant dose response		previously associated with
			THM conc		association with OR (95% CI) presented for highest		hypospadias, e.g. pesticides
			Activities =		exp category:		Participation rates of eligible
			duration of				mothers were 64% of cases,
			dishwashing, bathing,		Cold tap water		33% of controls
			showering, &		consumption at home		
			swimming		1.17 (1.07, 2.76)		Sample size was decreased
			x THM conc		p-trend = 0.01		due to lack of valid postal codes, or lack of THM data for
			Total uptake:		Total water consumption		271 participants
			Estimates from ingestion		1.70 (1.09, 2.67)		
			& water use activities		p-trend = 0.02		
	Α		ART Chemical	86		ОЕННА	

86

Study/ Location	Study Design/ Sample Sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
			were multiplied by modeled uptake factors		Bottled water 1.64 (1.09, 2.48) p-trend = 0.05 Total fluid consumption 1.55 (1.01, 2.39) p-trend = 0.07		Other DBPs analyzed include: TTHMs, BDCM, DBCM, TBM, BrTHM BDCM ingestion at home OR (95% CI) (highest exp category 6–50µg/d): 1.65 (1.02, 2.69) P for trend = 0.13

2005Ioss up to 20I) moderate chlorinated DBFs (CHL was the outreach (LBW, SA, 2000-2004I) moderate chlorinated DBFsperiod (ug/L):Locations (ug/L):Maternal age Black race(20-120 µg/L)2000-2004(LBW, SA, DBFs2) moderate bromination DBFs2) moderate bromination DBFs2) 104 moderate bromination TATA90 (0.6, 1.4)Hispanic ethnicity Hanica bromination Marial status10 programcy losses occurres Education Marial status10 moderate bromination commen800-2004BW, PTB3) low DB levels3) 102All sites = 23.9Kachol use (ug/L):Exp data included extensive detailed water use called of motify prospectively (e.g. fille wormen or planning regrant)Exp data included extensive detailed water use; ex at work; and showering/bathing)Exp data included extensive detailed water use; ex at work; and showering/bathing)n = 2.409 (excluding moveren ns 12For each site, water weeks1) 20.0-20.61) of efferent (1) 20.0-20.6Ethnicity (ug/d):Chlor covariates showering/bathing)at work; and showering/bathing)10 0n = 2.409 (excluding moveren ns 12For each site, water weeks at location that regrancies, movera at e.31) 20.0-20.61) of efferent (ug/d):Ethnicity (ug/d):Authors note that site considered:n = 258Exp ossure pregnancies, motify data area, etc.)Exp ossure pregnancy1) 0.0-20.62) 0.86 (0.55, 1.45)Season sont that site considered:Authors note that site considered:10 0n = 258 <th>Study/ Location</th> <th>Study Design/ Sample Sizes</th> <th>Outcomes of Interest</th> <th>Exposure Measurement Methods</th> <th>Exposure Dosages</th> <th>Results</th> <th>Covariates/ Confounders</th> <th>Comments</th>	Study/ Location	Study Design/ Sample Sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
from showering and - No clear linear relationship bathing] was seen between tap water conc and blood	Location Savitz et al. † 2005 US	Sample Sizes Prospective cohort Prenatal clinics and community outreach 2000–2004 N = 3,132 (pregnant women or women planning to become pregnant) n = 2,409 (excluding women >12 weeks gestation, multiple pregnancies, moved out of area, etc.) SAB	of Interest SAB (pregnancy loss up to 20 weeks gestation) (LBW, SGA, BW, PTB outcomes were reported in	Measurement MethodsWater Sampling:3 sites represented:1) moderate chlorinated DBPs (CHL was the dominant species)2) moderate brominated DBPs3) low DBP levelsSites 1 & 2 used chloramination rather than free CHL for termination disinfectionFor each site, water samples were measured weekly at a location that reflected DBP conc throughout the systemExposure Measurement: Tap water exp was the average weekly sample values over time of pregnancyDaily exp: Ingestion - residential tap water conc x consumption (number and cup size per day of tap, filtered, hot, and cold water) x uptake factorsTotal integrated exp - including ingestion, inhalation and dermal absorption (water conc x duration x uptake factors) [inhalation and dermal from showering and	Dosages CHL water conc by site for periconceptional period (μ g/L): Mean = 1) 47.9 2) 12.4 3) 0.2 All sites = 23.9 Quintiles of CHL water conc (μ g/L)): 1) \geq 0.0– \leq 0.6 2) >0.06– \leq 8.6 3) >8.6– \leq 30.27 4) >30.27– \leq 48.71 5) >48.71 Quintiles of CHL total integrated exp (μ g/d): 1) 0 2) >0.0– \leq 0.24 3) >0.24– \leq 0.78 4) >0.78– \leq 1.4 5) >1.4 The above exp categories were for the time period 9 weeks after the last menstrual period to 20 weeks after the last menstrual	OR (95% CI) of CHL water conc, including all three locations (µg/L): 0.9 (0.6, 1.4) OR of CHL water conc (µg/L): 1) referent 2) 0.82 (0.51, 1.34) 3)1.66 (1.06, 2.61) 4) 0.89 (0.55, 1.45) 5) 0.95 (0.58, 1.54) OR of CHL total integrated exp (µg/d): 1) referent 2) 0.88 (0.54, 1.42) 3) 1.15 (071, 1.86) 4) 1.09 (0.68, 1.76)	Confounders Models adj for: Maternal age Black race Hispanic ethnicity Education Marital status Alcohol use Age at menarche Vitamin use Other covariates considered: Ethnicity Income Study site Season Cigarette smoking Alcohol intake Caffeine consumption BMI Employment Diabetes History of spontaneous abortion Previous induced abortion	CHL was dominate THM species at chlorinated DBP site (20–120 µg/L) 81 pregnancy losses occurred before the initial interview Exp data included extensive detailed water use collected mostly prospectively (e.g. filter use, hot or cold water use; exp at work; and showering/bathing) Authors note that site characteristics (e.g., demographics) or the recruitment methods across the sites could possibly have led to biases in the estimated effects of DBPs Research was supported by the American Water Works Association Research Foundation and U.S. EPA No karyotyping of normal or abnormal fetal losses Initial interviews were conducted after pregnancy loss in 31.4% of the women Numerous comparisons were across various exposure periods using various estimates of exposure A biomarker study was conducted by site, and by season for Site 1: - No clear linear relationship was seen between tap

Study/ Location	Study Design/ Sample Sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
Location	Sample Sizes	of Interest	Measurement Methods Estimated DBP levels for hot, cold, unfiltered, and filtered water were adjusted based on empirical laboratory experiments	Dosages		Confounders	levels for CHL or for any of the other THMs - Baseline THM levels in blood differed across sites; however, not nearly to the extent expected Other DBPs analyzed include: THM4, BDCM, HAA9, total organic halide Sporadic indications of increased risk of SAB associated with higher exp to DBPs were most notable for
							ingested total organic halide in the upper quintile: OR (95% CI) = 1.5 (1.0, 2.2) Although this study explicitly included categorization of exp for comparability with results of Waller et al. 1998, the findings of this study were not supportive of those results

•				-	-	. ,	
Study/ Location	Study Design/ Sample Sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
Toledano et al.	Retrospective cohort	SB	Water sampling: Samples from 3 water	CHL water conc (µg/L):	ORs (CI) for CHL, for all water utilities combined	Models adj for:	Large sample size
2005	Birth and	(LBW and VLBW	companies	Mean - not stated	(Supplemental material Table 4.12):	Maternal age Castairs quintile	Hierarchical links built into the model so exp are estimated
United	stillbirth	outcomes	Regulations required ≥4	CHL exp			with comparable precision
Kingdom (3 water	records	were reported in	samples/year, unless TTHM conc was <50	categories*: 1) Low <20	1) Referent 2) 1.11 (1.03, 1.19)	(Carstairs index is a measure of	across zones and quarters
regions)	1992–1998 (years varied	Table 3a)	µg/L, in which case only 1 sample/year was	2) Med 20–40 3) High>40	3) 1.12 (1.02, 1.23)	socioeconomic deprivation at the	"[C]hloroform showed a similar pattern of risk for
	by water utility)		required			level of the	stillbirths and low and very low
	N. 000.004		•• • • •	*Personal		enumeration	birth weight to that of TTHM, for
	N = 969,304		More frequent samples	correspondence		district,	the overall summary estimates
	n = 920,571*		were required if the standard of 100 µg/L	(2/10/14)		which has a population=400	across the three regions and in each individual region"
	(excluding		TTHM was breached			on average)	Dessibility of bigh over
	births that could not be		Mean number of			Other covariates	Possibility of high exp misclassification due to
	assigned water		samples/year:			considered:	weighted averages
	zones, etc.)		Northumbrian $= 4.5$				
			United Utilities = 11.2			Sex	Other DBPs analyzed:
	<u>SB</u> p = 4.852		Severn Trent = 6.3			Interaction	TTHMs, BDCM, BrTHM
	n = 4,852		Exposure Measurement:			Interaction parameters with	No association was found with
	*n - from		Individual postal code			all covariates	BDCM or BrTHM
	descriptive		records were extracted			were tested in	
	table (Table 1		from birth registries and			final models	
	of the paper)		linked to water zone				
			Individual THM conc				
			were modeled, taking				
			into account seasonal variation and THM				
			profiles associated with				
			particular water sources,				
			to obtain more robust				
			estimates of mean TTHM				
			in each zone				
			Modeled quarterly TTHM				
			estimates were weighted				
			(based on the proportion of the trimester in each				
			quarterly period) and the				
			weighted average THM				
			conc for last 93 days				
	Δ.		APT Chamical	00			

Study/ Location Study Design/ Outcome Sample Sizes of Interes

Outcomes Exposure of Interest Measurement Methods

Exposure lethods Dosages Results

Covariates/ Confounders

Comments

before births were categorized into 3 levels

Study/ Location	Study Design/ Sample Sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
					Results	••••••••	 Comments 70% cases and 62% controls had a chlorinated household water supply Joint analysis was conducted with number of cups of tap water consumed and THM level (categorical) Water conc was determined by sampling each subject's residential tap water Accounted for residential mobility Women were eligible to participate if they lived in the study area for first 5+ months of pregnancy, delivered in the study area, and were residents in study area, and were residents in study area, and were residents in study area, and were residents of firet, bottled detailed water use (e.g. filter use and exp at work) Adj THM exp estimates for use of filter, bottled water and boiled drinks Water sampling was not done at time of exp, due to retrospective nature of study design; water was collected 1 year later, so misclassification is possible.
			Dam)				Subject response rates, with interviews completed, were 68% for controls and 60% for cases

Referent categories for analyses contained subjects

Study/ Location	Study Design/ Sample Sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
							who had a private well, therefore, risk may be observing effect of private versus public water supply
							Other DBPs analyzed include: TTHMs and BDCM
							OR (95% CI) for risk of SB with THM exp: - 5+ cold tap water-based drinks and residential TTHM 1–49 (µg/L) = 2.4 (1.1, 1.9) THM ≥50 (µg/L) = 4.0 (1.4, 11) (adj for showering/bathing did not alter these results)
							significant effects were also seen for the joint effects of minutes showering/bathing and TTHM exp

-	•			-		•	
Study/ Location	Study Design/ Sample Sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
Windham et al. 2003 California	Prospective cohort Women's Reproductive Health Study May 1990– June 1991 N = 1,092 eligible women n = 403 (after 89 dropped out and 61 became ineligible due to moving, early pregnancy, or starting birth control pills)	Menstrual cycle function (measured as: -menstrual cycle length -follicular phase length; -luteal phase length -menses length)	 Water sampling: Collected quarterly THM measurements from 10 water utility companies. Calculated utility-wide averages (i.e., average of all measurements taken by a utility company) Exposure measure: Participants' addresses were geocoded, and assigned the appropriate water utility company in the county Participants completed a detailed baseline interview by telephone about water consumption and frequency and duration of showers per week Participants filled out a daily diary Participants were assigned a 90 day exp time period for each cycle (Estimated ingestion uptake for TTHM but not for CHL) 	CHL water conc (µg/L): Mean - not reported CHL exp categories (µg/L): 1) 1 st quartile 2) 2 nd -3 rd quartile 3) 4 th quartile (≥17)	Differences (day) (95% CI) for CHL exp categories: <u>Menstrual cycle length</u> 1) referent 2) -0.43 (-0.99, 0.13) 3) -0.30 (-1.0, 0.40) <u>Follicular phase length</u> 1) referent 2) -0.42 (-0.96, 0.12) 3) -0.13 (-0.82, 0.56) OR (95% CI) for risk of having a short luteal phase at the highest CHL quartile level: 2.2 (1.0, 4.7)	Models adj for: Income Age Pregnancy history BMI Caffeine consumption Alcohol consumption Race Smoking Other covariates considered: Demographics Reproductive history Lifestyle factors (i.e., smoking, alcohol consumption, caffeine consumption, and exercise)	 Participation rate was about 40% of the eligible population Considered participant mobility by calculating utility measures for each address lived in and using a weighted average Menstrual function parameters were based on biologic measures rather than self-reporting Other DBPs analyzed include: TTHMs, BDCM, DBCM, TBM and BrTHM Monotonic decrease in follicular phase length was observed for TTHM (µg/L):exp: >40-60 -0.39 (-0.98, 0.20) >60 -0.94 (-1.6, -0.24) Similar findings were observed for mean cycle length Significant findings were also observed for BDCM, DBCM, TBM, and BrTHM analyzed by quartile of exp OR (95% CI) for risk of having a long follicular phase at the highest conc of BrTHM: 0.26 (0.12, 0.60) Similar findings were reported for individual brominated compounds

Study/ Location	Study Design/ Sample Sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
Dodds and King * * 2001 Nova Scotia	Retrospective cohort Perinatal database 1988–1995 Singleton births N = 49,842 n = 48,845 (excluded births with unknown gestational age, and women with missing values for adjustment factors) NTD n = 77 Cardiovascular n = 430 Cleft n = 82 Chromosomal n = 96	BDNeural tube defects (NTD)Cardio- vascular anomaliesCleft defectsChromo- somal abnormalities	Water sampling: Routine monitoring of THMs at water facilitiesSamples taken at irregular intervals 4 times/year from 3 locations within the distribution systems of each facilityExposure measure: Individual levels were determined by TTHM values of the water facility that serves the area of maternal residence at birthNTD: average CHL conc in the facility from 1 month prior to conception to 1 month after conceptionCardiac and cleft defects: average CHL conc in the facility during the 1st 2 months of pregChromosomal: average CHL conc in the facility 3 months before pregnancy	CHL water conc (μ g/L): Mean (SD) = 64.1 Categories of CHL conc (μ g/L): 1) <50 2) 50–74 3) 75–99 4) ≥100 Timing of exp See previous column (Exposure measure)	RR for CHL exp: <u>NTD</u> 1) referent 2) 0.7 (0.4, 1.2) 3) 0.7 (0.3, 1.5) 4) 1.2 (0.7, 2.3) <u>Cardiovascular</u> 1) referent 2) 1.0 (0.8, 1.3) 3) 1.0 (0.8, 1.4) 4) 0.7 (0.5, 1.0) <u>Cleft</u> 1) referent 2) 1.2 (0.7, 2.0) 3) 0.9 (0.4, 2.0) 4) 1.5 (0.8, 2.8) <u>Chromosomal</u> 1) referent 2) 1.3 (0.8, 2.2) 3) 1.9 (1.1, 3.3) 4) 1.4 (0.8, 2.8)	Models adj for: Maternal age Income level (not for cleft defects) Other covariates considered: Parity Maternal smoking Neighborhood family income	CHL accounted for 90% of TTHMs and they were highly correlated ($r = 0.98$) CHL and BDCM were not highly correlated ($r = 0.26$) The study incorporated therapeutic pregnancy terminations for antenatally diagnosed congenital abnormalities Confounders limited to those found in the database No information on ingestion, dermal, or inhalation exp or uptake No information on work water consumption was included Other DBPs analyzed include: BDCM Less than half subjects living in areas with high BDCM also had high CHL conc (>20 µg/L and >100 µg/L respectively) Excess risk was seen at BCDM conc ≥20 µg/L for NTD compared to conc <5 µg/L: RR (95% CI) = 2.5 (1.2, 5.1)

Decreased risk was seen at BCDM conc ≥20 ug/L for NTD compared to conc <5 µg/L: RR (95% CI) = **0.3 (0.2, 0.7)**

Study/ Location	Study Design/ Sample Sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
King et al. * * 2000 Nova Scotia	Retrospective cohort Perinatal database 1988–1995 N = 49,756 (singleton births) SB n = 214	SB	 Water sampling: Water samples taken from the Nova Scotia Dept. of the Environment records THMs measured by each facility on average 4 samples per year Monthly estimates predicted by regression analysis Exposure Measure: Mother's residence at time of delivery was linked to the geographic area served by each water facility Individual estimates were averaged predicted values of THMs for the months covering the duration of the mother's pregnancy 	CHL water conc (μ g/L): Mean = 64.1 Average exp for 95% of women in referent category = 25–49 μ g/L Quartiles of CHL exp (μ g/L): 1) <50 2) 50–74 3) 75–99 4) ≥100	RR (95% Cl) by quartile of CHL exp (μ g/L): 1) referent 2) 1.2 (0.85,1.68) 3) 1.35 (0.87, 2.08) 4) 1.56 (1.04, 2.34) Continuous (per 10 μ g/L): 1.04 (1.00, 1.09) In a model with continuous representation of CHL and BDCM (per 10 μ g/L) entered simultaneously (data reported but not shown): RR (95% Cl) for CHL = 1.03 (0.98, 1.07)	Models adj for: Smoking Maternal age Other covariates considered: Parity Infant sex Neighborhood family income	TTHM and CHL were highly correlated ($r = 0.98$) CHL and BDCM ($r = 0.26$) Data restricted to municipalities with >90% households served by public water facilities, reducing probability that subjects in these areas did not use public water supply Individual water behaviors were not taken into account Data restricted to surface water only Other DBPs analyzed include: TTHMs, BDCM, DBCM, TBM A significant association was observed for BDCM and SB in the highest versus lowest exp category (≥ 20 versus < 5 µg/L): RR (95% CI) = 1.98 (1.23, 3.49)

Study/ Location	Study Design/ Sample Sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
Wennborg et al. 2000 Sweden	Retrospective cohort Population base Case-control analysis Medical records, Swedish Employee Board 1990–1994 N = 1052 women n = 697 women (856 pregnancies included mothers who had worked up to the time of conception, excluded women who had become pregnant before employment, twin pregnancies, etc.) SAB: cases n = 73 controls n = 783	SAB (defined as demaseyconatrol and fetal deaths up to gestational age of 20 weeks) (information about SAB was self- reported) (BW outcome included in detailed summary Table 3a)	Water Sampling: No water sample Exposure Measure: Interview Questionnaire: - laboratory work - period and time worked - exp to individual solvents (one of which was CHL) Exp information collected for time period before, and up to conception	Number of women who reported working in a lab with CHL: yes = 86 no = 770 Work in a lab with CHL: 1) No 2) Yes	OR of work with CHL 1) referent 2) 2.3 (0.9, 5.9)	Models adj for: Maternal age Previous miscarriage Other covariates considered: High blood pressure Other chronic diseases Gynecological Diseases Sexually transmitted infectious diseases Smoking Father's laboratory work at time of conception Presence of small children in the home Previous spontaneous abortions Consecutive pregnancy number	Specific substances in the labs were not measured, just reported use High proportion of non- respondents (27%) Other laboratory exp (e.g. solvents, bacteria) Relied on self-report of SAB No karyotyping of normal or abnormal fetal losses

Study/ Location	Study Design/ Sample Sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
Dahl et al.	Retrospective cohort	Fertility	<u>Water Sampling:</u> Not applicable	Categories of CHL- containing root		Models adj for:	Response rates were dental surgeons = 65%
1999	Female dental	("measured as time to	Exposure Measure:	canal sealer (number of fillings	Percent of women	Maternal age Smoking habits	high school teachers = 70%
Norway	Female dental surgeons in the Norwegian Dental Association N = 1320 Female high school teachers	pregnancyNumber of root fillingsperdefined aswith CHL-based rootmonths ofcanal sealing material forunprotecteddental surgeonsintercourse3required toResponses to open			exposed: 1) 26.7 2) 51.0 3) 15.0 4) 6.7 5) 0.5 Fecundability ratio (CI) of	Medical history Indicating reduced fertility	CHL-based sealing material usage was reported in about 75% of the pregnancies Retrospective time-to- pregnancy is suitable for occupational fertility problems No quantification of CHL was
	N = 1084 n = 1408 pregnancies of 1008 women (834 of 558 dental surgeons, and 574 of 450		Occupational history was restricted to 6 months prior to pregnancy		placing CHL-based fillings (Referent = female high school teachers) 1.06 (0.95, 1.10)		reported Possibility of recall bias of exp with longer wait time to pregnancy

high school teachers)

Study/ Location	Study Design/ Sample Sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
Waller et al. 1998 California (3 facilities)	Prospective cohort Birth records of a managed health care program (Kaiser) 1989–1991 N = 7,881 pregnant women n = 5,144 pregnancies	SAB (loss at ≤ 20 weeks gestation)	Water Sampling: Monitoring data was obtained from 78 of 85 utilities (serving 96% of the cohort)TTHM distribution system quarterly measurements and annual water quality reports from the utilities were used3 sites were represented: 1) primarily mixed water source 2) primarily surface water 3) primarily ground waterTap water consumption at 8 weeks was based on telephone interviewExposure Measure: Residential drinking water utility was determined by the subject's addressEstimated TTHM levels for each subject were averages of all distributions taken by their utility within the 1st trimester, or average measurements taken within 30 days of the 1st trimesterTelephone interview: daily cold tap water intake at 8 weeks gestation, and total tap water intake (cold plus hot)RT Chemical	CHL water conc (μ g/L): Mean (SD) None stated Category of 1 st trimester CHL in tap water (μ g/L): 1) 0–3 2) 4–16 3) \geq 17 Categories for personal exp to CHL: 1) high: \geq 5 glasses/day cold tap water and 1 st trimester CHL level of \geq 17 μ g/L 2) low: <5 glasses/day of cold tap water and CHL level of <17 μ g/L	Percent SAB by category of 1 st trimester CHL tap water levels (µg/L): 1) 8.1% 2) 10.7% 3) 9.5% p-value = 0.15 OR (95% CI) for SAB with high personal CHL exp (category 1): 0.9 (0.5, 1.6)	Models adj for: Gestational age at interview Maternal age at interview Cigarette smoking History of pregnancy loss Maternal race Employment during pregnancy	Mean total TTHM conc was 46.5 µg/L Exp data included detailed water use (e.g. filter use, and exp at work) Data were collected on hot versus cold tap water usage No data were collected on other routes of exp (e.g. bathing, washing) Other DBPs analyzed: TBM, BDCM, DBCM Significant associations were observed between SAB and high personal exp to TTHMs and BDCM for all regions OR (95% CI) = 2.0 (1.2, 3.5) In a logistic regression model for all regions, adj for all 4 individual THMs simultaneously, the OR (95% CI) for high personal exp to BDCM was significant = 3.0 (1.4, 6.6) However, the degree to which the THMs were correlated was not reported, and no analysis for multicollinearity was mentioned
						1 0010	

Study/Study Design/OutcomesExposureExposureResultsCovariates/CommentsLocationSample Sizesof InterestMeasurement MethodsDosagesConfounders

Personal exp: TTHM level and cold tap water consumption Table 4b. Associations between Chloroform (CHL) Exposure and Spontaneous Abortion (SAB), Stillbirth, Birth Defects and Fertility in Human Studies.

Study/ Exposure Reference				Odds	Ratio (95% CI)	
Location	Level	Level	SAB	Stillbirth	Birth Defects	Fertility
Grazuleviciene et al. ‡ ‡ 2013 Lithuania	Estimate internal dose (μg/d) CHL 0.026–0.288 0.288–2.109 Continuous (per 1 μg/d increase)	0.001–0.026			1st trimester exposure Heart anomalies 1.05 (0.53, 2.08) 1.37 (0.72, 2.63) 1.97 (0.90, 4.35) Musculoskeletal anomalies 0.61 (0.29, 1.32) 0.51 (0.22, 1.14) 0.43 (0.11, 1.71) Urogenital anomalies 2.21 (0.67, 7.23) 2.50 (0.78, 8.06) 2.22 (0.69, 7.17)	
Iszatt et al. 2011 England	Water conc (μg/L) CHL 1.0–2.9 3.0–6.9 7–90	0.0–0.9			Entire pregnancy exposure 1.17 (0.67, 2.03) 0.99 (0.57, 1.69) 0.84 (0.49, 1.46)	
	Estimated internal dose (μg/d) CHL 1.38–4.78 4.79–13.98 13.99–101				0.93 (0.56, 1.53) 0.86 (0.52, 1.42) 0.74 (0.45, 1.21)	
Waller et al. 1998 California (3 facilities)	<u>Water conc (μg/L)</u> CHL ≥17 and 5 glasses/d	<17 and <5 glasses/d	1 st trimester exposure 0.9 (0.5, 1.6)			
Windham et al. 2003 California	<u>Water conc (µg/L)</u> CHL 2 nd –3 rd quartile 4 th quartile (≥17)	1 st quartile				Difference in menstrual cycle length -0.43 (-0.99, 0.13) -0.30 (-1.0, 0.40) Difference in follicular phase length -0.42 (-0.96, 0.12) -0.13 (-0.82, 0.56)

Abbreviations: CHL - chloroform; CI - confidence interval; conc - concentration; d – day; dec - decrease; inc - increase; L – liter; LMP - last menstrual period; med - medium; NTD - neural tube defects; SAB - spontaneous abortion.

Table 4b. Associations between Chloroform (CHL) Exposure and Spontaneous Abortion (SAB), Stillbirth, Birth Defects and Fertility in Human Studies (cont'd).

Study/	Exposure	Reference		Odds Rati	io (95% CI)	
Location	Level	Level	SAB	Stillbirth	Birth Defects	Fertility
Toledano et al. 2005 United Kingdom (3 water regions)	Water conc (µg/L) CHL 20–40 >40	<20		<u>3rd trimester exposure</u> 1.11 (1.03, 1.19) 1.12 (1.02, 1.23)		
Savitz et al. † 2005 US (3 study sites)	Water conc (µg/L) CHL >0.06-≤8.6 >8.6-≤30.27 >30.27-≤48.71 >48.71 Estimated internal dose (µg/d) CHL >0-≤0.24 >0.24-≤0.78 >0.78-≤1.4 >1.4	≥0–≤0.06 0	<u>9 weeks after last</u> <u>menstrual period (LMP) to</u> <u>20 weeks after LMP</u> 0.82 (0.51, 1.34) 1.66 (1.06, 2.61) 0.89 (0.55, 1.45) 0.95 (0.58, 1.54) 0.88 (0.54,1.42) 1.15 (0.71,1.86) 1.09 (0.68,1.76) 1.14 (0.72,1.81)			
Iszatt et al. 2014 England	<u>Water conc (μg/L)</u> Low inc <u><</u> 10 to dec <10 Med dec 10–<30 High dec 30–65			Entire pregnancy <u>exposure</u> -5 (-9, 20) ¹ 2 (-13, 20) -4 (-16, 8)		
Dodds et al. 2004 Nova Scotia and Eastern Ontario, Canada	<u>Water conc (μg/L)</u> CHL 1–49 50–79 >80	0		<u>1st + early 2nd trimester</u> <u>exposure</u> 1.8 (1.1, 3.0) 0.9 (0.5, 1.9) 2.2 (1.0, 4.8)		
	Total exposure (μg/L)CHLQuintile 1Quintile 2Quintile 3Quintile 4Quintile 5	No exposure		1.8 (0.9, 3.7) 1.3 (0.6, 3.0) 2.3 (1.1, 4.7) 1.3 (0.6, 2.8) 2.0 (1.0, 4.0)		

¹ Reported a rate change, which is the percent change calculated as the exponential of the regression coefficient (e.g. rate ratio of after/before) minus 1 and multiplied by 100.

Table 4b. Associations between Chloroform (CHL) Exposure and Spontaneous Abortion (SAB), Stillbirth, Birth Defects and Fertility in Human Studies (cont'd).

Study/	Exposure	Ratio (95% CI)				
Location	Level	Level	SAB	Stillbirth	Birth Defects	Fertility
King et al. * * 2000 Nova Scotia	Water conc (μg/L) CHL 50–74 75–99 ≥100 Continuous (per 10 μg/L increase)	<50		Entire pregnancy <u>exposure</u> 1.20 (0.85, 1.68) 1.35 (0.87, 2.08) 1.56 (1.04, 2.34) 1.04 (1.00, 1.09)		
Dodds and King* * 2001 Nova Scotia	<u>Water conc (µg/L)</u> CHL 50–74 75–99	<50			NTD - 1 month before conception to 1 month after 0.7 (0.4, 1.2) 0.7 (0.3, 1.5)	
	≥100				0.7 (0.3, 1.3) 1.2 (0.7, 2.3) <u>Cardiovascular anomalies</u> <u>1st 2 months of pregnancy</u> 1.0 (0.8, 1.3) 1.0 (0.8, 1.4) 0.7 (0.5, 1.0) Cleft defects	
					1st 2 months of pregnancy 1.2 (0.7, 2.0) 0.9 (0.4, 2.0) 1.5 (0.8, 2.8) Chromosomal	
		14			<u>abnormalities</u> <u>3 months before</u> <u>pregnancy</u> 1.3 (0.8, 2.2) 1.9 (1.1, 3.3) 1.4 (0.8, 2.8)	
Wennborg et al. 2000 Sweden	Women working in a laboratory with CHL n = 86	Women with no laboratory work exposure n = 770	2.3 (0.9, 5.9)			

Table 4b. Associations between Chloroform (CHL) Exposure and Spontaneous Abortion (SAB), Stillbirth, Birth Defects and Fertility in Human Studies (cont'd).

Study/	Exposure	Reference	Odds Ratio (95% CI)					
Location	Level	Level	SAB	Stillbirth	Birth Defects	Fertility		
Dahl et al. 1999						Fecundability Ratio (95% CI)		
Norway	Placement of CHL based root fillings by female dental surgeons	High School teachers				1.06 (0.95, 1.10)		

Table 5a. Detailed Summaries of Human Studies of Chloroform (CHL) Exposure and Male Reproductive Outcomes.

Study/ Location	Study Design/ Sample Sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
Zeng et al.† †	Prospective	Sperm	Water sampling:	CHL water conc	Regression coefficients	Models adj for:	CHL was the dominant
	cohort	parameters:	One water treatment plant	(µg/L):	(95% CI) by quartile of CHL	Age	species in the water
2014			supplied water	M 40.74		-	distribution network
Zeng et al.† † 2014 China	Prospective cohort Men who presented to an infertility clinic for semen examination 2011–2012 N = 351 n = 324 (including fertile and sub-fertile men)	Sperm parameters: conc, count, motility Sperm motion parameters: straight line velocity (VSL), curvilinear velocity (VCL), linearity (LIN)	Water sampling: One water treatment plant supplied waterMonthly samples were collected at 3 sites (0.1 km, 4 km, and 8 km from the plant)THM conc in tap water measured within 90 days preceding semen collectionExposure Measurement: Subjects' home tap water THM levels estimated by averaging monthly THM conc from the 3 sampling sites for 90 days preceding semen sample collectionInterviewed to quantify last 3 months' routine water-use activities: • tap water consumption at home and work (including number and size of glasses) • personal hygiene • bathing/ showering • swimming in chlorinated poolsTHM uptake: • models created using self- reported routine water use, THM conc in tap water, and uptake		Regression coefficients (95% CI) by quartile of CHL uptake through ingestion or showering/bathing: <u>Semen quality</u> <u>Ingestion:</u> (natural log transformation was applied to sperm conc and count) Sperm conc: 1) referent 2) -0.19 (-0.43, 0.05) 3) -0.25 (-0.51, 0.00) 4) -0.28 (-0.53, -0.02) p-trend = 0.03 Continuous = -0.15 (-0.25, -0.04) Sperm count: 1) referent 2) -0.15 (-0.40, 0.10) 3) -0.34 (-0.61, -0.07) 4) -0.22 (-0.49, 0.05) p-trend = 0.05 Continuous = -0.12 (-0.24, -0.01) Sperm motility: 1) referent 2) -4.66 (-9.93, 0.60) 3) -3.19 (-8.80, 2.41) 4) -4.13 (-9.73, 1.47) p-trend = 0.25 Continuous = -1.75 (-4.17, 0.16)	Models adj for: Age Smoking status (current and former vs. never smoker) Alcohol use Education level Abstinence time Other covariates considered: BMI Income Occupational exp	
			factors		associations were also		
			 a 30% factor was applied to boiled tap water consumption to reflect reduced THM conc 		reported for continuous measures of CHL uptake via ingestion and decreased sperm conc $(\beta (95\% \text{ CI}) = -0.15 (-0.25,$		
	AC	GIH TLV DAR	r Chemical	105		OEHHA	
	fo	r Reconsiderat	tion: Chloroform			August 2016	

Table 5a. Detailed Summaries of Human Studies of Chloroform (CHL) Exposure and Male Reproductive Outcomes (cont'd).

Study/ Location	Study Design/ Sample Sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
			- bottled water was given a null THM level		-0.04)) and sperm count (β (95% Cl) = -0.12 (-0.24, -0.01))		
			Exp from swimming in chlorinated pools was not		Showering/bathing:		
			included in analyses because few (4.0%) had swum in the past 3 months		No significant associations were observed with any semen quality measures		
					Sperm motion Ingestion:		
					VSL: 1) referent		
					2) -0.25 (-1.85, 1.35) 3) 0.38 (-1.32, 2.08) 4) 1.77 (0.07, 3.47) p-trend = 0.03		
					VCL:		
					1) referent 2) -1.08 (-3.64, 1.48) 3) -0.28 (-3.00, 2.45) 4) 2.74 (0.01, 5.46) p-trend = 0.03		
					LIN:		
					1) referent 2) 1.22 (-1.07, 3.52) 3) 1.67 (-0.77, 4.12) 4) 0.00 (-2.44, 2.44) p-trend = 0.94		
					Showering/bathing:		
					VSL: 1) referent 2) -0.30 (-2.04, 1.43) 3) 0.17 (-1.34, 1.69) 4) 1.38 (-1.31, 3.07) p-trend = 0.12		
					VCL: 1) referent 2) -0.13 (-2.92, 2.67) 3) 1.90 (-0.54, 4.35)		
	۵C		T Chemical	106		ОЕННА	

Table 5a. Detailed Summaries of Human Studies of Chloroform (CHL) Exposure and Male Reproductive Outcomes (cont'd).

Study/ Location	Study Design/ Sample Sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
					4) 2.32 (-0.40, 5.04) p-trend = 0.04		
					LIN:		
					1) referent		
					2) -0.74 (-3.22, 1.73)		
					3) -2.28 (-4.44, -0.11)		
					4) -0.17 (-2.58, 2.24)		
					p-trend = 0.42		

Table 5a. Detailed Summaries of Human Studies of Chloroform (CHL) Exposure and Male Reproductive Outcomes (cont'd).

Study/ Location	Study Design/ Sample Sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
Iszatt et al. 2013 England and Wales	Case-Referent study (from Chemicals and Pregnancy Study, Chaps- UK) Infertility clinic recruitment (13 clinics in 9 urban centers) 1999–2002 N = 2249 Cases had low motile sperm conc (MSC) n = 642 Controls n = 926	Semen quality (percent motile sperm was defined as % moving forward at ≥ 5 µm/s) (low MSC was defined relative to days of abstinence)	Water sampling:Routinely collected THM measurements, typically 1 per quarter per water zone - for all water zones covered by 10 water companies in 6 water regions (1,568 water zones)THM data were modeled using Bayesian models to obtain more robust quarterly water zone- specific estimates of the mean conc of each THMExposure Measurement: Participants' postcode of residence was mapped to the corresponding water zoneParticipant exp was the sum of weighted quarterly estimates during the 90 days prior to semen sample collection	CHL water conc (μ g/L): Mean (SD) cases = 25.9 (19.0) controls = 27.3 (19.1) Interquartile range (μ g/L) = 12–38	OR for Low MSC, per 10 µg/L increase CHL: 1.00 (0.92, 1.09) OR per inter-quartile increase for MSC as a continuous variable, sperm conc, and % motile sperm: no significant relationship was found for any of these outcomes (results only presented in graphic form)	Models adj for: Surgery to testes Regular alcohol consumption Occupational exp to glycol ether Abstinence (for models of sperm conc, % motile sperm, and MSC) Other covariates considered: Age Ethnicity Social class Regular smoking Wearing restrictive underwear Previous conception by the male Manual work Season of semen sampling	 TTHM and CHL were highly correlated (r = 0.95) 75% of men from the original Chaps-UK study were eligible for the investigation due to availability of water company data Analysis of quarterly THM data from the water companies showed greater variance between than within water zones A 74-day exp window was investigated, but no material difference was observed Used multi-level modeling and sensitivity analysis No data were collected on: inhalation or dermal exp personal water use workplace (though majority of participants were employed (93.6% of cases, 96.2% of controls))

Other DBPs analyzed: TTHMs; BrTHMs

a sum)

(variations in TBM, DBCM, and BDCM conc were too small for analysis except as

Table 5a. Detailed Summaries of Human Studies of Chloroform (CHL) Exposure and Male Reproductive Outcomes (cont'd).

Study/ Location	Study Design/ Sample Sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
	Sample Sizes				Multivariate regression coefficients (β) for CHL tertiles: (natural log transformation was applied to sperm conc and count) Sperm conc (million/mL) 1) 0 (referent) 2) -0.04 (-0.12, 0.04) 3) -0.08 (-0.16, 0.01) p (trend) = 0.07 Sperm count (millions) 1) 0 (referent) 2) -0.02 (-0.11, 0.08) 3) -0.07 (-0.16, 0.03) p (trend) = 0.19 Sperm motility (%) 1) 0 (referent) 2) 2.19 (-2.27, 6.64) 3) 1.35 (-3.13, 5.82) p (trend) = 0.55 Curvilinear velocity (µm/s) 1) 0 (referent) 2) 1.03 (-1.28, 3.34) 3) 2.15 (-0.17, 4.47) p (trend) = 0.07 Straight-line velocity (µm/s) 1) 0 (referent) 2) 0.89 (-0.59, 2.38) 3) 1.95 (0.46, 3.44) p (trend) = 0.01 Linearity (%) 1) 0 (referent) 2) 1.13 (-0.86, 3.12)		CHL accounted for >90% of ΣTHMs All results for ΣTHMs were very similar to those of CHL The suggestive positive dose-response relationship between CHL and curvilinear velocity, and significant dose-response relationship between CHL and straight- line velocity were contrary to expectations A single blood sample was used to assess exp but intra- individual variability is not known Taking blood samples before any major water use might have missed important routine exp and reduced variability in exp assessments between individuals Sperm parameters not included in the statistical analysis due to high interdependence include: morphology; beat cross frequency; average path velocity; amplitude of lateral head displacement; straightness Other DBPs analyzed: THMs; TTHMs; BrTHMs
	Δ.		PT Chomical	109	3) 1.19 (-0.80, 3.19) p (trend) = 0.24	ОЕННА	BDCM was significantly associated with decreased sperm count in the 2 nd tertile but there was no dose

Table 5a. Detailed Summaries of Human Studies of Chloroform (CHL) Exposure and Male Reproductive Outcomes (cont'd).

Study/ Location	Study Design/ Sample Sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
					Serum total testosterone 1) 0 (referent)		response (β=- 0.13 million (- 0.22, -0.03) , p = 0.01)
					2) 0.92 (-35.25, 37.09) 3) -9.83 (-46.14, 26.47) p (trend) = 0.59		DBCM was significantly associated with linearity in the 2 nd tertile (-4.74% (-8.07, -1.42)) but there was no dose-response relationship
							-

Table 5a. Detailed Summaries of Human Studies of Chloroform (CHL) Exposure and Male Reproductive Outcomes (cont'd).

Study/ Location	Study Design/ Sample Sizes	Outcomes of Interest	Exposure Measurement Methods	Exposure Dosages	Results	Covariates/ Confounders	Comments
Chang et al. 2001 Taiwan	Case study N = 1 (the subject was a laboratory worker who presented for infertility after the ventilation system in his workplace had shut down for 8 months ("exposure"))	Infertility Astheno- spermia (reduced sperm motility)	Exp scenario was reconstructed based on laboratory records and subject's description of work habits and conditions Field study: active air sampling using collection tubes and passive air sampling using badges Authors also conducted an experiment to determine evaporation rate of solvents and estimate conc in air Interview to determine exp time Semen analysis was conducted ~1 year prior to exp (during a complete fertility screening test) and 3 times after exp ended	Active air samples of CHL (ppm) = 8.5 Passive air samples of CHL (ppm) = 4.6 Authors also estimated CHL conc of 4.5 ppm based on evaporation CHL estimated at 450 ppm for 2 hours at the beginning of the workday (6 times/week) due to overnight accumulation and lack of ventilation	Semen parameters had been normal at fertility screening ~1 year prior to exp (May 1996) with 92% normal morphology and 95% motile at a normal speed at 30 min after ejaculation Exp occurred from August 1996 to April 1997 In samples following exp the proportions of motile sperm were as follows: July = 26% August = 11% October = 40% During the post-exp period: - sperm counts increased from 68.6 to 90.6 million/mL - white blood counts decreased from 15–20/high power field (HPF) to 1– 2/HPF - path velocity (µm/sec) increased from 35 to 50	Use of drugs, alcohol, tobacco; and history of surgery had not changed Subject was also exposed to "considerable amounts" of tetrahydrofuran and isooctane to prepare for analysis of petrochemical products Authors state these chemicals have not been linked with male reproductive hazards No reported exp to extreme heat or radiation Anti-sperm antibody was negative Hormone levels, semen volume, sperm count, and morphology were normal Diagnoses of necrospermia, seminal tract infection, protein- carboxyl methylase deficiency, and axonemal defect	Possible underestimation of the evaporation of CHL due to no stirring, wiping, or other operations in simulation experiment Possible misclassification from the inability to completely reconstruct the exp setting due to ethical considerations Authors note that CHL has been associated with abnormal sperm morphology, which could affect motility; however, the authors reported that the semen analysis after exp showed normal morphology Morphology was left blank in Table 1

were excluded

				β-coeffic	cients (95% CI)	
Study/ Location	Exposure Level	Reference Level	Sperm Concentration ¹ (million/mL)	Sperm Count ¹ (million)	Sperm Motility (%) & Motile Sperm Concentration (MSC)	Sperm Motion ²
Zeng et al. † † 2014 China	Estimated internal <u>dose by ingestion</u> <u>(µg/d)</u> CHL 0.005–0.011 0.011–0.019 ≥0.019 P for trend Continuous ³ Estimated internal <u>dose by</u>	<0.005	-0.19 (-0.43, 0.05) -0.25 (-0.51, 0.00) -0.28 (-0.53, -0.02) 0.03 -0.15 (-0.25, -0.04)	-0.15 (-0.40, 0.10) -0.34 (-0.61, -0.07) -0.22 (-0.49, 0.05) 0.05 -0.12 (-0.24, -0.01)	Sperm motility (%) -4.66 (-9.93, 0.60) -3.19 (-8.80, 2.41) -4.13 (-9.73, 1.47) 0.25 -1.75 (-4.17, 0.66)	Ingestion VSL 0.25 (-1.85, 1.35) 0.38 (-1.32, 2.08) 1.77 (0.07, 3.47) 0.03 VCL -1.08 (-3.64, 1.48) -0.28 (-3.00, 2.45) 2.74 (0.01, 5.46)
	showering/bathing CHL 0.64–0.126 0.126–0.246 ≥0.246 P for trend Continuous ³	<0.064	0.10 (-0.16, 0.36) -0.07 (-0.30, 0.15) -0.04 (-0.29, 0.21) 0.13 -0.05 (-0.15, 0.05)	0.00 (-0.28, 0.28) 0.07 (-0.17, 0.32) 0.04 (-0.23, 0.31) 0.74 0.01 (-0.10, 0.11)	-0.86 (-6.58, 4.86) -2.57 (-7.57, 2.43) 0.26 (-5.30, 5.83) 0.41 -0.44 (-2.61, 1.74)	0.03 LIN There were no significant findings Showering/Bathing Straight-line velocity There were no significant findings Curvilinear velocity -0.13 (-2.92, 2.67) 1.90 (-0.54, 4.35) 2.32 (-0.40, 5.04) 0.04

Table 5b. Associations between Chloroform (CHL) Exposure and Sperm Parameters in Human Studies.

OEHHA August 2016

Abbreviations: CHL - chloroform; CI - confidence interval; conc - concentration; L - liter; LIN- linearity; MSC - motile sperm concentration; VCL - curvilinear velocity; VSL - straightline velocity.

¹ Natural log transformation was applied. ² Units of measurement for sperm motion parameters were straight-line velocity = μ m/s, curvilinear velocity = μ m/s, linearity = %, path velocity = μ m/sec.

³ Continuous - quartiles of uptake (µg/day).

				β-coeffic	ients (95% CI)	
Study/ Location	Exposure Level	Reference Level	Sperm Concentration ¹ (million/mL)	Sperm Count ¹ (million)	Sperm Motility (%) & Motile Sperm Concentration (MSC)	Sperm Motion ²
						Linearity -0.74 (-3.22, 1.73) -2.28 (-4.44, -0.11) -0.17 (-2.58, 2.24) 0.42
Iszatt et al. 2013 England and Wales	<u>Water conc (µg/L)</u> Upper quartile Mean: Cases = 25.9 Controls = 27.3	Lower quartile (12)	No significant relationship was observed for the effect of CHL on sperm conc (results presented graphically)	Not assessed	Low MSC per 10 µg/L increase in CHL: Odds ratio = 1.00 (0.92, 1.09) No significant relationship was observed for the effect of CHL on change in percent motile sperm	Not assessed
Zeng et al. † † 2013 China	Blood conc (ng/L) 35.87–66.35 >66.35 P for trend	<35.87	-0.04 (-0.12, 0.04) -0.08 (-0.16, 0.01) 0.07	-0.02 (-0.11, 0.08) -0.07 (-0.16, 0.03) 0.19	2.19 (-2.27, 6.64) 1.35 (-3.13, 5.82) 0.55	Curvilinear velocity 1.03 (-1.28, 3.34) 2.15 (-0.17, 4.47) 0.07 Straight-line velocity 0.89 (-0.59, 2.38) 1.95 (0.46, 3.44) 0.01 Linearity 1.13 (-0.86, 3.12) 1.19 (-0.80, 3.19) 0.24

Table 5b. Associations between Chloroform (CHL) Exposure and Sperm Parameters in Human Studies (cont'd).

				β-coefficie	nts (95% CI)	
Study/ Location	Exposure Level	Reference Level	Sperm Concentration ¹ (million/mL)	Sperm Count ¹ (million)	Sperm Motility (%) & Motile Sperm Concentration (MSC)	Sperm Motion ²
Chang et al. 2001 Taiwan	Active air samples of CHL = 8.5 ppm Passive air samples of CHL = 4.6 ppm Estimated air CHL for 2 hours at the beginning of the workday = 450 ppm		Not assessed	Authors state that sperm count was normal ~1 year prior to exposure. During the post- exposure period: sperm counts were as follows (by time since end of exposure): \approx 3 months: 68.6 \approx 4 months: 73.8 \approx 6 months: 90.6	Semen parameters at screening ~1 year prior to exposure had been normal, with 95% motile at a normal speed at 30 min after ejaculation During the post- exposure period: the percentage of motile sperm were as follows (by time since end of exposure): \approx 3 months: 26% \approx 4 months: 11% \approx 6 months: 40%	Path velocity \approx 3 months: 35 \approx 4 months: 40 \approx 6 months: 50

Table 5b. Associations between Chloroform (CHL) Exposure and Sperm Parameters in Human Studies (cont'd).

3. Animal Studies of Reproductive and Developmental Toxicity of Chloroform

		Experin	nental Parame	eters			F (Effects		
Reference	Chemical (Source/ Purity/ Preparation)	Animal Model (Species/ Strain/Sex/Age) N (Control/ Treated)	Study Design	Exposure (Route/Period/ Frequency/ Vehicle)	Doses/ Concen- trations	Endpoints Assessed	Maternal Toxicity+	Developmental Toxicity+	Comments
Schwetz et al., 1974	"Reagent grade" chloroform, Burdick & Jackson Lab, Inc. Sample assayed: purity 99.30%	Sprague-Dawley rats 8-77 females/group	Inhalation teratology study Food and water withheld during exposure; ad lib at night	7 hr/day; GD 6- 15	0, 30, 100, 300 ppm Plus feed- restricted, "starved" control (3.7 g food, daily, GD 6-16)	Standard teratology evaluation SGPT* activity determined in pregnant and non-pregnant rats	 ↓ feed consumption 100 & 300 ppm; only on GD 6-7 for 30 ppm ↓ BW on GD 13 at 30, 100, & 300 ppm; on GD 21 at 100 & 300 ppm ↓ absolute liver weight at 300 ppm; ↑ relative liver weight at 100 & 300 ppm 	300 ppm: ↓ pregnancy rate (3/20) ↓ litter size ↑ resorptions Altered sex ratio (M:F; 34:66) ↓ fetal weight & crown-rump length (CRL) 100 ppm: ↑ gross anomalies 30 ppm: ↑ skeletal anomalies ↓ CRL	No effect on SGPT in any group Starved controls: ↓ fetal growth measures, but no effect on viability
US EPA, 1978	"Analytical grade" chloroform, Mallinckrodt, purity not specified	Sprague-Dawley rats 10 females/group	Inhalation teratology study	1 hr/day; GD 7- 14	0; 4.6 mg/l (950 ppm = 110 mg/kg); 10.9 mg/l (2200 ppm = 260 mg/kg); 20.1 mg/l (4100 ppm = 480 mg/kg); plus feed- restricted control	Standard teratology evaluation	All: ↓ food consumption during days of treatment. 20.1 mg/l: All slept through exposure 1 death; ↓ BW^ 10.9 mg/l: Some slept through exposure	Feed-restricted controls: ↑ embryotoxicity ↓ fetal wt ↓ caudal ossification centers 20.1 mg/l: ↑ embryotoxicity ↓ fetal wt	Feed-restricted controls appear to have been matched to food consumption by the high concentration group.

Table 6. Studies of Developmental Toxicity of Chloroform in the Rat, Inhalation Route.

Table 6. Studies of Developmental Toxicity of Chloroform in the Rat, Inhalation Route (cont'd).

Baeder & Hoffman, 1988	Chloroform, source and purity not specified, measured by infrared gas analyzer	Wistar rats 20-21 females/group	Inhalation teratology study	7 hr/day; GD 7- 16	0, 30, 100, 300 ppm	Standard teratology evaluation	All concentrations: ↓ feed consumption (GD 14-17 & 17-21) ↑ BW on GD 0 ↓ BW GD 17 ↓ heart wt GD 21 100 & 300 ppm only: ↓ BW GD 21	All concentrations: ↑ total (early) resorbed litters (no statistical evaluation) ↓CRL 300 ppm: ↓fetal weight	-
Garcia- Estrada et al., 1990	Chloroform, source and purity not specified	Sprague-Dawley rats 3 females/group.	Inhalation developme ntal toxicity study Mated, sperm in vaginal smear= gestation day (GD) 1	Inhalation (two 10-minute periods/day) GD 17 to GD 21	Controls: No exposure Treated: Cotton impregnated with the chemical, placed inside of hermetic exposure chamber. No concentration provided. Authors reported that the chamber was saturated with chloroform	Pup body weight (BW), body length, cranial size and diameter at birth, 24, 48 and 72h of age. Random selection of 2 pups per litter for perfusion and histological analysis of the cerebellum (2 pups from each of 3 litters at 24, 48, and 72 hours)	Not evaluated	Decreased pup BW, body length and cranial diameter at all time points - Statistically significant (p <0.01) at some time points Decreased number of Purkinje cells at 24, 48, and 72 hours post-natally (p <0.01) at all time points No abortions, resorptions or neonatal mortality were found	Spanish language publication
Baeder & Hoffman, 1991	"Reagent grade" chloroform, Merck, purity 99.0-99.4%	Wistar rats 22-25 females/group; 20 females/group evaluated	Inhalation teratology study	7 hr/day; GD 7- 16	0, 3, 10, 30 ppm	Standard teratology evaluation	All concentrations, GD 7-14, and 30 ppm all times: ↓ feed consumption 10 & 30 ppm only: ↓ BW & wt gain	All concentrations: ↑ ossification variations/fetus (not per litter) 30 ppm: ↓ fetal weight & CRL	

+ All effects listed significantly differ from controls at p < 0.05 level unless otherwise noted in table; ^ no statistical analysis reported; * Serum glutamic-pyruvic transaminase

		Experi	mental Parame	ters			(Effe	Results cts/NOEL/LOEL)	
Reference	Chemical (Source/ Purity/ Preparation)	Animal Model (Species/ Strain/Sex/Age) N (Control/ Treated)	Study Design	Exposure (Route/Period/ Frequency/ Vehicle)	Doses/ Concen- trations	Endpoints Assessed	Maternal Toxicity+	Developmental Toxicity+	Comments
Murray et al., 1979	"spectral grade" chloroform, Mallinckrodt , purity not specified	CF-1 mice 34-40 females/group	Inhalation teratology study, varied days of exposure	7 hrs/day, GD 6-15, 1-7, or 8-15	0, 100 ppm	Standard teratology evaluation Maternal SGPT* activity determined on GD-16 following exposure on GD 6-15	GD 6-15: 1/35 maternal death ↑ SGPT activity GD 1-7 or 8-15: ↓ wt gain, GD 6-15 or 8-15: ↑ absolute & relative liver wt	GD 1-7: ↑resorptions (2 litters completely resorbed) GD 1-7 or 6-15: ↓pregnancy rate GD 1-7 or 8-15: ↓fetal BW & CRL ↑retarded ossification of sternebrae GD 8-15: ↑cleft palate GD 1-7, 6-15, & 8-15: ↑ delayed ossification of skull bones	Study also included in table on female reproductive effects below

Table 7. Study of Developmental Toxicity of Chloroform in the Mouse, Inhalation Route.

+ All effects listed significantly differ from controls at p < 0.05 level unless otherwise noted in table; * Serum glutamic-pyruvic transaminase

		Experi	mental Parame	ters				Results s/NOEL/LOEL)	
Reference	Chemical (Source/ Purity/ Preparation)	Animal Model (Species/ Strain/Sex/Age) N (Control/ Treated)	Study Design	Exposure (Route/Period/ Frequency/ Vehicle)	Doses/ Concen- trations	Endpoints Assessed	Maternal Toxicity+	Developmental Toxicity+	Comments
	Chloroform, Mallinckrodt; purity not specified	Sprague-Dawley rats 6 females/group	Range- finding teratology study	Oral gavage, corn oil vehicle; dose divided 2X per day; GD 6-15	0, 79, 126, 300, 316, 501 mg/kg- day	Fetal viability, wt, sex; Histology on liver and kidney from 2 dams per group on GD 20	 > 126 mg/kg-day: ↓ feed consumption and wt gain 316 & 501 mg/kg-day: 1 and 4 maternal deaths, respectively 	501 mg/kg-day: No live fetuses from 2 surviving dams 316 mg/kg-day: ↑ resorptions ↓ litter size and fetal wt	Data described in text only; no tables. No statistics
Thompson et al., 1974	As above	Sprague-Dawley rats 25 females/group	Teratology study	As above	0, 20, 50, 126 mg/kg- day	Standard teratology evaluation; Histology on liver, kidney, and heart from 2 dams per group on GD 15	126 mg/kg-day: Clinical symptoms ↓ feed consumption 126 & 50 mg/kg-day: ↓wt gain Fatty changes in livers	126 mg/kg-day: ↑ implantations ↓fetal wt ↑ bilateral extra lumbar ribs (fetal incidence, not litter)	
Ruddick et al., 1983	Chloroform, Caledon Laboratories, purity 99%	Sprague-Dawley rats 15 females/group	Teratology study	Oral gavage, corn oil vehicle,1X daily; GD 6-15	0, 100, 200, 400 mg/kg- day	Standard teratology evaluation. Maternal hematology, marrow cytology, serum & liver biochemistry, organ histology	All doses: ↓ wt gain ↑ liver wt (relative) ↓ hemoglobin & hematocrit ↓ sorbitol dehydrogenase 400 mg/kg-day: ↑ kidney wt (relative) ↓ red blood cell counts 200 & 400 mg/kg-day: ↑ inorganic phosphorus & cholesterol	400 mg/kg-day: ↓ fetal wt ↑ aberrant sternebrae (8/8 surviving litters affected, no statistics) ↑ runts (8/8 surviving litters affected, no statistics)	At 400 mg/kg-day 4 dams died before term, and 3 were not pregnant. No details provided, but stated as not due to treatment.

Table 8. Studies of Developmental Toxicity of Chloroform in the Rat, Oral Route.

119

Lim et al., 2004	Chloroform, source and purity not specified	Wistar rats Nulliparous 200–250 g 4 females/group	Effect of <i>in</i> <i>utero</i> and lactational exposure to chloroform on birth wt and postnatal indicators of type 2 diabetes On postnatal day (PND) 1, litters were evaluated and then culled to 3 males each. N=3/litter; 4 litters/group	Chloroform administered in drinking water from 2 wk prior to mating until parturition (<i>in utero</i> exposure only) or until weaning (<i>in</i> <i>utero</i> + lactational exposure)	0, 75 μg/L	Litter size, sex ratio, birth wt, postnatal growth. Fasting glucose concentration: on PND 1, and at 4 and 26 weeks of age. Oral glucose tolerance test at 4 and 26 weeks of age. Pancreas β -cell area.	Not evaluated	At PND 1, pups of dams exposed to chloroform had significantly higher serum glucose levels and lower insulin levels; not due to β-cell depletion in the neonatal pancreas. No change in glucose homeostasis in response to a glucose challenge at 4 or 26 weeks of age. No effect on birth wt; however, with chloroform <i>in utero</i> only exposure offspring had significantly lower body wts at weaning (PND 21), but not at 26 weeks of age. With chloroform <i>in utero</i> + lactational exposure, reduced postnatal growth continued through 26 weeks. No effect on litter size or sex ratio at birth.	Animals exposed to chloroform during fetal and neonatal development did not exhibit persistent metabolic changes associated with the onset of type 2 diabetes. However, these animals did exhibit impaired postnatal growth, indicating some alteration in offspring physiology.
---------------------	--	--	--	--	------------	--	---------------	---	--

		Experi	mental Parame	ters			(Effe	Results cts/NOEL/LOEL)	
Reference	Chemical (Source/ Purity/ Preparation)	Animal Model (Species/ Strain/Sex/Age) N (Control/ Treated)	Study Design	Exposure (Route/Period/ Frequency/ Vehicle)	Doses/ Concen- trations	Endpoints Assessed	Maternal Toxicity	Developmental Toxicity+	Comments
Burkhalter & Balster, 1979; Balster & Borzelleca, 1982	"Nanograde purity" chloroform, Mallinckrodt	Albino ICR mice Males and females treated prior to mating Housed 3 female:1 male for mating 5 females/group	Behavioral teratology study Liveborn litters culled to 8 pups	Daily by gavage, 3 weeks prior to mating, through mating (up to 21 days), gestation and lactation, directly to weaned pups Emulphor vehicle (polyoxyethylated vegetable oil and saline)	0, 31.1 mg/kg-day	Righting reflex, Forelimb placing, Forepaw grasp, Rooting reflex, Cliff drop aversion, Auditory startle, Bar holding ability, Eye opening, Motor performance and learning measures	Not discussed	↓postnatal wt gain (not statistically significant) ↓ scores for forelimb placement on PND 5 & 7	

Table 9. Study of Developmental Toxicity of Chloroform in the Mouse, Oral Route.

Table 10. Study of Developmental Toxicity of Chloroform in the Rabbit, Oral Route.

		Experi	mental Parame	eters			(Effect	Results s/NOEL/LOEL)	
Reference	Chemical (Source/ Purity/ Preparation)	Animal Model (Species/ Strain/Sex/Age) N (Control/ Treated)	Study Design	Exposure (Route/Period/ Frequency/ Vehicle)	Doses/ Concen- trations	Endpoints Assessed	Maternal Toxicity+	Developmental Toxicity+	Comments
Thompson et al., 1974	Chloroform, Mallinckrodt; purity not specified	Dutch-belted rabbits 5 females/group	Range- finding teratology study	GD 6-18, split dose 2X/day by gavage	0, 25, 63, 100, 159, 251, 398 mg/kg-day	C-section on GD 29 Fetal viability, weight, CRL, sex Histology on does' heart, liver, kidney	 > 100 mg/kg-day: 100% maternal death 100 mg/kg-day: 3/5 does died 63 mg/kg-day: Anorexia, weight loss 25 mg/kg-day: Mild diarrhea and anorexia 	100 mg/kg-day: No viable conceptuses 63 mg/kg-day: 2/4 not pregnant ↓ fetal viability	Data described in text, no tables No statistics
	As above	Dutch-belted rabbits 15 females/group	Teratology study	GD 6-16, single dose 1X/day by gavage	0, 20, 35, 50 mg/kg-day	C-section on GD 29, fetuses incubated 24 hrs Standard teratology evaluation	50 mg/kg-day: 4/15 maternal deaths ↓ BW gains	All doses, and controls: Aborted litters (1-4/15, no statistics or apparent dose response) 20 & 50 mg/kg-day: ↓ fetal wt 20 & 35 mg/kg-day: ↑ fetal incidence of incompletely ossified skull bones	Rat experiments described in table above

		Experi	mental Parame	ters			(
Reference	Chemical (Source/ Purity/ Preparation)	Animal Model (Species/ Strain/Sex/Age) N (Control/ Treated)	Study Design	Exposure Doses/ (Route/Period/ Concen- Frequency/ trations Vehicle)		Endpoints Assessed	Maternal Toxicity+	Developmental Toxicity+	Comments
Teixidó et al., 2015	Chloroform, Sigma- Aldrich, purity not specified	Zebrafish embryos, 4 hours post fertilization (hpf)	In vitro whole embryo culture 30 embryos/con centration; 10 embryos/con centration X 3 independent spawning events (n=3)	72 hours exposure in buffered embryo medium	0, 0.14, 0.31, 0.63, 1.26 mM in buffered embryo medium	Mortality checked at 8, 28, 52, 76 hpf LC_{50} at end of test EC_{50} (fraction of abnormal embryos) Teratogenic index (TI) = LC_{50}/EC_{50} "Fingerprint endpoint" = concentration-response $+ \ge 50\%$ of malformed embryos showing index malformation Hatching success Minimum concentration to inhibit growth (MCIG) = significant \downarrow tail length Comet assay	Not relevant	$\begin{array}{l} EC_{20} = 0.7 \text{ mM} (84.7 \text{ mg/L})\\ EC_{50} = 0.85 \text{ mM} (100.3 \text{ mg/L})\\ LC_{50} = 2.1 \text{ mM} (286.5 \text{ mg/L})\\ TI = 2.5\\ MCIG = 1.26 \text{ mM}\\ Fingerprint \text{ endpoints} = eyes,\\ heart, tail (78.4\%, 75.7\%, 78.4\%,\\ respectively)\\ \downarrow \text{ hatching success at 76 hpf: } 0.63,\\ 1.26 \text{ mM}\\ \downarrow \text{ motility of unhatched embryos}\\ after \text{ dechorionation on 76 hpf}\\ Comet \text{ assay: } EC_{50} \text{ produced}\\ significant \text{ DNA damage compared}\\ to \text{ solvent control group} \end{array}$	

Table 11. Study of Developmental Toxicity of Chloroform in Zebrafish, in vitro.

		Experi	mental Parame	ters			Result (Effects/NOEL		
Reference	Chemical (Source/ Purity/ Preparation)	Animal Model (Species/ Strain/Sex/Age) N (Control/ Treated)	Study Design	Exposure (Route/Period/ Frequency/ Vehicle)	Doses/ Concen- trations	Endpoints Assessed	Systemic Toxicity+	Reproductive Toxicity+	Comments
Schwetz et al., 1974	"Reagent grade" chloroform, Burdick & Jackson Lab, Inc. Sample assayed: purity 99.30%	Sprague-Dawley rats 8-77 females/group	Inhalation teratology study Food and water withheld during exposure; ad lib at night	7 hr/day; GD 6- 15	0, 30, 100, 300 ppm plus feed- restricted, "starved" control (3.7 g food, daily, GD 6-16)	Standard teratology evaluation SGPT* activity determined in pregnant and non-pregnant rats	 ↓ feed consumption 100 & 300 ppm; only on GD 6-7 for 30 ppm ↓ BW on GD 13 at 30, 100, & 300 ppm; on GD 21 at 100 & 300 ppm ↑ absolute liver wt at 300 ppm; ↓ relative liver wt at 100 & 300 ppm 	300 ppm: ↓ pregnancy rate (3/20) ↓ litter size ↑ resorptions	No effect on SGPT in any group Starved controls: ↓ fetal body measures, but no effect on viability
Baeder & Hoffman, 1988	Chloroform, source and purity not specified, measured by infrared gas analyzer	Wistar rats 20-21 females/group	Inhalation teratology study	7 hr/day; GD 7- 16	0, 30, 100, 300 ppm	Standard teratology evaluation	All concentrations: ↓ feed consumption (GD 14-17 & 17-21) ↑ BW on GD 0 ↓ BW GD 17 ↓ heart wt GD 21 100 & 300 ppm only: ↓ BW GD 21	↑ in completely resorbed litters at all concentrations of chloroform	
Baeder & Hoffman, 1991	"Reagent grade" chloroform, Merck; purity 99.0-99.4%	Wistar rats 22-25 females/group; 20 pregnant females/group evaluated	Inhalation teratology study	7 hr/day; GD 7- 16	0, 3, 10, 30 ppm	Standard teratology evaluation	All concentrations, GD 7-14, and 30 ppm all times: ↓ feed consumption 10 & 30 ppm only: ↓ BW & wt gain (no stats)	1 lost litter at 30 ppm (not statistically significant) No effect on litter size or resorption frequency	

Table 12. Studies of Female Reproductive Toxicity of Chloroform in Rats, Inhalation Route.

Table 13. Study of Female Reproductive Toxicity of Chloroform in Mice, Inhalation Route.

		Experi	mental Parame	ters		Endpoints Assessed	(Effec		
Reference	Chemical (Source/ Purity/ Preparation)	Animal Model (Species/ Strain/Sex/Age) N (Control/ Treated)	Study Design	Exposure (Route/Period/ Frequency/ Vehicle)	Doses/ Concen- trations		Systemic Toxicity+	Reproductive Toxicity+	Comments
Murray et al., 1979	"Spectral grade" chloroform, Mallinckrodt, purity not specified	CF-1 mice 34-40 females/group	Inhalation teratology study, varied days of exposure	7 hrs/day, GD 6-15, 1-7, or 8-15	0, 100 ppm	Standard teratology evaluation Maternal SGPT* activity determined on GD-16 following exposure on GD 6-15	GD 6-15: 1/35 maternal death ↑ SGPT activity GD 1-7 or 8-15: ↓ wt gain, GD 6-15 or 8-15: ↑ absolute & relative liver wt	GD 1-7: ↑resorptions (2 litters completely resorbed) GD 1-7 or 6-15: ↓pregnancy rate	Study also described in table on development al effects above

+ All effects listed significantly differ from controls at p < 0.05 level unless otherwise noted in table ; * Serum glutamic-pyruvic transaminase;

		Experi	mental Parame	ters		Endpoints	Results (Effects/NOEL/		
Reference	Chemical (Source/ Purity/ Preparation)	Animal Model (Species/ Strain/Sex/Age) N (Control/ Treated)	Study Design	Exposure (Route/Period/ Frequency/ Vehicle)	Doses/ Concen- trations	Endpoints Assessed	Systemic Toxicity+	Reproductive Toxicity+	Comments
	Chloroform, Mallinckrodt, purity not specified	Sprague-Dawley rats 6 females/group	Range- finding oral teratology study	Oral gavage, dose divided 2X per day; GD 6-15 corn oil vehicle	0, 79, 126, 300, 316, 501 mg/kg- day	Fetal viability, wt, sex; Histology on liver and kidney from 2 dams/group on GD 20	 > 126 mg/kg-day: ↓ feed consumption and wt gain 316 & 501 mg/kg-day: Maternal deaths 	501 mg/kg-day: No live fetuses from 2 surviving dams 316 mg/kg-day: ↑ resorptions ↓ litter size	Data described in text only; no tables No statistics
Thompson et al., 1974	As above	Sprague-Dawley rats 25 females/group	Oral teratology study	As above	0, 20, 50, 126 mg/kg- day	Standard teratology evaluation; Histology on liver, kidney, and heart from 2 dams/group on GD 15	126 mg/kg-day: Clinical symptoms ↓ feed consumption 126 & 50 mg/kg-day: ↓wt gain Fatty changes in livers	126 mg/kg-day: ↑ implantations	
Ruddick et al., 1983	Chloroform, Caledon Laboratories purity 99%	Sprague-Dawley rats 15 females/group	Oral teratology study	Oral gavage, 1X daily; GD 6- 15 corn oil vehicle	0, 100, 200, 400 mg/kg- day	Standard teratology evaluation. Maternal hematology, marrow cytology, serum & liver biochemistry, organ histology	All doses: ↓ wt gain ↑ liver wt (relative) ↓ hemoglobin & hematocrit ↓ sorbitol dehydrogenase 400 mg/kg-day: ↑ kidney wt (relative) ↓ red blood cell counts 200 & 400 mg/kg-day: ↑ inorganic phosphorus & cholesterol	No effect on live litter size or resorption frequency	

Table 14. Studies of Female Reproductive Toxicity of Chloroform in Rats, Oral Route.

		Experi	mental Parame	ters				Results s/NOEL/LOEL)	
Reference	Chemical (Source/ Purity/ Preparation)	Animal Model (Species/ Strain/Sex/Age) N (Control/ Treated)	Study Design	Exposure (Route/Period/ Frequency/ Vehicle)	Doses/ Concen- trations	Endpoints Assessed	Systemic Toxicity+	Reproductive Toxicity+	Comments
Chapin et al., 1977 NTP, 1988	Chloroform, Aldrich Chemical Co., purity >99%	VAF CrI:CD-1 (ICR)BR mice 20 male and female pairs/group; 40 control pairs	Continuous breeding study. P0: all dose groups evaluated F1: control & high dose only	Oral, gavage, P0 dosed daily for 1 week prior to, 14 weeks during, & 3 weeks after co- habitation. Final F1 litters treated after weaning corn oil vehicle	0, 6.6, 15.9, 41.2 mg/kg-day	P0: Clinical signs, bw, water consumption, fertility and litter data. F1: body and organ wt	 41.2 mg/kg-day, P0: ↓Maternal wt at delivery of 4th litter 41.2 mg/kg-day, F1 females: ↑ absolute & adjusted liver wt Minimal to moderate hepatocellular degeneration 	41.2 mg/kg-day, F1: ↑ fertility index ↑ female pups/litter ↑ female + male pups/litter	All P0 groups delivered 4 litters Study also described in table on male effects below
US EPA, 1980	"Pesticide quality" chloroform, Matheson Coleman Bell, distilled by test lab to remove diethyl carbonate impurity	B6C3F1 mice 30 females /group; 40 controls	90-day subacute toxicity study	90-day drinking water study Fresh solutions prepared 2X/week	0, 20, 40, 60, 90, 180, 270 mg/kg- day 2 control groups: ad lib, and water consumption matched to high-dose group	Daily observations Weekly BW Days 0, 30, 60, & 90; 10 rats/group sacrificed for pathology and biochemistry	Deaths at 60, 90, 270 mg/kg-day Effects on BW at ≥ 60 mg/kg-day during first three weeks (no clear dose response) Fatty liver ↑ at 270 mg/kg- day, at each of the 3 sacrifice time-points; also ↑ for water-matched controls at final sacrifice		No pathological changes noted for any group at any time in mammary, ovaries, or uterus

Table 15. Studies of Female Reproductive Toxicity of Chloroform in Mice, Oral Route.

Table 16. Study of Female Reproductive Toxicity of Chloroform in Rabbits, Oral Route.

		Experi	mental Parame	ters				Results s/NOEL/LOEL)	
	Chemical (Source/ Purity/ Preparation)	Animal Model (Species/ Strain/Sex/Age) N (Control/ Treated)	Study Design	Exposure (Route/Period/ Frequency/ Vehicle)	Doses/ Concen- trations	Endpoints Assessed	Systemic Toxicity+	Reproductive Toxicity+	Comments
Thompson	Chloroform, Mallinckrodt, purity not specified	Dutch-belted rabbits 5 females/group	Range- finding oral teratology study	GD 6-18, split dose 2X/day by gavage	0, 25, 63, 100, 159, 251, 398 mg/kg-day	Fetal viability, weight, CRL, sex Histology on does' heart, liver, kidney	159, 251, 398 mg/kg-day: 100% maternal death 100 mg/kg-day: 3/5 maternal deaths 63 mg/kg-day: Anorexia, weight loss 25 mg/kg-day: Mild diarrhea and anorexia	100 mg/kg-day: No viable conceptuses 63 mg/kg-day: 2/4 not pregnant ↓ fetal viability	Data from range- finding study described in text, no tables; no statistical analysis
et al., 1974	As above	Dutch-belted rabbits 15 females/group	Oral teratology study	GD 6-16, single dose 1X/day by gavage	0, 20, 35, 50 mg/kg-day	C-section on GD 29, fetuses incubated 24 hrs Standard teratology evaluation	50 mg/kg-day: 4/15 maternal deaths ↓ BW gains (data not provided, but stated to be significant)	All doses, and controls: Aborted litters (1-4/15, no statistics or apparent dose response)	

		Experi	mental Parame	ters		Endpoints Assessed	(Effect		
	Chemical (Source/ Purity/ Preparation)	Animal Model (Species/ Strain/Sex/Age) N (Control/ Treated)	Study Design	Exposure (Route/Period/ Frequency/ Vehicle)	Doses/ Concen- trations		Systemic Toxicity	Reproductive Toxicity	Comments
Heywood et al., 1979	Chloroform, source and purity not specified	Beagle dogs Dosed, untreated controls, and controls given alternate toothpaste: 8 dogs/sex/group Vehicle toothpaste controls: 16 dogs/sex/group	7.5 year chronic study Treatment ceased at week 376; all animals sacrificed at week 395- 399	Doses mixed into toothpaste and given in capsules	0, 15, 30 mg/kg-day; 6 days/wk	Clinical symptoms, food and water consumption, clinical exams, biochemistry terminal histopathology	At end of treatment: Dose-related ↑biochemical indicators of liver damage; appeared reversible during recovery phase, at least in some dogs Significance levels varying among dose and week of measurement from p < 0.05-0.001)	No treatment-related changes in ovaries or uteri "Nodular hyperplasia of mammary gland" in 3 females at 15 mg/kg- day, in 5 vehicle controls, and 1 untreated control No statistical analysis	Preliminary study included in paper not reported here as no reproductive endpoints assessed

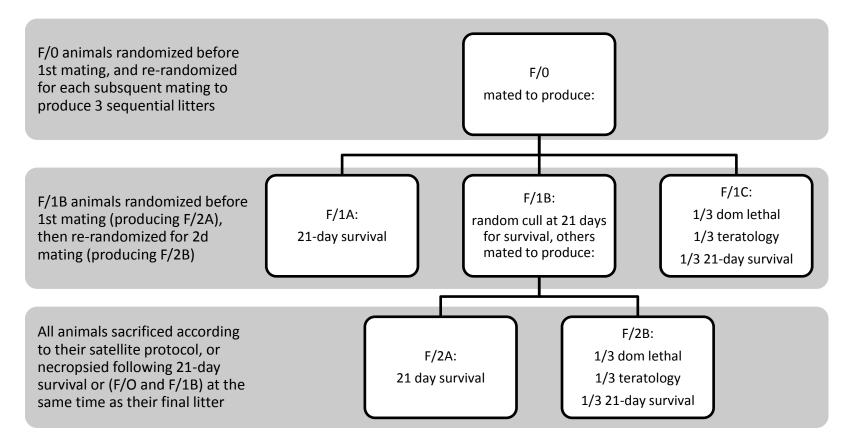
Table 17. Study of Female Reproductive Toxicity of Chloroform in Beagle Dogs, Oral Route.

Table 18. Study of Male Reproductive Toxicity of Chloroform in Mice, Inhalation Route.

		Experi	mental Parame	ters			(Effect		
Reference	Chemical (Source/ Purity/ Preparation)	Animal Model (Species/ Strain/Sex/Age) N (Control/ Treated)	Study Design	Exposure (Route/Period/ Frequency/ Vehicle)	Doses/ Concen- trations	Endpoints Assessed	Systemic Toxicity	Reproductive Toxicity	Comments
Land et al., 1981	Chloroform, Fischer Scientific, purity not specified Delivered to inhalation cages in air	Mice Males, 15 controls, (10) 9 "survivors" in each dose group	Sperm morphology study Sacrifice at 28 days following 1st day of exposure	Inhalation, 4 hr/day, 5 consecutive days	0, 0.04, 0.08% in air	Epididymal sperm morphology	Not discussed Appears that 1 animal in each dose group died	0.04 & 0.08%: ↑ frequency of abnormal sperm morphology (p < 0.01)	Normal mouse spermatoge nesis cycle 35-36 days; 28 day evaluation mid-cycle

Table 19. Study of Male Reproductive Toxicity of Chloroform in Rats, Oral Route.

		Experi	mental Parame	ters		Endpoints Assessed		lesults /NOEL/LOEL)	
Reference	Chemical (Source/ Purity/ Preparation)	Animal Model (Species/ Strain/Sex/Age) N (Control/ Treated)	Study Design	Exposure (Route/Period/ Frequency/ Vehicle)	Doses/ Concen- trations		Systemic Toxicity+	Reproductive Toxicity+	Comments
US EPA, 1980	"pesticide quality" chloroform, Matheson Coleman Bell, distilled by test lab to remove diethyl carbonate impurity	Osborne-Mendel rats 30 males/group; 40 controls Additional controls paired for water- consumption	Subacute toxicity study	90-day drinking water study Fresh solutions prepared 2X/week	0, 20, 38, 57, 81, 160 mg/kg-day 2 control groups: ad lib, and water consumption matched to high-dose group	Daily observations Weekly BW Days 0, 30, 60, & 90; 10 rats/group sacrificed for pathology and biochemistry	 160 mg/kg-day, all days: ↓ BW, also seen in watermatched controls 81 mg/kg-day: ↓ BW for 1st week of treatment 	160 mg/kg-day, day 30 sacrifice: One case each of testicular hyperplasia and interstitial cell hyperplasia (not clear if single animal)	NS reduction in water consumption with chloroform Mouse portion of study discussed in table on female effects above


Table 20. Study of Male Reproductive Toxicity of Chloroform in Mice, Oral Route.

		Experi	mental Paramet	ters		Endpoints Assessed	(Effect		
Reference	Chemical (Source/ Purity/ Preparation)	Animal Model (Species/ Strain/Sex/Age) N (Control/ Treated)	Study Design	Exposure (Route/Period/ Frequency/ Vehicle)	Doses/ Concen- trations		Systemic Toxicity+	Reproductive Toxicity+	Comments
Chapin et al., 1997; NTP, 1988	Chloroform, Aldrich Chemical Co., purity >99%	VAF CrI:CD-1 (ICR)BR mice 20 male and female pairs/group; 40 control pairs	Continuous breeding study. P0: all dose groups evaluated F1: control & high dose only	Oral, gavage, P0 dosed daily for 1 week prior to, 14 weeks during, & 3 weeks after co- habitation. Final F1 litters treated after weaning corn oil vehicle	0, 6.6, 15.9, 41.2 mg/kg-day	P0: Clinical signs, BW, water consumption, fertility and litter data. F1: Sperm data, body and organ weights	41.2 mg/kg-day, P0: ↓Maternal wt at delivery of 4 th litter 41.2 mg/kg-day, F1 females: ↑ absolute & adjusted liver wt Minimal to moderate hepatocellular degeneration	 41.2 mg/kg-day, P0: ↑ fertility index ↑ female pups/litter ↑ female + male pups/litter F1: ↑ Absolute right epididymal wt Minimal to mild degeneration of epididymal ductal epithelium. 	All P0 groups delivered 4 litters Study also described in table on female effects above

		Experi	mental Parame	ters		Endpoints Assessed Clinical		Results s/NOEL/LOEL)	
	Chemical (Source/ Purity/ Preparation)	Animal Model (Species/ Strain/Sex/Age) N (Control/ Treated)	Study Design	Exposure (Route/Period/ Frequency/ Vehicle)	Doses/ Concen- trations		Systemic Toxicity	Reproductive Toxicity	Comments
Heywood et al., 1979	Chloroform, source and purity not specified	Beagle dogs Dosed, untreated controls, and controls given alternate toothpaste: 8 dogs/sex/group Vehicle toothpaste controls: 16 dogs/sex/group	7.5 year chronic study Treatment ceased at week 376; all animals sacrificed at week 395- 399	Doses mixed into toothpaste and given in capsules	0, 15, 30 mg/kg-day; 6 days/wk	Clinical symptoms, food and water consumption, clinical exams, biochemistry terminal histo- pathology	At end of treatment: Dose-related ↑biochemical indicators of liver damage; appeared reversible during recovery phase, at least in some dogs Significance levels varying among dose and week of measurement from p < 0.05-0.001)	"Ectopic testes with inhibition of spermatogenesis" in 2 dogs at 30 mg/kg-day, 1 dog at 15 mg/kg-day, and 1 untreated control No statistical analysis reported	Preliminary study included in paper not reported here as no reproductive endpoints assessed

Table 21. Study of Male Reproductive Toxicity of Chloroform in Beagle Dogs, Oral Route.

Figure 10. Schematic of Protocol for Multigeneration Reproductive Toxicity Study with Satellite Components Used by Borzelleca and Carchman, 1982.

Reference	Experimental Parameters						Results (Effects/NOEL/LOEL)		
	Chemical (Source/ Purity/ Preparation)	Animal Model (Species/ Strain/Sex/Age) N (Control/ Treated)	Study Design	Exposure (Route/Period/ Frequency/ Vehicle)	Doses/ Concen- trations	Endpoints Assessed	Maternal/Systemic Toxicity+	Developmental/Reproductive Toxicity+	Comments
Borzelleca and Carchman, 1982	Chloroform, Fischer Scientific, purity 99%	ICR Swiss mice (obtained at 7 weeks of age and then quarantined for 2 weeks) Co-habited for 1 week at a ratio of 1 male to 3 females N=10 males/ group N=30 females/ group	See figure 1 for diagram. Multi- generation reproductive toxicity study; with satellite studies. Parental matings produced 3 F1 litters; F1b matings produced 2 F2 litters. F/1C and F/2B litters were divided between dominant lethal, teratology, and 21-day survival studies.	Drinking water, continuous exposure Vehicle: emulphor (poly- ethoxylated vegetable oil):water (1:1000)	0.0 (distilled, deionized water and vehicle control groups), 0.1, 1.0, 5.0 mg/ml	No methods description included, endpoints assessed can only be inferred from reported results	 ↓ Body weight gain (both sexes) in F/0 and F/1B generations exposed to 5.0 mg/ml, and F/1B females exposed to 1.0 mg/ml ↓ 21-day survival: F/0 males and females, 5.0 mg/ml F/1B males, all doses F/1B females, 5.0 mg/ml Enlarged livers, 5.0 mg/ml, F/0 and F/1B "almost all animals" Final necropsies found liver pathology "characteristic of chlorinated hydrocarbon toxicity" 	 ↓ gestation index* at 5.0 mg/ml: F/1A, F/1C, F/2A; but not for F/1B or F/2B. ↓ mating index** at 0.1 mg/ml, F/1C; and at 5.0 mg/ml for F/1A, F/1B, and F/2A; but not F/1C or F/2B. ↓ litter size at 5.0 mg/ml for F/1A, F/1B, F/1C, F/2A, and F/2B (as reported in table 13 of the study). ↓ viability Index# (PND 4) at 1.0 mg/ml F/1B; and at 5.0 mg/ml in F/1A, F/1B, and F/2A litters. ↓ lactation index## at 1.0 mg/ml in F/1A litters; and at 5.0 mg/ml in F/1A and F/2A litters . 	Document is an unpublished study, provided to US EPA by the Medical College of Virginia. Some tables cite to an "in press" reference – no evidence could be found that the paper was ever published

Table 22. Study of Multigeneration Reproductive Toxicity of Chloroform in Mice, Oral Route.

Table 22. Study of Multigeneration Reproductive Toxicity of Chloroform in Mice, OralRoute (cont'd).

	Experimental Parameters						Results (Effects/NOEL/LOEL)		
	Chemical (Source/ Purity/ Preparation)	Animal Model (Species/ Strain/Sex/Age) N (Control/ Treated)	Study Design	Exposure (Route/Period / Frequency/ Vehicle)	Doses/ Concen- trations	Endpoints Assessed	Maternal/Systemic Toxicity+	Developmental/Reproductive Toxicity+	Comments
		,	Dominant lethal satellite	As above	As above	As above	As above	No significant dominant lethal effects	
Borzelleca and Carchman, 1982 (continued)			Teratology satellite	As above	As above	As above	As above	From tables 20 – 22: No significant effects of treatment noted on number of litters, number of implantations per dam, live fetuses per litter, percent of implants resorbed, or sex ratio in F/1C or F/2B generations. No evidence for an effect of treatment on external, internal, or skeletal abnormalities from F/1C or F/2B generations skeletal abnormality not assessed for F/2B.	Fetuses do not appear to have been weighed in the teratology component of the protocol.
		- Ni fomeloo delive	21-Day survival satellite	As above	As above	As above	Decreased 21-day survival in exposed males and females from F/0 and F/1B; lowest effective concentration = 0.1 mg/ml		

*gestation index = N females delivering live young/N pregnant females X 100

**mating index = N pairs mating/N pairs cohabited X 100# viability index = N live offspring per litter on PND4/N live offspring per litter at birth X 100

lactation index = N live offspring per litter at weaning (PND21)/N live offspring born (adjusted for culling if necessary) X 100

4. Summary

Preterm Birth

Eight epidemiologic studies specifically examined the risk of preterm birth associated with chloroform exposure. Five of these studies found no significant association (Kramer et al. 1992; Hinckley et al. 2005; Villanueva et al. 2011; Costet et al. 2012; Rivera-Nuñez and Wright 2013). One study did not analyze the risk from exposure to chloroform specifically (Patelarou et al. 2011), but reported no increased risk with exposure to total trihalomethanes. Interestingly, three studies (Wright et al. 2004; Savitz et al. 2005; Lewis et al. 2007) observed a significant, fairly consistent, inverse risk of preterm birth associated with chloroform exposure (i.e., a protective effect). It is not clear what mechanism may be responsible for this association, if it is real; however, Savitz et al. (2005) postulated that perhaps some selective loss leaves a heartier group of surviving fetuses who are less prone to be adversely affected by chemical exposures.

No effects of chloroform on gestation length were reported in experimental studies in animals.

Small for Gestational Age

A large number of epidemiologic studies examined the risk of small for gestational age associated with exposure to chloroform. Ten studies observed no increased risk or no statistically significant increased risk with chloroform exposure (Hinckley et al. 2005; Porter et al. 2005; Savitz et al. 2005; Hoffman et al. 2008; Grazuleviciene et al. 2011; Villanueva et al. 2011; Costet et al. 2012; Danileviciute et al. 2012; Levallois et al. 2012; Rivera-Nuñez and Wright, 2013). In three studies increased risk of small for gestational age was reported in a dose-dependent manner (Kramer et al. 1992; Wright et al. 2004; Summerhayes et al. 2012). One other study assessed the association between chloroform exposure and small for gestational age (as intrauterine growth restriction) and included consideration of a gene-environment interaction (Infante-Rivard, 2004). This case-control study examined two genetic polymorphisms, one in the CYP2E1 gene (G1259C), and another in the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene (C677T). The results showed an increased odds ratio with certain polymorphisms; however, these were not statistically significant. The Developmental and Reproductive Toxicant (DART) Identification Committee reviewed these data in 2004 and asked that OEHHA request Dr. Infante-Rivard to reanalyze the data using a less conservative cutoff. The results of the analysis were not statistically significant. Dr. Infante-Rivard did not agree with the use of this cutoff as she believed the cutoff should be based on where effects are likely. The chloroform levels in this study were not high and the sample size was small (see Appendix C: Re-analysis of Data from Two Chloroform

Epidemiological Studies: Wennborg et al. (2000) and Infante-Rivard (2004)). In the study by Patelarou et al. (2011), the risk from exposure to chloroform was not specifically analyzed.

As described below under "Low Birth Weight", experimental studies in several species of laboratory animals reported adverse effects of maternal chloroform exposure on fetal weight. Crown-rump length was also reduced in rats (Schwetz et al. 1974; Baeder and Hoffman 1988, 1991; Garcia-Estrada et al. 1990) and mice (Murray et al. 1979) exposed by inhalation.

Low Birth Weight

There are a number of well-conducted epidemiologic studies with extensive exposure assessment that examined the risk for low birth weight in association with chloroform exposure. Statistically significant increased risks were observed in studies by Toledano et al. (2005), Lewis et al. (2006), Iszatt et al. (2014), Danileviciute et al. (2012), and Grazuleviciene et al. (2011). The findings of particular interest are from a nested case-control study (Danileviciute et al., 2012), which was part of the European Commission Health Impacts of long-term Exposure to Disinfection By-products in Drinking Water in Europe (HiWATE) study. This study included extensive exposure assessment as well as analysis of the maternal genetic polymorphisms for two metabolic genes and disinfection by-product-related gene-environment interactions. A large statistically-significant increased risk of low birth weight was observed in chloroform-exposed women, assessed as estimated internal dose, who had the GSTM1-0 (glutathione-S-transferase M1 null) genotype but not in those with the GSTM1-1 (glutathione-S-transferase M1) genotype. These associations were more pronounced when interactions between genotype and chloroform exposure were examined.

Reduced fetal weights were also reported in experimental animal studies in rats following maternal exposure to chloroform by the inhalation (Schwetz et al. 1974; US EPA 1978; Baeder and Hoffman 1988, 1991) and oral (Thompson et al. 1974; Ruddick et al. 1983) routes of exposure, as well as in mice exposed by inhalation (Murray et al. 1979) and rabbits exposed orally (Thompson et al. 1974).

Birth Weight

The association between chloroform exposure and birth weight was examined in ten epidemiologic studies. Four of the studies reported no significant association (Wennborg et al. 2000; Savitz et al. 2005; Hoffman et al. 2008; Villanueva et al. 2011). Six of the studies observed statistically significant decrements in birth weight with chloroform exposure (Wright et al. 2004; Zhou et al. 2010; Grazuleviciene et al. 2011; Summerhayes et al. 2012; Rivera-Nuñez and Wright 2013; Smith et al. 2015) with most of these showing evidence of a dose-response relationship. Of note is the study by

Smith et al. (2015), which reported no significant findings when examining the total study population. However, a significant dose-dependent decrement in birth weight was associated with chloroform exposure, assessed as estimated internal dose, in infants of Pakistani origin in comparison to those of white British origin.

Spontaneous Abortion

Three epidemiologic studies were identified that examined the risk of spontaneous abortion in relation to chloroform exposure; one reported an elevated risk estimate. In the retrospective cohort study by Wennborg et al. an elevated risk of spontaneous abortion (OR = 2.3 (95% CI, 0.9, 5.9) was associated with working in a laboratory with chloroform, which was assessed through a questionnaire. The Developmental and Reproductive Toxicant (DART) Identification Committee reviewed these data in 2004 and asked that OEHHA request Dr. Wennborg to reanalyze the data excluding previous spontaneous abortions. In the re-analysis the resulting odds ratio did not change substantially; however, with the narrower 95% CI this association was now statistically significant (OR = 2.1 (95% CI, 1.1, 4.0)). (see Appendix C: Re-analysis of Data from Two Chloroform Epidemiological Studies: Wennborg et al. (2000) and Infante-Rivard (2004)).

Reported effects of chloroform in experimental studies in animals on indices of fetal viability resulting from exposure by the inhalation route included decreased litter size in rats (Schwetz et al. 1974; Baeder and Hoffman 1988) and increased resorptions in rats (Schwetz et al. 1974) and mice (Murray et al. 1979). Exposure by the oral route resulted in increased resorptions in rats and decreased fetal viability in rabbits (Thompson et al. 1974). One study in rats exposed orally reported no effect on live litter size or resorption frequency (Ruddick et al. 1983).

Stillbirth

Four epidemiologic studies examined stillbirths in association with chloroform water concentration. In an intervention study (Iszatt et al., 2014), changes in water treatment methods by the utilities company resulted in increases or decreases in water chloroform concentration, however, no significant changes in stillbirth rates were observed in association with changes in chloroform concentration. Three studies observed an increased risk of stillbirth with chloroform exposure, although in two studies the estimates were not consistently statistically significant (Dodds et al. 2004; King et al., (2000). The results of Toledano et al. (2005) showed a small but statistically significant increased risk of stillbirth.

Birth Defects

Of the three epidemiologic studies that examined the risk of birth defects with exposure to chloroform (Dodd and King, 2001; Iszatt et al., 2011; Grazuleviciene et al., 2011), only one reported an association, that being with chromosomal abnormalities (Dodd and King, 2001). This study is notable in that it was one of the few studies in this dataset to sample the participants' tap water.

In experimental studies of chloroform conducted in animals, an increase in gross and skeletal anomalies in rats (Schwetz et al. 1974) and an increased incidence of cleft palate in mice (Murray et al. 1979) exposed by inhalation were reported. Effects on ossification and skeletal development were reported in studies of several species including rats (US EPA 1978; Baeder and Hoffman 1991; Thompson et al. 1974; Ruddick et al. 1983), mice (Murray et al. 1979) and rabbits (Thompson et al. 1974). Some of the effects may be indicative of general developmental delay, rather than frank malformations.

Postnatal Weight Gain

One prospective cohort study examined postnatal weight gain in infants born in 3 study sites (Botton et al., 2015). The results showed a statistically significant decrease in postnatal weight gain with chloroform exposure as estimated internal dose through ingestion in the community with the highest chloroform water concentrations.

In experimental studies of chloroform conducted in animals, pup body weight was reduced in rats exposed via maternal inhalation exposure during gestation (Garcia-Estrada et al. 1990), as was weight at weaning in rats exposed only during gestation (Lim et al. 2004).

Fertility

An occupational retrospective cohort study conducted by Dahl et al. (1999) examined fertility in female dental surgeons. Chloroform exposure was assessed using a questionnaire concerning the number of root fillings with chloroform-based root canal sealing material placed per week. No association was observed for time to pregnancy.

One experimental study in mice exposed to chloroform by inhalation reported reduced pregnancy rate (Murray et al. 1979), while another study in mice exposed orally reported an increased fertility index associated with exposure (Chapin et al. 1977; NTP 1988).

Menstrual Cycle Function

In a prospective study of menstrual cycle length, (Windham et al., 2003), no significant association was evident for chloroform exposure and cycle length.

Sperm Quality

Four studies examined associations between chloroform exposure in men and sperm quality, with two studies reporting significant decreases in sperm quality, one study reporting a suggestive dose-response association, and another study observing no association.

In the human case study by Chang et al. (2001), investigators reconstructed the exposure situation created by a ventilation system shut down lasting months. Significantly reduced sperm motility was reported following chloroform exposure as compared to the normal baseline measures taken before exposure. After exposure stopped sperm motility improved.

Two related studies include a cross-sectional study (Zeng et al, 2013) and a prospective cohort study (Zeng et al., 2014), which examined a number of different indices of sperm quality including various measures of sperm motion. Zeng et al. (2013) reported a suggestive dose response association between blood chloroform concentration and decreased sperm concentration. An unexpected reverse association was also observed where increases in blood chloroform concentration resulted in increased straight-line velocity. Zeng et al. (2014) reported statistically significant associations including significant trends between chloroform exposure (measured as estimated internal dose via ingestion) and decreased sperm concentration as well as some suggestive associations with sperm concentration.

An experimental study of sperm morphology in mice exposed to chloroform by inhalation reported an increased incidence of abnormal sperm morphology (Land et al. 1981). Studies of chloroform in rats (US EPA 1980), mice (Chapin et al. 1977; NTP 1988) and dogs (Heywood et al. 1979) reported low incidences of testicular and epididymal abnormalities.

References

Backer, L. C., Q. Lan, B. C. Blount, J. R. Nuckols, R. Branch, C. W. Lyu, S. M. Kieszak, M. C. Brinkman, S. M. Gordon, W. D. Flanders, M. Romkes and K. P. Cantor (2008). "Exogenous and endogenous determinants of blood trihalomethane levels after showering". Environmental Health Perspectives 116(1): 57-63.

Baeder, C. and T. Eofmann (1988). "Inhalation embryotoxicity study of chloroform in Wistar rats". Pharma Research Toxicology and Pathology.

Baeder, C. and T. Hofmann (1991). "Chloroform: Supplementary Embryotoxicity Study in Wistar Rats". Pharma Development Toxicology.

Balster, R. L. and J. F. Borzelleca (1982). "Behavioral toxicity of trihalomethane contaminants of drinking water in mice". Environmental Health Perspectives 46: 127-36.

Blount, B. C., L. C. Backer, L. L. Aylward, S. M. Hays and J. S. LaKind (2011). Human Exposure Assessment for DBPs: Factors Influencing Blood Trihalomethane Levels A2 - Nriagu, J.O. Encyclopedia of Environmental Health. Burlington, Elsevier: 100-7.

Borzelleca, J. F. and R. A. Carchman (1982). Effects of selected organic drinking water contaminants on male reproduction. Unpublished report provided to US EPA. PB82-259847. 148 pages.

Botton, J., M. Kogevinas, E. Gracia-Lavedan, E. Patelarou, T. Roumeliotaki, C. Iniguez, L. Santa Marina, J. Ibarluzea, F. Ballester, M. A. Mendez, L. Chatzi, J. Sunyer and C. M. Villanueva (2015). "Postnatal weight growth and trihalomethane exposure during pregnancy". Environmental Research 136: 280-8.

Burkhalter, J. E. and R. L. Balster (1979). "Behavioral teratology evaluation of trichloromethane in mice". Neurobehavioral Toxicology 1(3): 199-205.

Chang, H. Y., Y. M. Lin, P. C. Hsu and Y. L. Guo (2001). "Reduction of sperm motility in a male laboratory worker exposed to solvents: a case study". Environmental Health Perspectives 109(7): 753-6.

Chapin, R., D. K. Gulati, E. Hope, R. C. Mounce, S. Russell and K. B. Poonacha (1997). "Chloroform". Environmental Health Perspectives 105(Supplement 1).

Costet, N., R. Garlantezec, C. Monfort, F. Rouget, B. Gagniere, C. Chevrier and S. Cordier (2012). "Environmental and urinary markers of prenatal exposure to drinking water disinfection by-products, fetal growth, and duration of gestation in the PELAGIE birth cohort (Brittany, France, 2002-2006)". American Journal of Epidemiology 175(4): 263-75.

Dahl, J. E., J. Sundby, A. Hensten-Pettersen and N. Jacobsen (1999). "Dental workplace exposure and effect on fertility". Scandinavian Journal of Work, Environment & Health 25(3): 285-90.

Danileviciute, A., R. Grazuleviciene, J. Vencloviene, A. Paulauskas and M. J. Nieuwenhuijsen (2012). "Exposure to drinking water trihalomethanes and their association with low birth weight and small for gestational age in genetically susceptible women". International Journal of Environmental Research and Public Health 9(12): 4470-85.

Dodds, L., W. King, A. C. Allen, B. A. Armson, D. B. Fell and C. Nimrod (2004). "Trihalomethanes in Public Water Supplies and Risk of Stillbirth". Epidemiology 15(2): 179-86.

Dodds, L. and W. D. King (2001). "Relation between trihalomethane compounds and birth defects". Journal of Occupational and Environmental Medicine 58(7): 443-6.

Fenster, L., K. Waller, G. Windham, T. Henneman, M. Anderson, P. Mendola, J. W. Overstreet and S. H. Swan (2003). "Trihalomethane Levels in Home Tap Water and Semen Quality". Epidemiology 14(6): 650-8.

Fiss, E. M., K. L. Rule and P. J. Vikesland (2007). "Formation of chloroform and other chlorinated byproducts by chlorination of triclosan-containing antibacterial products". Environmental Science & Technology 41(7): 2387-94.

García-Estrada, J., A. Navarro-Ruiz, J. Bañuelos-Pineda, V. Gómez, E. Albarrán-Rodríguez and P. Garzón (1990). "[Inhalation of organic solvents during the last third of pregnancy in Sprague-Dawley rats. Somatometric and cerebellar consequences in newborn animals]". Archivos de investigación médica 21(4): 311-7.

Grazuleviciene, R., V. Kapustinskiene, J. Vencloviene, J. Buinauskiene and M. J. Nieuwenhuijsen (2013). "Risk of congenital anomalies in relation to the uptake of trihalomethane from drinking water during pregnancy". Journal of Occupational and Environmental Medicine 70(4): 274-82.

Grazuleviciene, R., M. J. Nieuwenhuijsen, J. Vencloviene, M. Kostopoulou-Karadanelli, S. W. Krasner, A. Danileviciute, G. Balcius and V. Kapustinskiene (2011). "Individual exposures to drinking water trihalomethanes, low birth weight and small for gestational age risk: a prospective Kaunas cohort study". Environmental Health 10: 32.

Haddad, S., G. C. Tardif and R. Tardif (2006). "Development of physiologically based toxicokinetic models for improving the human indoor exposure assessment to water contaminants: trichloroethylene and trihalomethanes". Journal of Toxicology and Environmental Health Part A 69(23): 2095-136.

Heywood, R., R. J. Sortwell, P. R. Noel, A. E. Street, D. E. Prentice, F. J. Roe, P. F. Wadsworth, A. N. Worden and N. J. Van Abbe (1979). "Safety evaluation of toothpaste containing chloroform. III. Long-term study in beagle dogs". Journal of Environmental Pathology and Toxicology 2(3): 835-51.

Hinckley, A. F., A. M. Bachand and J. S. Reif (2005). "Late Pregnancy Exposures to Disinfection By-products and Growth-Related Birth Outcomes". Environmental Health Perspectives 113(12): 1808-13.

Hoffman, C. S., P. Mendola, D. A. Savitz, A. H. Herring, D. Loomis, K. E. Hartmann, P. C. Singer, H. S. Weinberg and A. F. Olshan (2008). "Drinking water disinfection by-product exposure and fetal growth". Epidemiology 19(5): 729-37.

Infante-Rivard, C. (2004). "Drinking Water Contaminants, Gene Polymorphisms, and Fetal Growth". Environmental Health Perspectives 112(11): 1213-6.

Iszatt, N., M. J. Nieuwenhuijsen, J. Bennett, N. Best, A. C. Povey, A. A. Pacey, H. Moore, N. Cherry and M. B. Toledano (2013). "Chlorination by-products in tap water and semen quality in England and Wales". Journal of Occupational and Environmental Medicine 70(11): 754-60.

Iszatt, N., M. J. Nieuwenhuijsen, J. E. Bennett and M. B. Toledano (2014). "Trihalomethanes in public drinking water and stillbirth and low birth weight rates: an intervention study". Environment International 73: 434-9.

Iszatt, N., M. J. Nieuwenhuijsen, P. Nelson, P. Elliott and M. B. Toledano (2011). "Water consumption and use, trihalomethane exposure, and the risk of hypospadias". Pediatrics 127(2): e389-97.

King, W. D., L. Dodds and A. C. Allen (2000). "Relation between stillbirth and specific chlorination by-products in public water supplies". Environmental Health Perspectives 108(9): 883-6.

Kramer, M. D., C. F. Lynch, P. Isacson and J. W. Hanson (1992). "The association of waterborne chloroform with intrauterine growth retardation". Epidemiology 3(5): 407-13.

LaKind, J. S., D. Q. Naiman, S. M. Hays, L. L. Aylward and B. C. Blount (2010). "Public health interpretation of trihalomethane blood levels in the United States: NHANES 1999-2004". Journal of Exposure Science and Environmental Epidemiology 20(3): 255-62.

Land, P. C., E. L. Owen and H. W. Linde (1981). "Morphologic changes in mouse spermatozoa after exposure to inhalational anesthetics during early spermatogenesis". Anesthesiology 54(1): 53-6.

Landi, S., N. M. Hanley, S. H. Warren, R. A. Pegram and D. M. DeMarini (1999). "Induction of genetic damage in human lymphocytes and mutations in Salmonella by trihalomethanes: role of red blood cells and GSTT1-1 polymorphism". Mutagenesis 14(5): 479-82.

Levallois, P., S. Gingras, S. Marcoux, C. Legay, C. Catto, M. Rodriguez and R. Tardif (2012). "Maternal exposure to drinking-water chlorination by-products and small-for-gestational-age neonates". Epidemiology 23(2): 267-76.

Lewis, C., I. H. Suffet, K. Hoggatt and B. Ritz (2007). "Estimated effects of disinfection by-products on preterm birth in a population served by a single water utility". Environmental Health Perspectives 115(2): 290-5.

Lewis, C., I. H. Suffet and B. Ritz (2006). "Estimated effects of disinfection by-products on birth weight in a population served by a single water utility". American Journal of Epidemiology 163(1): 38-47.

Lim, G. E., S. I. Stals, J. J. Petrik, W. G. Foster and A. C. Holloway (2004). "The effects of in utero and lactational exposure to chloroform on postnatal growth and glucose tolerance in male Wistar rats". Endocrine 25(3): 223-8.

Lynberg, M., J. R. Nuckols, P. Langlois, D. Ashley, P. Singer, P. Mendola, C. Wilkes, H. Krapfl, E. Miles, V. Speight, B. Lin, L. Small, A. Miles, M. Bonin, P. Zeitz, A. Tadkod, J. Henry and M. B. Forrester (2001). "Assessing exposure to disinfection by-products in women of reproductive age living in Corpus Christi, Texas, and Cobb county, Georgia: descriptive results and methods". Environmental Health Perspectives 109(6): 597-604.

Murray, F. J., B. A. Schwetz, J. G. McBride and R. E. Staples (1979). "Toxicity of inhaled chloroform in pregnant mice and their offspring". Toxicology and applied pharmacology 50(3): 515-22.

National Toxicology Program (NTP 1988). Chloroform reproduction and fertility assessment in CD-1 mice when administered by gavage. Report by Environmental Health Reseach and Testing, Inc., to National Toxicology Program. NTP-89-018(NTIS PB89-148639). [Gulati et al. 1988 is an alternative citation.]

Nuckols, J. R., D. L. Ashley, C. Lyu, S. M. Gordon, A. F. Hinckley and P. Singer (2005). "Influence of Tap Water Quality and Household Water Use Activities on Indoor Air and Internal Dose Levels of Trihalomethanes". Environmental Health Perspectives 113(7): 863-70.

Patelarou, E., S. Kargaki, E. G. Stephanou, M. Nieuwenhuijsen, P. Sourtzi, E. Gracia, L. Chatzi, A. Koutis and M. Kogevinas (2011). "Exposure to brominated trihalomethanes in drinking water and reproductive outcomes". Journal of Occupational and Environmental Medicine 68(6): 438-45.

Porter, C. K., S. D. Putnam, K. L. Hunting and M. R. Riddle (2005). "The effect of trihalomethane and haloacetic acid exposure on fetal growth in a Maryland county". American Journal of Epidemiology 162(4): 334-44.

Riederer, A. M., R. Dhingra, B. C. Blount and K. Steenland (2014). "Predictors of blood trihalomethane concentrations in NHANES 1999-2006". Environmental Health Perspectives 122(7): 695-702.

Rivera-Nunez, Z. and J. M. Wright (2013). "Association of brominated trihalomethane and haloacetic acid exposure with fetal growth and preterm delivery in Massachusetts". Journal of Occupational and Environmental Medicine 55(10): 1125-34.

Ruddick, J. A., D. C. Villeneuve, I. Chu and V. E. Valli (1983). "A teratological assessment of four trihalomethanes in the rat". Journal of Environmental Science and Health 18(3): 333-49.

Rule, K. L., V. R. Ebbett and P. J. Vikesland (2005). "Formation of Chloroform and Chlorinated Organics by Free-Chlorine-Mediated Oxidation of Triclosan". Environmental Science & Technology 39(9): 3176-85.

Savitz, D. A., P. C. Singer, K. E. Hartmann, A. H. Herring, H. S. Weinberg, C. Makarushka, C. Hoffman, R. Chan and R. Maclehose (2005). "Drinking Water Disinfection By-Products and Pregnancy Outcome".

Savitz, D. A., P. C. Singer, A. H. Herring, K. E. Hartmann, H. S. Weinberg and C. Makarushka (2006). "Exposure to drinking water disinfection by-products and pregnancy loss". American Journal of Epidemiology 164(11): 1043-51.

Schwetz, B. A., B. K. Leong and P. J. Gehring (1974). "Embryo- and fetotoxicity of inhaled chloroform in rats". Toxicology and applied pharmacology 28(3): 442-51.

Smith, R. B., S. C. Edwards, N. Best, J. Wright, M. J. Nieuwenhuijsen and M. B. Toledano (2015). "Birth Weight, Ethnicity, and Exposure to Trihalomethanes and Haloacetic Acids in Drinking Water during Pregnancy in the Born in Bradford Cohort". Environmental Health Perspectives 124(5): 681-9.

Summerhayes, R. J., G. G. Morgan, H. P. Edwards, D. Lincoln, A. Earnest, B. Rahman and J. R. Beard (2012). "Exposure to trihalomethanes in drinking water and small-for-gestational-age births". Epidemiology 23(1): 15-22.

Teixido, E., E. Pique, J. Gonzalez-Linares, J. M. Llobet and J. Gomez-Catalan (2015). "Developmental effects and genotoxicity of 10 water disinfection by-products in zebrafish". Journal of Water and Health 13(1): 54-66.

Thompson, D. J., S. D. Warner and V. B. Robinson (1974). "Teratology studies on orally administered chloroform in the rat and rabbit". Toxicology and applied pharmacology 29(3): 348-57.

Toledano, M. B., M. J. Nieuwenhuijsen, N. Best, H. Whitaker, P. Hambly, C. de Hoogh, J. Fawell, L. Jarup and P. Elliott (2005). "Relation of Trihalomethane Concentrations in Public Water Supplies to Stillbirth and Birth Weight in Three Water Regions in England". Environmental Health Perspectives 113(2): 225-32.

Tylleskär-Jensen, J. (1967). "[Chloroform--a cause of pregnancy toxemia?]". Nordisk medicin 77(26): 841-2.

US EPA. (11/9/2015). "Stage 1 and Stage 2 Disinfectants and Disinfection Byproducts Rules." from https://www.epa.gov/dwreginfo/stage-1-and-stage-2-disinfectants-and-disinfection-byproducts-rules.

OEHHA

August 2016

US EPA (1980) Effects of chloroform in the drinking water of rats and mice: ninety-day subacute toxicity study. US EPA Research Reporting Series: Environmental Health Effects Research Publication No. U.S. EPA-600/1-80-030

US EPA (1978) Teratology and acute toxicology of selected chemical pesticides administered by inhalation. US EPA Research Reporting Series: Environmental Health Effects Research Publication No. U.S. EPA-600/1-78-003.

Villanueva, C. M., E. Gracia-Lavedan, J. Ibarluzea, L. Santa Marina, F. Ballester, S. Llop, A. Tardon, M. F. Fernandez, C. Freire, F. Goni, X. Basagana, M. Kogevinas, J. O. Grimalt, J. Sunyer and I. Project (2011). "Exposure to trihalomethanes through different water uses and birth weight, small for gestational age, and preterm delivery in Spain". Environmental Health Perspectives 119(12): 1824-30.

Waller, K., S. H. Swan, G. DeLorenze and B. Hopkins (1998). "Trihalomethanes in drinking water and spontaneous abortion". Epidemiology 9(2): 134-40.

Wennborg, H., L. Bodin, H. Vainio and G. Axelsson (2000). "Pregnancy outcome of personnel in Swedish biomedical research laboratories". Journal of Occupational and Environmental Medicine 42(4): 438-46.

Whitaker, H. J., M. J. Nieuwenhuijsen and N. G. Best (2002). "The Relationship between Water Concentrations and Individual Uptake of Chloroform: A Simulation Study". Environmental Health Perspectives 111(5): 688-94.

Windham, G. C., K. Waller, M. Anderson, L. Fenster, P. Mendola and S. Swan (2003). "Chlorination By-Products in Drinking Water and Menstrual Cycle Function". Environmental Health Perspectives 111(7): 935-41.

Wright, J. M., J. Schwartz and D. W. Dockery (2004). "The Effect of Disinfection Byproducts and Mutagenic Activity on Birth Weight and Gestational Duration". Environmental Health Perspectives 112(8): 920-5.

Wright, M. J. and Z. Rivera-Nuñez (2011). "Effect of water disinfection type on adverse fetal outcomes". Journal AWWA 103(10): 67-75.

Zeng, Q., Y. Z. Chen, L. Xu, H. X. Chen, Y. Luo, M. Li, J. Yue, A. L. Liu, Y. F. Li and W. Q. Lu (2014). "Evaluation of exposure to trihalomethanes in tap water and semen quality: a prospective study in Wuhan, China". Reproductive Toxicology 46: 56-63.

Zeng, Q., M. Li, S. H. Xie, L. J. Gu, J. Yue, W. C. Cao, D. Zheng, A. L. Liu, Y. F. Li and W. Q. Lu (2013). "Baseline blood trihalomethanes, semen parameters and serum total testosterone: a cross-sectional study in China". Environment International 54: 134-40.

Zhou, W., Y. Li and S. Xie (2010). "Relationship between exposure to disinfection byproducts during pregnancy and term infants birth weight". Journal of Environment and Health 27(1): 17-20. Appendix A. Tables of Associations between Chloroform and Other Disinfection By-Products Exposure and Reproductive Outcomes in Human Studies.

Study/	Exposure	Reference		Odds Ratio (95% CI)		
Location	Level	Level	PTB	SGA	LBW	BW (g) (95% CI)
Danileviciute et al. ‡‡ 2012 Lithuania	Estimated internal dose (μg/d) CHL ≥0.1424 (median level)	<0.1424		Entire pregnancy 1.31 (0.82, 20.9) GSTM1-1 0.84 (0.42, 1.68) GSTM1-0 1.78 (0.90, 3.50)	Entire pregnancy 1.24 (0.57, 2.68) GSTM1-1 0.34 (0.09, 1.22) GSTM1-0 4.08 (1.20, 13.9) Test for interaction: 12.88 (2.27, 73.2)	
				GSTT1-1 1.30 (0.78, 2.17) GSTT1-0 0.99 (0.28,3.58) <u>3rd trimester</u> 1.31 (0.82, 2.08) GSTM1-1 0.88 (0.44, 1.78) GSTM1-0 1.74 (0.89, 3.41)	GSTT1-1 1.9 (0.5, 2.82) GSTT1-0 7.48 (0.13, 409) <u>3rd trimester</u> 1.45 (0.67, 3.13) GSTM1-1 0.35 (0.10, 1.28) GSTM1-0 5.06 (1.50,17.05)	
				GSTT1-1 1.18 (0.71, 1.97) GSTT1-0 1.75 (0.50, 6.10)	S.06 (1.30,17.03) Test for interaction: 15.86 (2.75,91.40) GSTT1-1 1.35 (0.57, 3.20) GSTT1-0 7.30 (0.14, 391)	
	BDCM ≥0.0280	<0.0280		<u>3rd trimester</u> 1.31 (0.82, 2.09) GSTM1-1 1.05 (0.52, 2.10) GSTM1-0	3 rd trimester 1.26 (0.58, 2.72) GSTM1-1 0.55 (0.16, 1.89) GSTM1-0	

Abbreviations: BDCM - bromodichloromethane; BrTHM - total brominated trihalomethanes; BW - birth weight; CHL - chloroform; CI - confidence interval; conc - concentration; DBCM - dibromochloromethane; dec - decrease; FGR - fetal growth restriction; inc - increase; LBW - low birth weight; med - medium; PTB - preterm birth; SGA - small for gestational age; TCAA – trichloroacetic acid; TTHM - total trihalomethanes; VLBW - very low birth weight.

Study/	Exposure	Reference		Odds Ratio (95% CI)		
Location	Level	Level	PTB	SGA	LBW	BW (g) (95% CI)
	DBCM ≥0.0026	<0.0026		1.43 (0.73, 2.81) GSTT1-1 1.29 (0.77, 2.15) GSTT1-0 1.03 (0.29, 3.69) <u>3rd trimester</u> 1.68 (0.97, 2.89) GSTM1-1 1.63 (0.73, 3.64) GSTM1-0 1.55 (0.72, 3.36) GSTT1-1 1.89 (1.01, 3.54) GSTT1-0	2.74 (0.88, 8.51) Test for interaction: 5.29 (1.03, 27.15) GSTT1-1 1.36 (0.58, 3.22) GSTT1-0 0.89 (0.05, 15.9) <u>3rd trimester</u> 1.54 (0.65, 3.63) GSTM1-1 1.36 (0.36, 5.11) GSTM1-0 1.78 (0.55, 5.75) GSTT1-1 1.41 (0.54, 3.70) GSTT1-0	
Botton et al.* 2015 Spain (3 study sites) and Greece	Estimated internal dose(µg/d)All sites:CHLIQR incBrTHMIQR incIngestion (µg/d)All sites:CHLIQR incBrTHMIQR incBrTHMIQR incBy site:GipuzkoaCHLIQR incBrTHMIQR incBrTHMIQR incSabadellIQR inc			1.04 (0.31, 3.53)	0.54 (0.02, 12.51)	Entire pregnancy Postnatal weight gain -9.30 (-87.3, 68.7) -17.2 (-63.4, 29.1) -40.3 (-122, 41) -45.6 (-118, 26.5) 9.63 (-174, 193) 18.0 (-181, 217) -151 (-288, -15)

Exposure	Reference		Odds Ratio (95% C	I)	
Level	Level	PTB	SGA	LBW	BW (g) (95% CI)
BrTHM IQR inc					-146 (-280, -12.3)
<u>Valencia</u> CHL IQR inc					36.7 (-87, 160)
			3 rd trimester	3 rd trimester	36.7 (-79.9, 153) 3 rd trimester
<u>(μg/d)</u> 0.0249–0.2868 0.2868–2.1328 Continuous (per 0.1 μg/d increase)	0.0013-0.0249		1.19 (0.87, 1.63) 1.22 (0.89, 1.68) 1.04 (1.00, 1.09)	2.12 (1.11, 4.02) 2.13 (1.15, 3.92) 1.09 (1.01, 1.18)	Change in BW in grams of infants below 3,500 g for every 1 μg/d increase in internal dose: -57.8 (-111.6, -4.0)
BDCM 0.0124–0.0501 0.0501–0.3359 Continuous (per 0.01 µg/d increase)	0.0001–0.0124		1.37 (1.00, 1.88) 1.25 (0.91, 1.73) 1.20 (0.90, 1.62)	1.64 (0.89, 3.02) 1.80 (1.00, 3.26) 1.04 (1.00, 1.10)	-25.7 (-57.2, 5.8)
DBCM 0-0.0039 0.0039-0.0644 Continuous (per 0.01 µg/d increase)	0		1.76 (0.56, 1.03) 0.85 (0.63, 1.15) 1.06 (0.92, 1.22)	2.44 (1.05, 5.70) 2.42 (1.03, 5.66) 1.23 (0.93, 1.61)	-45.9 (-207.6, 114.8)
Estimated internal dose $(\mu g/d)$ CHL $\geq 0.91 - <1.56$ ≥ 1.56	<0.91				Entire pregnancy Total population: -16.3 (-39.0, 6.5) -20.9 (-44.6, 2.8)
					Pakistani origin: 10.3 (-21.2, 41.9) - 48.3 (-84.6, -12.1) White British: -13.3 (-52.9, 26.3)
					9.0 (-23.5, 46.5) <u>3rd trimester</u> Total population: -14.8 (-37.7, 8.1) -8.7 (-31.8, 14.3)
	Level BrTHM IQR inc Valencia CHL IQR inc BrTHM IQR inc BrTHM IQR inc Estimated internal dose (µg/d) 0.0249–0.2868 0.2868–2.1328 Continuous (per 0.1 µg/d increase) BDCM 0.0124–0.0501 0.0501–0.3359 Continuous (per 0.01 µg/d increase) DBCM 0–0.0039 0.0039–0.0644 Continuous (per 0.01 µg/d increase) Estimated internal dose (µg/d) CHL ≥0.91–<1.56	LevelLevelBrTHMIQR inc $Valencia$ CHLIQR incBrTHMIQR incBrTHMIQR incEstimated internal dose (µg/d)0.0013-0.02490.2868-2.1328 Continuous (per 0.1 µg/d increase)0.0013-0.0249BDCM 0.0124-0.0501 0.0501-0.3359 Continuous (per 0.01 µg/d increase)0.0001-0.0124DBCM 0-0.0039 0.0039-0.0644 Continuous (per 0.01 µg/d increase)0DBCM 0-0.0039 0.0039-0.0644 Continuous (per 0.01 µg/d increase)0Estimated internal dose (µg/d) CHL ≥0.91-<1.56	LevelLevelPTBBrTHMIQR inc $Valencia$ CHLIQR incBrTHMIQR inc $Valencia$ CHL $Valencia$ IQR incBrTHMIQR inc $Valencia$ CHLBrTHMIQR inc $Valencia$ (µg/d)0.0249-0.2868 0.2868-2.1328 Continuous (per 0.1 µg/d increase) $0.0013-0.0249$ BDCM 0.0124-0.0501 0.0501-0.3359 Continuous (per 0.01 µg/d increase) $0.0001-0.0124$ DBCM 0-0.0039 0.0039-0.0644 Continuous (per 0.01 µg/d increase) 0 DBCM 0-0.01 µg/d increase) 0 DBCM 0-0.01 µg/d increase) 0 Continuous (per 0.01 µg/d increase) 0	Level Level PTB SGA BrTHM IQR inc SGA SGA Walencia CHL IQR inc 3rd trimester SGA BrTHM IQR inc 119 (0.87, 1.63) 122 (0.89, 1.68) 0.0249-0.2868 0.0013-00249 1.19 (0.87, 1.63) 1.22 (0.89, 1.68) 0.2868-2.1328 0.0013-00249 1.37 (1.00, 1.88) 1.04 (1.00, 1.09) BDCM 0.0124-0.0501 0.0001-0.0124 1.37 (1.00, 1.88) 1.25 (0.91, 1.73) 0.0501-0.3359 0.0001-0.0124 1.37 (1.00, 1.81) 1.20 (0.90, 1.62) 1.20 (0.90, 1.62) DBCM 0 0 1.76 (0.56, 1.03) 0.85 (0.63, 1.15) 1.06 (0.92, 1.22) DBCM 0 0.039-0.0644 0 1.76 (0.56, 1.03) 0.85 (0.63, 1.15) 1.06 (0.92, 1.22) DBCM 0.01 µg/d increase) 0 1.76 (0.56, 1.03) 0.85 (0.63, 1.15) 1.06 (0.92, 1.22) DBCM 0.01 µg/d increase) 0 0.77 (0.02, 1.22) 1.06 (0.92, 1.22) 1.06 (0.92, 1.22)	Level Level PTB SGA LBW BrTHM IQR inc IQR inc

Study/ Exposure Reference Odds Ratio (95% CI) Level Level PTB SGA LBW Location BW (q) (95% CI) Pakistani origin: 5.1 (-27.1, 37.4) -42.8 (-78.2, -7.4) White British: -27.0 (-66.1, 12.1) 9.5 (-26.8, 45.8) Entire pregnancy Total population: BDCM ≥0.12-<0.21 <0.12 -11.1 (-33.9, 11.8) ≥0.21 -17.9 (-41.5, 5.7) Pakistani origin: -11.5 (-43.3, 20.2) - 49.8 (-86.3, -13.4) White British: 8.2 (-31.6, 48.1) 10.9 (-26.4, 48.2) 3rd trimester Total population: -9.9 (-32.9, 13.0) -10.2 (-33.4, 13.0) Pakistani origin: -1.2(-33.2, 30.9)-48.7 (-84.8, -12.5) White British: -4.2 (-43.8, 35.5) 15.2 (-21.1, 51.6) Entire pregnancy Kramer et al. Water conc (µg/L) Entire pregnancy Entire pregnancy 1992 CHL 1-9 ND <1 1.1 (0.8, 1.4) 1.3 (0.9, 1.8) 1.1 (0.7, 1.6) 1.8 (1.1, 2.9) ≥10 1.1 (0.7, 1.6) 1.3 (0.8, 2.2) lowa BDCM 1-9 ND <1 1.1 (0.9, 1.5) 1.2 (0.8, 1.7) 1.0 (0.5, 1.9) 1.7 (0.9, 2.9) <u>></u>10 1.0 (0.6, 1.5) 1.0 (0.7, 1.5) DBCM 1–3 ND <1 1.1 (0.7, 1.4) 1.0 (0.7, 1.5) 0.7 (0.5, 1.1) >4 0.9 (0.1, 8.6) 0.8 (0.4, 1.4) no cases TBM >1 ND <1 1.1 (0.8, 1.4) 1.1 (0.7, 1.6) 0.9 (0.6, 1.5)

Study/	Exposure Reference Odds Ratio (95% CI)						
Location		Level	Level	PTB	SGA	LBW	BW (g) (95% CI)
Costet et al. 2012 France	Water of CHL	<u>:onc (μg/L)</u> 5–<10 10–<15 ≥15	< 5	3rd trimester 0.7 (0.4,1.2) 0.5 (0.3,0.9) 0.8 (0.4,1.4)	3rd trimester (as FGR) 0.8 (0.5, 1.2) 1.0 (0.6, 1.5) 0.9 (0.5, 1.4)		
	BDCM	9–<13 13–<16 ≥16	<9	1.1 (0.7, 2.0) 0.7 (0.4, 1.3) 0.8 (0.4, 1.5)	0.8 (0.5, 1.2) 0.9 (0.6, 1.4) 1.0 (0.6, 1.6)		
	DBCM	13–<15 15–<18 ≥18	<13	1.0 (0.6, 1.8) 1.3 (0.7, 2.5) 0.8 (0.4,1.5)	1.0 (0.6, 1.6) 1.3 (0.8, 2.1) 1.2 (0.8, 1.9)		
	ТВМ	5–<7.5 7.5–<10 ≥10	< 5	0.7 (0.4, 1.3) 1.0 (0.5, 2.0) 1.1 (0.6, 2.0)	1.4 (0.8, 2.2) 1.3 (0.8, 2.3) 1.4 (0.8, 2.3)		
		ed internal dose					
	<u>(µg/d)</u> СНL	0.068–<0.133 0.133–<0.237 ≥0.237	< 0.068	1.8 (0.7, 4.8) 0.7 (0.2, 2.1) 1.0 (0.4, 2.9)	1.1 (0.5, 2.3) 1.2 (0.6, 2.4) 1.0 (0.5, 2.1)		
	BDCM	0.083-<0.141 0.141-<0.226 ≥0.226	<0.083	0.6 (0.2, 1.6) 0.9 (0.4, 2.2) 0.7 (0.3, 1.8)	1.5 (0.7, 3.2) 1.5 (0.7, 3.1) 1.6 (0.8, 3.4)		
	DBCM	0.118-<0.188 0.188-<0.267 ≥0.267	<0.118	0.7 (0.2, 1.9) 0.9 (0.3, 2.4) 0.8 (0.3, 2.2)	1.6 (0.7, 3.6) 1.7 (0.8, 3.8) 1.9 (0.9, 4.1)		
	ТВМ	0.057-<0.113 0.113-<0.205 ≥0.205	<0.057	0.5 (0.2, 1.3) 1.2 (0.5, 3.0) 0.8 (0.2, 2.6)	1.1 (0.6, 2.2) 0.9 (0.4, 1.9) 1.8 (0.8, 3.9)		
	Estimativi via inge CHL 0.00	<u>TCAA Study</u> ed internal dose stion (μg/d) 01–<0.006 06–<0.015	0-0.001	0.7 (0.3, 1.5) 0.8 (0.4, 1.8) 1.2 (0.6, 2.5)	1.0 (0.6, 1.7) 0.8 (0.4, 1.5) 1.2 (0.7, 2.2)		

Study/	Exposure	Reference		Odds Ratio (95% CI)		
Location	Level	Level	PTB	SGA	LBW	BW (g) (95% CI)
	BDCM 0.0005-<0.0016 0.0016-<0.004 ≥0.004 DBCM 0.0008-<0.0023 0.0023-<0.267 ≥0.0052	0–0.0005 0–0.0008	0.8 (0.3, 1.5) 1.0 (0.5, 1.9) 1.5 (0.7, 2.8) 0.7 (0.3, 1.5) 1.2 (0.6, 2.3) 1.5 (0.7, 2.9)	1.3 (0.7, 2.2) 1.1 (0.6, 2.0) 1.3 (0.7, 2.3) 1.4 (0.8, 2.4) 1.2 (0.7, 2.2) 1.4 (0.8, 2.5)		
	TBM 0.0003-<0.0013 0.0013-<0.0034 ≥.0.0034	0–0.0003	0.9 (0.5, 1.8) 1.1 (0.5, 2.2) 1.3 (0.6, 2.7)	1.4 (0.8, 2.4) 1.4 (0.8, 2.6) 1.1 (0.6, 2.2)		
Hinckley et al. 2005	<u>Water conc (µg/L)</u> CHL 10–16 ≥16	<10	No OR were presented Authors reported no	<u>3rd trimester</u> 1.02 (0.94, 1.11) 1.01 (0.93, 1.10)	<u>3rd trimester</u> 1.18 (1.00, 1.39) 1.04 (0.88, 1.23)	
Arizona	BDCM 13–18 ≥18	<13	associations were observed	0.93 (0.85, 1.01) 1.03 (0.95, 1.12)	1.05 (0.89, 1.24) 1.04 (0.88, 1.23)	
	DBCM 12–16 ≥16	<12		0.96 (0.89, 1.05) 1.01 (0.94, 1.10)	1.00 (0.84, 1.18) 1.05 (0.89, 1.24)	
Infante-Rivard 2004	Water conc (µg/L) CHL >23.7	<u><</u> 23.7		Entire pregnancy 1.06 (0.63, 1.79)		
Montréal, Canada	TTHM >29.4	<u><</u> 29.4		0.97 (0.57, 1.62)		
	BDCM >6.3	≤6.3		0.84 (0.50, 1.43)		
	DBCM >3.9	≤3.9		0.62 (0.27, 1.44)		
	TBM >1.22	≤1.22		2.44 (0.19, 31.10)		
	Gene-environment interaction: 90 th percentile CHL (or TTHM) conc + categories for mother and newborn variants of CYP2E1 and MTHFR C677T: 3) Wild type 4) 1 or 2 variant alleles					

Study/	Exposure	Reference		Odds Ratio (95% CI)		
Location	Level	Level	PTB	SGA	LBW	BW (g) (95% CI)
	Newborn CYP2E1*5 CHL >23.7 MTHFR CHL >23.7 Maternal CYP2E1*5 CHL >23.7 MTHFR THM >29.4 Maternal CYP2E1*5 TTHM >29.4 Maternal CYP2E1*5 TTHM >29.4 MTHFR TTHM >29.4	 ≤23.7 ≤23.7 ≤23.7 ≤23.7 ≤29.4 ≤29.4 ≤29.4 		3) 0.99 (0.57, 1.74) 4) 5.62 (0.82, 38.39) 3) 1.78 (0.82, 3.87) 4) 0.83 (0.38, 1.54) 3) 0.88 (0.50, 1.54) 4) 4.40 (0.73, 26.42) 3) 1.00 (0.46, 2.18) 4) 1.12 (0.56, 2.32) 1) 0.82 (0.47, 1.45) 2) 13.20 (1.19, 146.72) 1) 1.63 (0.72, 3.71) 2) 0.76 (0.38, 1.54) 1) 0.83 (0.48, 1.44) 2) 6.54 (0.59, 71.45) 1) 0.98 (0.46, 2.10) 2) 0.94 (0.47, 1.89)		
Porter et al. 2005 Maryland	Water conc (µg/L) CHL (Mean = 34.1) 2 nd quintile 3 rd quintile 4 th quintile 5 th quintile BDCM (Mean = 13.4)	<29.4 1 st quintile	155	Entire pregnancy 1.24 (1.02, 1.50) 1.08 (0.88, 1.32) 1.12 (0.92, 1.36) 1.04 (0.85, 1.27) 3 rd trimester 1.02 (0.84, 1.24) 0.96 (0.79, 1.16) 0.98 (0.81, 1.19) 1.07 (0.88, 1.29) Entire pregnancy 1.05 (0.87, 1.27) 0.96 (0.79, 1.17) 1.07 (0.89, 1.30) 0.97 (0.80, 1.18)	ОЕННА	

Study/	Exposure	Reference		Odds Ratio (95% CI)		
Location	Level	Level	PTB	SGA	LBW	BW (g) (95% CI)
	DBCM (Mean = 4.35)			$\frac{3^{rd} \text{ trimester}}{0.92 (0.76, 1.12)} \\ 1.04 (0.86, 1.25) \\ 0.92 (0.76, 1.12) \\ 0.92 (0.76, 1.12) \\ 0.98 (0.81, 1.19) \\ \hline \\ \\ \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline \\ \hline \hline$		
Taladara at al				1.01 (0.83, 1.23)	Ord trime actor	
Toledano et al. 2005 United Kingdom (3 study sites)	Water conc (μg/L) LBW CHL 20-40 >40 BDCM 6-12	<20 <6			<u>3rd trimester</u> 1.05 (1.03, 1.07) 1.10 (1.07, 1.13) 1.02 (0.99, 1.04)	
	VLBW 20–40 >40	<0			1.02 (0.99, 1.04) 0.99 (0.97, 1.05) 1.01 (0.96, 1.07) 1.07 (0.99, 1.15)	
	BDCM 6-12 >12	<6			1.07 (0.99, 1.15) 1.01 (0.95, 1.07) 0.98 (0.92, 1.04)	

ACGIH TLV DART Chemical for Reconsideration: Chloroform OEHHA August 2016

Study/	E	Exposure	Reference		Odds Ratio (95% CI)		
Location		Level	Level	PTB	SGA	LBW	BW (g) (95% CI)
Savitz et al. † 2005 US (3 study sites)	Water co	onc (μg/L) >0.1–≤10.9 >10.9–≤30.4 >30.4–≤48.2 >48.2	≥0-≤0.1	<u>3rd trimester</u> 0.68 (0.42, 1.11) 0.76 (0.47, 1.24) 0.52 (0.31, 0.90) 0.54 (0.31, 0.92)	Used quartiles <u>3rd trimester</u> 1.45 (0.79, 2.64) 1.33 (0.71, 2.49) 1.05 (0.54, 2.01)		<u>3rd trimester</u> -18 (-86, 51) -6 (-75, 62) 12 (-56, 80) 28 (-39, 96)
	BrTHM	>3.4–≤12.7 >12.7–≤17.1 >17.1-≤32.5 >32.5	≥0.0-≤3.4	0.58 (0.35,0.97) 0.45 (0.25, 0.78) 0.51 (0.29, 0.88) 1.03 (0.65, 1.63)	0.86 (0.45, 1.66) 1.03 (0.54, 1.97) 1.58 (0.88, 2.83)		12 (-55, 79) 51 (-17, 119) 29 (-40, 97) -54 (-126, 17)
	BDCM	>1.1-≤10.8 >10.8-≤13.2 >13.2-≤19.7 >19.7	≥0.0-≤1.1	0.63 (0.38, 1.04) 0.47 (0.27, 0.83) 0.69 (0.41, 1.15) 0.96 (0.60, 1.54)	1.06 (0.55, 2.02) 1.07 (0.56, 2.07) 1.63 (0.90, 2.96)		-15 (-82, 52) 42 (-26, 110) -10 (-78, 58) -21 (-91, 49)
	<u>Estimate</u> (μg/d) CHL	ed internal dose >0-≤0.2 >0.2-≤0.8 >0.8-≤1.3 >1.3	0	1.03 (0.65, 1.66) 0.56 (0.32, 0.96) 0.82 (0.49, 1.37) 0.59 (0.34, 1.01)	<u>Used quartiles</u> 1.16 (0.63, 2.14) 1.26 (0.68, 2.33) 1.14 (0.62, 2.09)		10 (-58, 78) -4 (-72, 63) 37 (-31, 105) 32 (-36, 100)
	BrTHM	>0.1-≤0.2 >0.2-≤0.3 >0.3-≤0.7 >0.7	≥0.0-≤0.1	0.78 (0.47, 1.28) 0.60 (0.35, 1.04) 0.68 (0.40, 1.15) 0.76 (0.46, 1.26)	1.02 (0.54, 1.95) 0.89 (0.45, 1.75) 1.65 (0.93, 2.94)		-20 (-87, 47) -4 (-72, 63) -31 (-99, 37) -31 (-101, 39
	BDCM	>0-≤0.1 >0.1-≤0.3 >0.3-≤0.4 >0.4	0	0.77 (0.47, 1.26) 0.65 (0.38, 1.11) 0.60 (0.35, 1.03) 0.76 (0.46, 1.26)	1.15 (0.62, 2.14) 1.05 (0.54, 2.02) 1.35 (0.75, 2.43)		-27 (-95, 41) 20 (-48, 87) -20 (-88, 47) -20 (-89, 50)
Hoffman et al. † 2008 3 US communities		<u>hlorinated)</u> <u>nc (µg/L)</u> 44.3–49.0 49.1–94.0	19.9–44.2		Bayesian models <u>3rd trimester</u> 1.9 (0.5, 8.1) 1.7 (0.4, 7.1)		Bayesian models 3 rd trimester 58 (-51, 165) 49 (-62, 156)
	BDCM	11.9–14.1 14.2–28.5	8.2–11.8		1.4 (0.6, 3.2) 1.5 (0.6, 3.7)		-8 (-84, 64) -28 (-126, 51)

OEHHA August 2016

Study/		Exposure	Reference		Odds Ratio (95% CI)			
Location		Level	Level	PTB	SGA	LBW	BW (g) (95% CI)	
	DBCM	3.3–4.4 4.5–9.1	1.1–3.2		1.3 (0.6, 2.9) 1.9 (0.8, 5.3)		0 (-73, 77) -16 (-102, 67)	
		<u>prominated)</u> pnc (µg/L) 11.6–15.6	6.4–11.5		4.2 (0.6, 33.7)		64 (-146, 278)	
		15.7–22.1			3.6 (0.5, 30.1)		70 (-146, 294)	
	BDCM	20.2–22.9 23–29.2	15.8–20.1		0.8 (0.3, 1.9) 0.9 (0.4, 2.4)		90 (-15, 191) 73 (-50, 176)	
	DBCM	19.4–26 26.1–38.7	15.2–19.3		0.7 (0.3, 1.6) 0.7 (0.2, 1.7)		105 (7, 215) 100 (-15, 224)	
Levallois et al. 2012	Water c CHL	<u>onc (µg/L)</u> 15.96–27.26 27.27–51.07	<15.96		<u>3rd trimester</u> 0.9 (0.7, 1.3) 1.0 (0.8, 1.4)			
Quebec City, Canada		>51.07			1.2 (0.9, 1.7)			
	BrTHM	3.12–5.00 5.01–9.02 >9.02	<3.12		1.0 (0.7, 1.3) 0.9 (0.6, 1.2) 0.9 (0.7, 1.2)			
		<u>ed internal dose</u> <u>pathway (µg/d)</u> 42.24–80.21 80.22–169.81	<42.24		0.9 (0.7, 1.2) 1.0 (0.7, 1.3)			
		>169.81			1.0 (0.8, 1.4)			
	BrTHM	7.55–14.62 14.63–26.08 >26.08	<7.55		0.9 (0.7, 1.3) 0.9 (0.7, 1.3) 0.8 (0.6, 1.1)			
Rivera-Nuñez and Wright 2013	<u>Water c</u> CHL	onc (μg/L) >5–21 >21–36 >36–52	≤5	2 nd trimester 1.00 (0.94, 1.06) 1.08 (1.02, 1.14) 1.06 (0.99, 1.12)	<u>3rd trimester</u> 1.01 (0.96, 1.05) 1.00 (0.95, 1.04) 1.04 (1.00, 1.10)		<u>3rd trimester</u> -1 (-7, 5) -9 (-15, -2) -13 (-19, -7)	
Massachusetts		>52		1.00 (0.94, 1.07)	1.04 (0.99, 1.09)		-15 (-21, -8)	
	BDCM	>1-4 >4-6 >6-10 >10	<u><</u> 1	0.96 (0.91, 1.01) 0.99 (0.94, 1.04) 0.90 (0.86, 0.95) 0.93 (0.88, 0.98)	1.04 (1.00, 1.08) 1.08 (1.03, 1.12) 1.09 (1.04, 1.14) 1.09 (1.04, 1.13)		-11 (-17, -5) -14 (-21, -8) -20 (-26, -14) -16 (-22, -10)	
	∆		T Chemical	158		OEHHA		

Study/	Exposure	Reference		Odds Ratio (95% CI)		
Location	Level	Level	PTB	SGA	LBW	BW (g) (95% CI)
	BrTHM >2–5 >5–8 >8–13 >13	≤2	0.97 (0.92, 1.01) 0.96 (0.91, 1.01) 0.89 (0.85, 0.94) 0.92 (0.88, 0.97)	1.00 (0.97, 1.04) 1.06 (1.02, 1.10) 1.08 (1.04, 1.12) 1.05 (1.00, 1.09)		-10 (-16, -4) -17 (-23, -11) -19 (-25, -13) -13 (-19, -7)
Summerhayes et al. 2012 New South Wales, Australia	Water conc (μg/L) CHL IQR increase (25 μg/L) 5 th decile 25.00–30.18 10 th decile 56.03–147.94	1 st decile 1.68–13.71		<u>Relative Risk</u> <u>3rd trimester</u> 1.04 (1.02, 1.06) 1.01 (0.96, 1.07) 1.12 (1.05, 1.18)		Entire pregnancy -5.0 (-8.6, -1.4)
	BDCM 13.17–14.43 21.96–52.55	2.95-9.78		1.04 (0.99, 1.09) 1.10 (1.04, 1.16)		
Lewis et al. ‡ 2007 Massachusetts	$\frac{\text{Water conc } (\mu g/L)}{\text{TTHM } (\text{CHL} = 83-93\%)}$ $\frac{40-<60}{\geq 60}$	<40	Hazard Ratios 2 nd trimester 0.87 (0.77, 0.99) 0.82 (0.71, 0.94)			
	Continuous (per 10 µg/L increase)		0.95 (0.92, 0.99) <u>Pregnancy average</u> 0.92 (0.82, 1.02) 0.85 (0.74, 0.97) 0.95 (0.91, 0.99) <u>4 weeks before birth¹</u> 1.07 (0.85, 1.34) 1.39 (1.06, 1.81)			
Wright et al. 2004 Massachusetts	Water conc (μg/L) CHL >26–63 >63–135 BDCM >5–13 >13–46	0–26 0–5	1.03 (0.96, 1.11) <u>3rd trimester</u> 0.95 (0.91, 0.99) 0.90 (0.84, 0.97) 0.89 (0.85, 0.93) 0.92 (0.85, 0.99)	<u>3rd trimester</u> 1.05 (1.02, 1.09) 1.11 (1.04, 1.17) 1.1 (1.07, 1.14) 1.15 (1.08, 1.22)		3 rd trimester -14 (-19, -9) -18 (-26, -10) -12 (-17, -8) -12 (-20, -3)

¹ Hazard ratios for prenatal care paid for by government or Healthy Start. **ACGIH TLV DART Chemical**

Study/	Exposure	Reference		Odds Ratio (95% CI)	
Location	Level	Level	PTB	SGA	LBW	BW (g) (95% CI)
Lewis et al. ‡ 2006 Massachusetts	<u>Water conc (μg/L)</u> TTHM (CHL = 83–93%) 40–<50 50–<60	<u>≤</u> 40			2 nd trimester 1.10 (0.81, 1.49) 1.08 (0.79, 1.49)	
	60–<70 <u>≥</u> 70				1.24 (0.92, 1.67) 1.50 (1.07, 2.10)	
	Per 10 µg/L increase				1.08 (1.00, 1.17)	
					<u>Caucasian</u> 1.11 (0.69, 1.78) 1.10 (0.67, 1.79) 1.22 (0.76, 1.97) 1.37 (0.80, 2.36)	
					1.06 (0.95, 1.20)	
					Non-Caucasian 1.08 (0.73, 1.61) 1.09 (0.72, 1.66) 1.27 (0.86, 1.87) 1.60 (1.03, 2.47)	
					1.10 (1.00, 1.22)	
Villanueva et al.* 2011	Total residential water conc (μg/L) CHL 10% increase		<u>3rd trimester</u> 1.00 (0.99, 1.01)	<u>3rd trimester</u> 1.00 (0.99, 1.01)	<u>3rd trimester</u> 1.00 (0.99, 1.02)	<u>3rd trimester</u> -0.07 (-1.00, 0.85)
Spain (5 areas)	BrTHM 10% increase		1.01 (0.98, 1.03)	1.00 (0.99, 1.02)	1.01 (0.98, 1.03)	0.36 (-1.19, 1.92)
Iszatt et al. 2014	<u>Water conc (µg/L)</u> <u>LBW</u> CHL				Entire pregnancy LBW ² 1) -5 (-9, -1)	
England	1) Low inc: ≤10 to dec <10 2) Med dec: 10–<30 3) High dec: 30–65				2) -5 (-9, -1) 3) -9 (-12, -5)	
	BDCM 1) Low inc: ≤10 to dec <10				-3 (-8, 2)	

² Reported as rate change, which is the percent change calculated as the exponential of the regression coefficient (e.g. rate ratio of after/before) minus 1 and multiplied by 100.

Study/	Exposure	Reference		Odds Ratio (95% CI)		
Location	Level	Level	PTB	SGA	LBW	BW (g) (95% CI)
	2) Med dec: 10–<30 3) High dec: 30–65				-8 (-12, -5) -7 (-11, -4)	
	DBCM 1) Low inc: ≤10 to dec				-7 (-10, -3)	
	<10 2) Med dec: 10–<30 3) High dec: 30–65				-9 (-14, -5) -5 (-9, -1)	
	VLBW CHL				<u>VLBW</u> -7 (-17, 3) 4 (-7, 16) -16 (-24, -8)	
	BDCM				-12 (-22, 0) -10 (-18, -1) -3 (-12, 8)	
	DBCM				-9 (-17, -1) -13 (-23, -1) -2 (-12, 9)	
Zhou et al. 2010	Water conc (µg/L)					Odds Ratio Entire pregnancy
China	CHL 2 nd quartile 3 rd quartile 4 th quartile	1 st quartile				0.96 (0.60, 1.53) 1.45 (0.88, 2.40) 1.64 (0.90, 3.00)
						<u>1st trimester</u> 1.74 (1.10, 2.77) 0.90 (0.47, 1.74) 0.89 (0.44, 1.77)
						<u>3rd trimester</u> 1.37 (0.99, 1.88) 1.67 (0.98, 2.85) 1.82 (1.10, 3.02)
						<u>1st and 2nd trimester</u> 1.10 (0.71, 1.68) 1.62 (1.05, 2.50) 0.93 (0.54, 1.60)
		T Chomical	161		OEI	

Study/	Exposure	Reference		Odds Ratio (95% CI)		
Location	Level	Level	PTB	SGA	LBW	BW (g) (95% CI)
	BrTHM 2 nd quartile 3 rd quartile 4 th quartile	1 st quartile				Entire pregnancy 1.03 (0.65, 1.66) 1.58 (0.95, 2.63) 1.06 (0.57, 1.96) <u>3rd trimester</u> 1.40 (0.99, 1.98) 1.21 (0.81, 1.81) 1.51 (1.05, 2.17)
Wennborg et al. 2000 Sweden	Women working in a laboratory with CHL n = 66	Women working in non- laboratory departments				Entire pregnancy 27 (-136, 190)

Stillbirth, Birth Defects, Fertility and Menstrual Cycle Function in Human Studies. Odds Ratio (95% CI) Study/ Exposure Reference Level Location Level SAB Stillbirth Birth Defects Fertility Grazuleviciene et Estimated internal dose 1st trimester exposure al. ‡‡ Heart anomalies (µg/d) 2013 CHL 0.026-0.288 0.001-0.026 1.05 (0.53, 2.08) 0.288-2.109 1.37 (0.72, 2.63) Lithuania Continuous (per 1 µg/d 1.97 (0.90, 4.35) increase) BDCM 0.013-0.051 0.000-0.013 1.74 (0.85, 3.54) 0.051-0.436 1.82 (0.89, 3.69) 1.70 (1.09, 2.66) Continuous (0.1 µg/d) DBCM 0.002-0.006 0.000-0.002 0.73 (0.36, 1.48) 0.006-0.093 1.35 (0.73, 2.51) 1.25 (1.01, 1.54) Continuous (0.01 μ g/d) Musculoskeletal

Table A4c. Associations between Chloroform (CHL) and Other Disinfection By-Products Exposure and Spontaneous Abortion (SAB),

abortion; TBM - bromoform.

Abbreviations: BDCM - bromodichloromethane; BrTHM - total brominated trihalomethanes; CHL - chloroform; CI - confidence interval; conc - concentration; d - day; DBCM - dibromochloromethane; d - day; dec - decrease; inc - increase; L - liter; LMP - last menstrual period; med - medium; NTD - neural tube defects; SAB - spontaneous

anomalies 0.61 (0.29, 1.32) 0.51 (0.22, 1.14) 0.43 (0.11, 1.71)

1.18 (0.51, 2.71) 1.29 (0.57, 2.92) 0.97 (0.46, 2.06)

0.95 (0.42, 2.18) 1.16 (0.52, 2.57) 1.20 (0.91, 1.58)

1.65 (0.48, 5.67) 2.87 (0.92, 8.99) 1.57 (0.74, 3.37)

0.92 (0.29, 2.87) 1.79 (0.65, 4.90) 1.17 (0.80, 1.72)

Urogenital anomalies 2.21 (0.67, 7.23) 2.50 (0.78, 8.06) 2.22 (0.69, 7.17)

Study/		Exposure	Reference			io (95% CI)	
Location		Level	Level	SAB	Stillbirth	Birth Defects	Fertility
Iszatt et al. 2011 England	Water c	<u>onc (μg/L)</u> 1.0–2.9 3.0–6.9 7–90	0.0–0.9			Entire pregnancy <u>exposure</u> 1.17 (0.67, 2.03) 0.99 (0.57, 1.69) 0.84 (0.49, 1.46)	
	BrTHM	11–18 19–24 25–70	0–10			1.02 (0.63, 1.65) 0.82 (0.51, 1.34) 1.06 (0.66, 1.71)	
	BDCM	1.1–5.0 6–9 10–23	0.0–1.0			1.15 (0.71, 1.88) 0.83 (0.51, 1.35) 1.05 (0.65, 1.68)	
	DBCM	4–7 8–10 11–34	0–3			1.00 (0.61, 1.64) 0.91 (0.56, 1.47) 0.92 (0.57, 1.49)	
	ТВМ	2.5–3.9 4.0–6.9 7–27	0.0–2.4			0.94 (0.56, 1.58) 0.88 (0.54, 1.45) 1.06 (0.66, 1.69)	
		ed internal dose					
	<u>(µg/d)</u> CHL	1.38–4.78 4.79–13.98 13.99–101	0–1.37			0.93 (0.56, 1.53) 0.86 (0.52, 1.42) 0.74 (0.45, 1.21)	
	BrTHM	1.674–3.204 3.205–6.24 6.25–48	0–1.673			1.54 (0.94, 2.55) 0.70 (0.42, 1.17) 1.04 (0.63, 1.72)	
	BDCM	0.314–1.057 1.058–2.275 2.276–24	0–0.313			1.21 (0.79, 1.87) 1.13 (0.73, 1.74) 1.20 (0.78, 1.85)	
	DBCM	0.454–0.96 0.97–2.13 2.14–19	0–0.453			0.93 (0.56, 1.54) 0.70 (0.42, 1.16) 0.90 (0.54, 1.47)	
	ТВМ	0.481–0.894 0.895–1.901 1.902–13	0-0.480			1.06 (0.64,1.76) 0.87 (0.52, 1.46) 0.92 (0.55, 1.56)	

Study/	Exposure	Reference	Odds Ratio (95% CI)				
Location	Level	Level	SAB	Stillbirth	Birth Defects	Fertility	
Waller et al. 1998	Water conc (µg/L)CHL<	<17 and <5 glasses/d	1 st trimester exposure 0.9 (0.5, 1.6)				
California (3 facilities)	BDCM ≥18 and 5 glasses/d	<18 and <5 glasses/d	2.0 (1.2, 3.5)				
	DBCM ≥31 and 5 glasses/d	<31 and <5 glasses/d	1.3 (0.7, 2.4)				
	TBM ≥16 and 5 glasses/d	<16 and <5 glasses/d	1.0 (0.5, 2.0)				
Windham et al. 2003 California	<u>Water conc (μg/L)</u> CHL 2 nd –3 rd quartile 4 th quartile (≥17)	1 st quartile				Difference in menstrual cycle length -0.43 (-0.99, 0.13) -0.30 (-1.0, 0.40)	
	BrTHM 2 nd –3 rd quartile 4 th quartile (≥45)	1 st quartile				Difference in folicular phase length -0.42 (-0.96, 0.12) -0.13 (-0.82, 0.56) Difference in menstrual cycle length -0.72 (-1.4, -0.04) -1.2 (-2.0, -0.40) Difference in folicular	
Toledano et al.	Water conc (µg/L)			3 rd trimester exposure		<u>phase length</u> -0.66 (-1.3, 0.02) -1.1 (-1.9, -0.29)	
2005 United Kingdom (3 water regions)	CHL 20-40 >40 BDCM 6-12 >12	<20		1.11 (1.03, 1.19) 1.12 (1.02, 1.23) 0.96 (0.88, 1.04) 0.99 (0.91, 1.07)			

Study/	Exposure	Reference		Odds Ratio	Odds Ratio (95% CI)			
Location	Level	Level	SAB	Stillbirth	Birth Defects	Fertility		
Savitz et al. † 2005 US (3 study sites)	<u>Water conc (μg/L)</u> CHL >0.06–≤8.6 >8.6–≤30.27	≥0–≤0.06	<u>9 weeks after last</u> <u>menstrual period (LMP) to</u> <u>20 weeks after LMP</u> 0.82 (0.51, 1.34) 1.66 (1.06, 2.61)					
	>30.27–≤48.71 >48.71		0.89 (0.55, 1.45) 0.95 (0.58, 1.54)					
	BrTHM >3.13-≤12.3 >12.3-≤17.83 >17.83-≤32.26 >32.26	≥0-≤3.13	0.92 (0.57, 1.47) 0.96 (0.58, 1.59) 1.1 (0.68, 1.76) 1.54 (0.96, 2.46)					
	Estimated internal dose (µg/d) CHL >0-≤0.24 >0.24-≤0.78 >0.78-≤1.4 >1.4	0	0.88 (0.54,1.42) 1.15 (0.71,1.86) 1.09 (0.68,1.76) 1.14 (0.72,1.81)					
	BrTHM >0.08-≤0.2 >0.2-≤0.38 >0.38-≤0.82 >0.82	≥0–≤0.8	0.79 (0.47, 1.33) 0.94 (0.57, 1.56) 1.34 (0.84, 2.14) 1.48 (0.9, 2.44)					
Iszatt et al. 2014	Water conc (µg/L)			Entire pregnancy exposure				
England	Low inc \leq 10 to dec <10 Med dec 10–<30 High dec 30–65			-5 (-9, 20) ¹ 2 (-13, 20) -4 (-16, 8)				
Dodds et al. 2004 Nova Scotia and Eastern Ontario, Canada	<u>Water conc (μg/L)</u> CHL 1–49 50–79 >80	0		<u>1st + early 2nd trimester</u> <u>exposure</u> 1.8 (1.1, 3.0) 0.9 (0.5, 1.9) 2.2 (1.0, 4.8)				
	Total exposure (µg/L) CHL Quintile 1 Quintile 2 Quintile 3	No exposure		1.8 (0.9, 3.7) 1.3 (0.6, 3.0) 2.3 (1.1, 4.7)				

¹ Reported a rate change, which is the percent change calculated as the exponential of the regression coefficient (e.g. rate ratio of after/before) minus 1 and multiplied by 100.

Study/	Exposure	Reference				
Location	Level	Level	SAB	Stillbirth	Birth Defects	Fertility
	Quintile 4 Quintile 5 BDCM 1–4	0		1.3 (0.6, 2.8) 2.0 (1.0, 4.0) 1.7 (1.0, 3.0)		
	5–9 ≥10			0.9 (0.5, 1.9) 2.2 (1.0, 4.9)		
King et al. * * 2000 Nova Scotia	Water conc (μg/L) CHL 50–74 75–99 ≥100 Continuous (per 10 μg/L increase)	<50		Entire pregnancy exposure 1.20 (0.85, 1.68) 1.35 (0.87, 2.08) 1.56 (1.04, 2.34) 1.04 (1.00, 1.09)		
	BDCM 5-9 10-19 ≥20	<5		1.07 (0.77, 3.19) 1.44 (0.90, 2.27) 1.98 (1.23, 3.49)		
Dodds and King * * 2001	Water conc (µg/L)				NTD - 1 month before conception to 1 month after	
Nova Scotia	CHL 50–74 75–99 ≥100	<50			0.7 (0.4, 1.2) 0.7 (0.3, 1.5) 1.2 (0.7, 2.3)	
	BDCM 5–9 10–19 ≥20	<5			1.4 (0.8, 2.3) 0.6 (0.2, 1.5) 2.5 (1.2, 5.1)	
					<u>Cardiovascular anomalies</u> <u>1st 2 months of pregnancy</u> 1.0 (0.8, 1.3) 1.0 (0.8, 1.4) 0.7 (0.5, 1.0) 1.0 (0.8, 1.2) 0.7 (0.5, 1.0) 0.3 (0.2, 0.7)	
					<u>Cleft defects</u> <u>1st 2 months of pregnancy</u> 1.2 (0.7, 2.0) 0.9 (0.4, 2.0) 1.5 (0.8, 2.8)	

Table A4c. Associations between Chloroform (CHL) and Other Disinfection By-Products Exposure and Spontaneous Abortion (SAB	5),
Stillbirth, Birth Defects, Fertility and Menstrual Cycle Function in Human Studies (cont'd).	

Study/	Exposure	Reference	Odds Ratio (95% CI)				
Location	Level	Level	SAB	Stillbirth	Birth Defects	Fertility	
					0.7 (0.4, 1.2) 1.1 (0.6, 2.1) 0.6 (0.2, 1.9) <u>Chromosomal</u> <u>abnormalities</u> <u>3 months before</u> <u>pregnancy</u> 1.3 (0.8, 2.2) 1.9 (1.1, 3.3) 1.4 (0.8, 2.8) 1.0 (0.6, 1.5) 0.7 (0.4, 1.6) 0.9 (0.4, 2.3)		
Wennborg et al. 2000 Sweden	Women working in a laboratory with CHL n = 86	Women with no laboratory work exposure n = 770	2.3 (0.9, 5.9)				
Dahl et al. 1999 Norway	Placement of CHL based root canal fillings by female dental surgeons	High School teachers				Fecundability Ratio (95% CI) 1.06 (0.95, 1.10)	

			β-coefficients (95% CI)				
Study/ Location	Exposure Level	Reference Level	Sperm Concentration ¹ (million/mL)	Sperm Count ¹ (million)	Sperm Motility (%) & Motile Sperm Concentration (MSC)	Sperm Motion ²	
Zeng et al. † † 2014 China	Estimated internal dose by ingestion (µg/d) CHL 0.005–0.011 0.011–0.019 ≥0.019 P for trend Continuous ³	< 0.005	-0.19 (-0.43, 0.05) -0.25 (-0.51, 0.00) -0.28 (-0.53, -0.02) 0.03 -0.15 (-0.25, -0.04)	-0.15 (-0.40, 0.10) -0.34 (-0.61, -0.07) -0.22 (-0.49, 0.05) 0.05 -0.12 (-0.24, -0.01)	<u>Sperm motility (%)</u> -4.66 (-9.93, 0.60) -3.19 (-8.80, 2.41) -4.13 (-9.73, 1.47) 0.25 -1.75 (-4.17, 0.66)	Ingestion Straight-line velocity (VSL) CHL -0.25 (-1.85, 1.35) 0.38 (-1.32, 2.08) 1.77 (0.07, 3.47) 0.03 BrTHM	
	BrTHM 0.001–0.002 0.002–0.003 ≥0.003 P for trend Continuous ³	<0.001	-0.23 (-0.44, -0.01) -0.16 (-0.42, 0.11) -0.26 (-0.52, -0.01) 0.05 -0.13 (-0.24, -0.02)	-0.31 (-0.54, -0.09) -0.26 (-0.53, 0.02) -0.21 (-0.48, 0.06) 0.09 -0.11 (-0.23, 0.01)	-4.23 (-8.86, 0.41) 0.72 (-5.06, 6.50) -3.76 (-9.39, 1.88) 0.40 -1.59 (-4.02, 0.84)	-0.25 (-1.65, 1.15) 2.18 (0.44, 3.93) 1.76 (0.06, 3.46) 0.01	
	Estimated internal dose by showering/bathing CHL 0.064–0.126 0.126–0.246 ≥0.246	<0.064	0.10 (-0.16, 0.36) -0.07 (-0.30, 0.15) -0.04 (-0.29, 0.21)	0.00 (-0.28, 0.28) 0.07 (-0.17, 0.32) 0.04 (-0.23, 0.31)	-0.86 (-6.58, 4.86) -2.57 (-7.57, 2.43) 0.26 (-5.30, 5.83)	<u>Curvilinear velocity</u> (VCL) <u>CHL</u> -1.08 (-3.64, 1.48) -0.28 (-3.00, 2.45) 2.74 (0.01, 5.46)	
	P for trend Continuous ³ BrTHM 0.036–0.069 0.069–0.120 ≥0.120	<0.036	0.13 -0.05 (-0.15, 0.05) 0.09 (-0.15, 0.34) -0.14 (-0.40, 0.11) -0.10 (-0.34, 0.14)	0.74 0.01 (-0.10, 0.11) 0.21 (-0.05, 0.46) 0.07 (-0.20, 0.34) 0.01 (-0.24, 0.26)	0.41 -0.44 (-2.61, 1.74) 1.66 (-3.69, 7.01) -2.37 (-7.95, 3.22) -1.79 (-7.00, 3.43)	0.03 <u>BrTHM</u> -0.94 (-3.19, 1.31) 3.21 (0.40, 6.02) 2.53 (-0.21, 5.27)	

Abbreviations: BDCM - bromodichloromethane; BrTHM - total brominated trihalomethanes; CHL - chloroform; CI - confidence interval; d – day; conc - concentration; DBCM - dibromochloromethane; L – liter; LIN - linearity; MSC - motile sperm concentration; VCL - curvilinear velocity; VSL - straight-line velocity.

OEHHA August 2016

¹ Natural log transformation was applied.

² Units of measurement for sperm motion parameters were straight-line velocity = μ m/s, curvilinear velocity = μ m/s, linearity = %, path velocity = μ m/sec.

³ Continuous - quartiles of uptake (µg/day).

				β-coeffic	ients (95% CI)	
Study/ Location	Exposure Level	Reference Level	Sperm Concentration ¹ (million/mL)	Sperm Count ¹ (million)	Sperm Motility (%) & Motile Sperm Concentration (MSC)	Sperm Motion ²
			(million/mL)		Concentration (MSC)	Linearity (LIN) There were no significant findings for any of the DBPs <u>Showering/Bathing</u> <u>Straight-line velocity</u> (VSL) There were no significant findings <u>Curvilinear velocity</u> (VCL) <u>CHL</u> -0.13 (-2.92, 2.67) 1.90 (-0.54, 4.35) 2.32 (-0.40, 5.04) 0.04 <u>BrTHM</u> 0.65 (-1.95, 3.25) -0.01 (-2.73, 2.70)
						3.23 (0.70, 5.77) 0.02 Linearity (LIN) CHL -0.74 (-3.22, 1.73) -2.28 (-4.44, -0.11) -0.17 (-2.58, 2.24) 0.42 BrTHM -1.79 (-4.12, 0.54) -0.70 (-3.13, 1.74) -1.75 (-4.02, 0.52) 0.25

	β-coefficients (95% CI)						
Study/Location	Exposure Level	Reference Level	Sperm Concentration⁴ (million/mL)	Sperm Count ¹ (million)	Sperm Motility (%) & Motile Sperm Concentration (MSC)	Sperm Motion	
Iszatt et al. 2013 England and Wales	<u>Water conc (µg/L)</u> CHL Upper quartile Mean: Cases = 25.9 Controls = 27.3 BrTHM Mean: Cases = 13.1 Controls= 13.2	Lower quartile (12)	No significant relationship was observed for the effect of CHL on sperm conc (results presented graphically) No significant relationship was observed for the effect of BrTHM on sperm conc (results presented graphically)	Not assessed	Low MSC per 10 µg/L increase in CHL: Odds ratio = 1.00 (0.92, 1.09) No significant relationship was observed for the effect of CHL on change in percent motile sperm Low MSC per 10 µg/L increase in BrTHM: 0.93 (0.58, 1.49) No significant relationship was observed for the effect of BrTHM on change in percent motile sperm	Not assessed	

⁴ Natural log transformation was applied.

x			β-coefficients (95% CI)				
Study/ Location	Exposure Level	Reference Level	Sperm Concentration ¹ (million/mL)	Sperm Count ¹ (million)	Sperm Motility (%) & Motile Sperm Concentration (MSC)	Sperm Motion ²	
Zeng et al. † † 2013 China	Blood conc (ng/L) CHL 35.87–66.35 >66.35 P for trend	< 35.87	-0.04 (-0.12, 0.04) -0.08 (-0.16, 0.01) 0.07	-0.02 (-0.11, 0.08) -0.07 (-0.16, 0.03) 0.19	2.19 (-2.27, 6.64) 1.35 (-3.13, 5.82) 0.55	Curvilinear velocity <u>CHL</u> 1.03 (-1.28, 3.34) 2.15 (-0.17, 4.47) 0.07	
	BDCM 1.02–2.35 >2.35 P for trend	< 1.02	-0.07 (-0.15, 0.02) -0.02, (-0.10, 0.06) 0.61	-0.13 (-0.22, -0.03) -0.04 (-0.13, 0.06) 0.44	-0.16 (-4.62, 4.30) -0.70 (-5.16, 3.76) 0.76	<u>Straight-line velocity</u> <u>CHL</u> 0.89 (-0.59, 2.38) 1.95 (0.46, 3.44)	
	DBCM 0.68–1.00 >1.00 P for trend	< 0.68	-0.07 (-0.21, 0.07) -0.10 (-0.25, 0.06) 0.13	-0.06 (-0.23, 0.10) -0.11 (-0.29, 0.06) 0.14	-1.92 (-9.43, 5.58) -4.24 (-12.37, 3.89) 0.26	0.01 <u>Linearity</u> CHL	
	BrTHM 3.03–4.71 >4.71 P for trend	<3.03	-0.03 (-0.11, 0.05) -0.01 (-0.09, 0.08) 0.83	-0.04 (-0.14, 0.06) -0.02 (-0.12, 0.08) 0.67	1.95 (-2.48, 6.38) -0.07 (-4.59, 4.45) 0.97	1.13 (-0.86, 3.12) 1.19 (-0.80, 3.19) 0.24	
						<u>DBCM</u> -4.74 (-8.07, -1.42) 0.03 (-3.57, 3.63) 0.23 There were no other significant findings for any other DBPs	

			β-coefficients (95% CI)							
Study/ Location	Exposure Level	Reference Level	Sperm Concentration ¹ (million/mL)	Sperm Count ¹ (million)	Sperm Motility (%) & Motile Sperm Concentration (MSC)	Sperm Motion ²				
Chang et al. 2001 Taiwan	Active air samples of CHL = 8.5 ppm Passive air samples of CHL = 4.6 ppm Estimated air CHL for 2 hours at the beginning of the workday = 450 ppm		Not assessed	Authors state that sperm count was normal ~1 year prior to exposure. During the post- exposure period: sperm counts were as follows (by time since end of exposure): ≈ 3 months: 68.6 ≈ 4 months: 73.8 ≈ 6 months: 90.6	Semen parameters at screening ~1 year prior to exposure had been normal, with 95% motile at a normal speed at 30 min after ejaculation During the post- exposure period: the percentage of motile sperm were as follows (by time since end of exposure): ≈ 3 months: 26% ≈ 4 months: 11% ≈ 6 months: 40%	Path velocity ≈ 3 months: 35 ≈ 4 months: 40 ≈ 6 months: 50				

Appendix B. Tables of Exposure Measures, Uptake Factors Used In Estimating Internal Dose, and Windows of Exposure in Human Studies.

Α.

Study	CHL Concentration (µg/L)	TTHM Concentration (µg/L)	BDCM Concentration (µg/L)	DBCM Concentration (µg/L)
Iszatt et al. 2014	Mean ¹ (SD): Before EC (2000–2002) 38.6 (4.2)	Mean (SD): Before EC (2000–2002) 49.3 (5.2)	Mean (SD): Before EC (2000–2002) 7.5 (0.8)	Mean (SD): Before EC (2000–2002) 2.5 (0.1)
	<u>After EC (2005–2007)</u> 19.4 (1.0)	After EC (2005–2007) 28.9 (1.4)	After EC (2005–2007) 6.3 (0.4)	<u>After EC (2005–2007)</u> 2.4 (0.2)
Iszatt et al. 2013	Mean (SD): Cases: 25.9 (19.0) Controls: 27.3 (19.1) Range of means across 9 sites:	Mean (SD): Cases: 39.1 (19.5) Controls: 40.6 (20.0) Range of means across 9 sites:	Not reported	Not reported
Rivera-Nuñez and Wright 2013	3.2–51.6 Mean in 3 rd trimester: 30.6	12.2–61.0 Mean in 3 rd trimester 38.1	Mean in 3 rd trimester 6.1	Not reported
2010	Median: 27.4 Range: 0–265.9	<i>Median: 36.2</i> Range: 0–273.5	Median: 5.3 Range: 0–49.5	
Summerhayes et al. 2012	Mean (SD) for entire pregnancy: 33.6 (16.0)	Mean (SD) for entire pregnancy: 57.7 (20.5)	Mean for entire pregnancy (SD): 15.8 (4.5)	Mean for entire pregnancy (SD): 6.3 (2.2)
	Median: 30.9 Range: 3.4–121.5	Median: 55.5 Range: 23.2–154.9	Median: 15.3 Range: 5.7–33.8	Median: 5.9 Range: 0.7–25.6
Patelarou et al.* 2011	Mean (SD) for all sites across all years: 0.15 (0.15)	Mean (SD) for all sites across all years: 3.71 (5.75) Range across sites: 0.004–26.0	Mean (SD) for all sites across all years: 0.19 (0.36)	Mean (SD) for all sites across all years: 0.55 (1.12)
Zhou et al. 2010	Mean: not reported Range of monthly means: 5.99–51.19	Not reported	Not reported	Not reported
Hoffman et al.† ² 2008	Mean (SD): <u>Site 1</u> 46.7 (13.3) <u>Site 2</u> 13.7 (3.3)	Mean (SD): <u>Site 1</u> 66.4 (15.8) <u>Site 2</u> 63.6 (11.8)	Mean (SD): <u>Site 1</u> 15.1 (4.4) <u>Site 2</u> 21.1 (2.9)	Mean (SD): <u>Site 1</u> 4.4 (2.1) <u>Site 2</u> 23.1 (6.5)

Abbreviations: BDCM - bromodichloromethane; d - day; CHL - chloroform; DBCM - dibromochloromethane; DBPs - disinfection by-products; EC - enhanced coagulation; IQR - interquartile range; L – liter; Max - maximum; Min - minimum; ND - not detectable; SD - standard deviation; THM - trihalomethane; TTHM - total trihalomethane.

² Hoffman et al. 2008 measured DBPs at two sites. Site 1 consisted predominantly of chlorinated DBPs. Site 2 consisted predominantly of brominated DBPs.

OEHHA August 2016

¹ Mean values for DBPs are presented in **bold**.

Study	CHL Concentration (µg/L)	TTHM Concentration (µg/L)	BDCM Concentration (µg/L)	DBCM Concentration (µg/L)	
Lewis et al.‡ 2007	Same as for Lewis et al. 2006	Same as for Lewis et al. 2006	Same as for Lewis et al. 2006	Same as for Lewis et al. 2006	
Lewis et al.‡ 2006	CHL on average: 89% of TTHM (min/max of monthly means ~25/~77)	Interquartile range (IQR) of monthly means: 59 (min 28, max 87)	Range: Not Detectable (ND) to 9 75 th percentile = 6.1	ND to <1	
Hinckley et al. 2005	Mean: not reported <u>Tertiles:</u> <10, 10–16, ≥16	Range of yearly means from 1998–2002: 43.4–56.9	Mean: not reported <u>Tertiles:</u> <13, 13–18, ≥18	Mean: not reported <u>Tertiles:</u> <12, 12–16, ≥16	
Porter et al. 2005	Mean (95% CI): 34.1 (32.5, 35.7)	Mean (95% CI): 53.7 (49.3, 56.0)	Mean (95% CI): 13.4 (12.8, 14.1)	Mean (95% CI): 4.35 (4.01, 4.68)	
Toledano et al. 2005	Mean: not reported Exposure categories: <20, 20–40, >40	Mean (5 th , 95 th percentiles) by site: <u>Northumbrian</u> : 56.6 (27.0, 81.1) <u>United</u> : 52.0 (19.0, 81.1) <u>Severn Trent:</u> 35.8 (2.8, 72.5)	Mean: not reported Exposure categories: <6, 6–12, >12	Levels were often below detection limit and too low for meaningful analysis	
Dodds et al. 2004	Mean: not reported <u>Quartiles:</u> 0, 1–49, 50–79, >80 Max: 315	Mean ³ : Cases: 57 Controls: 55 Max: 318	Mean: not reported <u>Quartiles:</u> 0, 1–4, 5–9, ≥10 Max: 21	Not reported	
Infante-Rivard 2004	Tap Mean (SD): Cases: 11.84 (18.19) Controls: 11.58 (16.31)	Tap Mean (SD): Cases: 18.74 (19.76) Controls: 18.26 (18.89)	Tap Mean (SD): Cases: 4.34 (2.94) Controls: 4.24 (3.42)	Tap Mean (SD): Cases: 2.21 (1.95) Controls: 2.08 (2.30)	
Wright et al. 2004	Mean (SD): 31.0 (23.6) 10 th & 90 th percentile: 4, 63 Max: 135	Mean (SD): 38.2 (27.0) 10 th & 90 th percentile: 8, 74 Max: 163	Mean (SD): 5.7 (5.1) 10 th & 90 th percentile: 1, 12 Max: 46	Not reported	
Windham et al. 2003	Mean: not reported Categories: 1 st quartile, 2 nd –3 rd quartile, 4 th quartile (≥17)	Mean: not reported Tertiles: 0–40, >40–60, >60	Mean: not reported Categories: 1 st quartile, 2 nd –3 rd quartile, 4 th quartile (≥16)	Mean: not reported Categories: 1 st quartile, 2 nd –3 rd quartile, 4 th quartile (≥20)	
Dodds and King* * 2001	<u>Quartiles:</u> <50, 50–74, 75–99, ≥100	Not reported	<u>Quartiles:</u> <5, 5–9,10–19, ≥20	Occurred at very low levels, and thus, not analyzed	

³ In residential water among subjects with chlorinated water supply.

Study	CHL Concentration	TTHM Concentration	BDCM Concentration	DBCM Concentration	
	(μg/L)	(µg/L)	(µg/L)	(µg/L)	
King et al.* *	Mean:	Mean:	Mean:	Not reported	
2000	64.1	71.3	6.9		
Waller et al. 1998	"high" exposure defined as ≥17 CHL [upper quartile] +≥5 glasses/d	"high" exposure defined as ≥75 TTHM +≥5 glasses/d	"high" exposure defined as ≥18 BDCM [upper quartile] +≥5 glasses/d	"high" exposure defined as ≥31 DBCM [upper quartile] +≥5 glasses/d	
Kramer et al. 1992	Mean (SD): 12.5 (38.7) Median:1 Range: 0–350	Not reported	Mean: not reported <u>Tertiles:</u> Non-detectable, 1–9, ≥10	Mean: not reported <u>Tertiles:</u> Non-detectable, 1–3, ≥4	

В.

	C	CHL		ΉМ	BDCM		DBCM	
Study	Concentration (µg/L)	Estimated Internal Dose (µg/d)	Concentration (µg/L)	Estimated Internal Dose (µg/d)	Concentration (µg/L)	Estimated Internal Dose (µg/d)	Concentration (µg/L)	Estimated Internal Dose (µg/d)
Botton et al.* 2015	Median by site ⁴ : Gipuzkoa ~12 Sabadell ~20 Valencia ~0 Crete Not reported	Median by site ⁴ : Gipuzkoa ~0.1 Sabadell ~0.2 Valencia ~0 Crete Not reported	Median by site ⁴ : Gipuzkoa ~20 Sabadell ~120 Valencia ~5 Crete ~0	Median (IQR) by site: Gipuzkoa ~0.22 (0.14–0.32) Sabadell ~1.6 (1.1–2.1) Valencia ~0.1 (0.05–1.1) Crete ~0.021 (0.0077–0.071)	Not reported	Not reported	Not reported	Not reported
Smith et al. 2015	Mean (SD): 37.8 (3.8)	Mean (SD): 1.61 (1.46)	Mean (SD): 45.6 (4.0)	Mean (SD): 1.86 (1.66)	Mean (SD): 6.6 (0.6)	Mean (SD): 0.20 (0.16)	Mean (SD): 0.9 (0.2)	Mean (SD): 0.03 (0.03)
Zeng et al.† † 2014	Mean: 13.71 Range: 2.68–29.90	Quartiles: <0.005 0.005–0.011 0.011–0.019 ≥0.019	Mean: 21.39 Range: 6.38–40.36	Quartiles: <0.006 0.006–0.012 0.012–0.021 ≥0.021	Not reported	Not reported	Not reported	Not reported

⁴ Values were approximated from a figure in the publication.

	C	CHL		TTHM		BDCM		DBCM	
Study	Concentration (µg/L)	Estimated Internal Dose (µg/d)	Concentration (µg/L)	Estimated Internal Dose (µg/d)	Concentration (µg/L)	Estimated Internal Dose (µg/d)	Concentration (µg/L)	Estimated Internal Dose (µg/d)	
Grazuleviciene et al.‡ ‡ 2013	Mean (SD): in 3 sites with low THM level -	Median: 0.1424 Range: 0.001–2.109	Mean (SD):	Range: 0.003–2.448	Mean (SD):	Range: 0.000–0.436	Mean (SD):	Range: 0–0.093	
	0.9 (1.0) in 1 site with high THM level - 17.7 (9.0)	Tertiles: 0.001–0.026 0.026–0.288 0.288–2.109	1.3 (1.2) 21.9 (10.9)	Tertiles: 0.031–0.040 0.040–0.356 0.356–2.448	0.3 (0.5) 3.6 (2.1)	Tertiles: 0–0.013 0.013–0.051 0.051–0.436	0.1 (0.2) 0.5 (0.6)	Tertiles: 0–0.002 0.002–0.006 0.006–0.093	
Costet et al. 2012	Mean (SD) for all sites: 9.3 (7.0)	Quartiles: <0.068 0.068–<0.133 0.133–<0.237 ≥0.237	Mean (SD) for all sites: 41.6 (16.1)	Quartiles: <0.351 0.351–<0.578 0.578–<0.940 ≥0.940	Mean (SD) for all sites: 10.4 (5.4)	Quartiles: <0.083 0.083–<0.141 0.141–<0.226 ≥0.226	Mean (SD) for all sites: 13.8 (5.5)	Quartiles: <0.118 0.118–<0.188 0.188–<0.267 ≥0.267	
Danileviciute et al.‡ ‡ 2012	Mean (SD) for all sites: 7.8 (10.2) In 3 sites with low THM level -	Median: 0.1424 Range: 0.0013–2.1328	Mean (SD) for all sites: 9.8 (12.4)	Median: 0.1733 Range: 0.0025–2.4040	Mean (SD) for all sites: 1.7 (2.2)	Median: 0.0280 Range: 0.0001–0.34	Mean (SD) for all sites: 0.3 (0.5)	Median: 0.0026 Range: 0–0.064	
	0.9 (1.0) In 1 site with high THM level - 17.7 (9.0)		1.3 (1.2) 21.9 (10.9)		0.3 (0.5) 3.6 (2.1)		0.1 (0.2) 0.5 (0.6)		
	Range: 0.9–17.7		Range: 1.3–21.9		Range: 0.3–3.6		Range: 0.1–0.5		

	CHL		TTHM		BDCM		DBCM	
Study	Concentration (µg/L)	Estimated Internal Dose (µg/d)	Concentration (µg/L)	Estimated Internal Dose (µg/d)	Concentration (µg/L)	Estimated Internal Dose (µg/d)	Concentration (µg/L)	Estimated Internal Dose (µg/d)
Levallois et al. 2012	Mean (SD): Cases: 43.3 (40.7) Controls: 41.1 (39.2)		Mean (SD): Cases: 49.3 (39.8) Controls: 47.2 (38.3)		Mean (SD): Cases: 4.7 (3.1) Controls: 4.7 (2.9)	Not reported	Mean (SD): Cases: 1.3 (1.4) Controls: 1.3 (1.4)	Not reported
		Quartiles: <42.24 42.24–80.21 80.22–169.81 >169.81		Quartiles: <58.02 58.02–102.44 102.45–195.73 >195.73				
Grazuleviciene et al.‡ ‡ 2011	Mean (SD) for all sites: 7.8 (10.2)	Range: 0.0013–2.1328	Mean (SD) for all sites: 9.8 (12.4)	Range: 0.0025–2.4040	Mean (SD) for all sites: 1.7 (2.2)	Range: 0.0001–0.34	Mean (SD) for all sites: 0.3 (0.5)	Range: 0–0.064
	In 3 sites with low THM level - 0.9 (1.0)		1.3 (1.2)		0.3 (0.5)		0.1 (0.2)	
	In 1 site with high THM level - 17.7 (9.0)		21.9 (10.9)		3.6 (2.1)		0.5 (0.6)	
	Range: 0.9–17.7		Range: 1.3–21.9		Range: 0.3–3.6		Range: 0.1–0.5	
Iszatt et al. 2011	Median: 2.9		Median: 23		Median: 5.0		Median:7	
	Range: 0.0–90	Range: 0–65	Range: 0–105	Range: 0–190	Range: 0.0–23	Range: 0–50	Range: 0–34	Range: 0–85
	Quartiles: 0.0–0.9 1.0–2.9 3.0–6.9	Quartiles: 0.0 >0.0–1.4 1.5–4.2	Quartiles: 0–11 12–23 24–36	Quartiles: 0.0 >0.0–8.4 8.5–21.0	Quartiles: 0.0–1.0 1.1–5.0 6–9	Quartiles: 0.0 >0.0–1.0 2–5	Quartiles: 0–3 4–7 8–10	Quartiles: 0.0 >0.0–2.4 2.5–7.1
	7–90	4.3–65.0	37–105	22–190	10–23	6–50	11–34	7.2–85.0

	CHL		TT	ТТНМ		СМ	DB	СМ
Study	Concentration (µg/L)	Estimated Internal Dose (µg/d)	Concentration (µg/L)	Estimated Internal Dose (µg/d)	Concentration (µg/L)	Estimated Internal Dose (µg/d)	Concentration (µg/L)	Estimated Internal Dose (µg/d)
Villanueva et al.* 2011	Mean: not reported	Mean: not reported Median total	Mean: not reported	Not reported	Mean: not reported	Not reported	Mean: not reported	Not reported
	Median by sites⁵:	residential uptake by sites⁵:	Median by sites⁵:		Median by sites⁵:		Median by sites⁵:	
	Asturias ~26 Gipuzkoa ~9 Sabadell ~20.4 Valencia 0.65 Granada ~4.7	Asturias ~0.3 Gipuzkoa ~0.1 Sabadell ~0.2 Valencia ~0 Granada ~0	Asturias ~ 40 Gipuzkoa ~20 Sabadell ~120 Valencia ~5 Granada ~10		Asturias ~8 Gipuzkoa ~6 Sabadell ~12 Valencia ~1.1 Granada ~2.5		Asturias ~4 Gipuzkoa ~4.4 Sabadell ~24 Valencia ~2 Granada ~2	
Savitz et al.† 2005	Mean: 23.93 Range of means between sites: 0.24–47.90	Mean: 25.77	Mean: 42.62 Range of means between sites: 3.29–67.11	Mean: 44.69	Mean: 10.72 Range of means between sites: 1.04–20.31	Mean: 11.0	Not reported	Not reported

⁵ Values approximated from figures.

		CHL Upta	ke Factors		CHL R	eduction
Study	Ingestion	Showering	Bathing	Swimming	Filter Use/ Bottled Water	Thermal Treatment
Botton et al.* 2015	0.00490196	0.001563091	0.001320755	Considered ¹	90%/ 100%	Not considered
Smith et al. 2015	0.00490196	0.001563091	0.001320755	0.002541407	90%/ Considered but not included	92%
Zeng et al. †† 2014	0.00490196	0.001536261	0.001320755	Considered but not included ²	Not considered/ 100%	Boiled tap water 30% coefficient factor
Grazuleviciene et al. ‡ ‡ 2013	0.00490196	0.001536	0.001321	Considered but not included ³	Considered but not included ⁴ / Not clear	<u>Heating</u> 85–100%⁵
Costet et al. 2012	0.00490196	0.001563091	0.001320755	0.002541407	Not considered/ Considered but not included	Hot beverages 0.3 correction factor
Danilevicute et al. ‡ ‡ 2012	0.00490196	0.001536261	0.001320755	Considered but not included ³	Not considered/ 100%	<u>Heated water</u> 85–100% ⁵
Levallois et al. 2012	Multiplied volume ingested from various sources (i.e., hot and cold beverages) x estimated conc in	Based on toxicokinetic model by Haddad et al. (2006)	Based on toxicokinetic model by Haddad et al. (2006)	Considered but not included	86.8%/ 100%	Boiling 81.6% <u>Hot tap water</u> ⁶
	the ingested water					<u>Refrigeration</u> 13%

Table B2. Uptake Factors and Percent Reductions Used in Calculations of Estimated Internal Dose in Human Studies of Chloroform (CHL) Exposure.

Abbreviations: CHL - chloroform; conc - concentration; exp - exposure; L - liter; min - minute; THM - trihalomethane

¹ Personal attendance at indoor and outdoor pools was multiplied by the area THM average, then added together.

² Number of study participants who swam in chlorinated pools was very low (4.0%), therefore swimming was not included in the estimated internal dose estimates.

³ The percentage of participants who attended swimming pools was low (~7%), and it appears that this factor was not included in estimating internal dose.

⁴ The study reported there was no difference in the proportion of women who did and did not use water filters.

⁵ The study cited two references for the reduction in CHL due to heating water. These references are Savitz et al. 2006, which reported a 100% reduction, and Whitaker et al. 2003, which reported an 85% reduction. It is not clear which was used for the CHL estimates.

⁶ Used 160% increase in CHL for hot tap water.

		CHL Upta	ake Factors		CHL R	Reduction
Study	Ingestion	Showering	Bathing	Swimming	Filter Use/	Thermal
Olddy					Bottled Water	Treatment
Grazuleviciene et al. ‡ ‡ 2011	0.00490196	0.001536261	0.001320755	Considered but not included ³	Considered but not included ⁴ / 100%	Heated water 85–100% ⁵
lszatt et al. 2011	0.00490196	0.001506877	0.000994222	0.0025414077	Not considered/ Assumed	Not considered
				<u>Dishwashing</u> 0.000745	negligible THM exp	
Villanueva et al.* 2011	0.00490196	0.00153626	0.00132075	0.00254141	Home filter 90%/ Considered ⁸	Not considered
Savitz et al. † 2005	0.00490	0.001536261	0.001320755	Not considered	Faucet filter 100% Pitcher filter	<u>Kettle boiling</u> 100%
					41% <u>Bottled Water</u> 100%	<u>Microwave boiling</u> 18%
Dodds et al. 2004	Defined as total liters of water consumed	Assumed 5 min shower was equivalent to 1 L of ingested water	Assumed 15 min bath was equivalent to 1 L of ingested water	Not considered	<u>Carbon filter</u> 50%/ 100%	<u>Boiled hot water</u> <u>drinks</u> 70%

Table B2. Uptake Factors and Percent Reductions Used in Calculations of Estimated Internal Dose in Human Studies of Chloroform (CHL) Exposure (cont'd).

⁷ Swimming was included as a confounder, but was not used in estimating internal dose.

⁸ Because logarithm of zero values in tap water ingestion from bottled water consumers led to invalid transformed variables, these were imputed arbitrarily using half the area-specific lowest value for ingestion.

Table B3. Windows of Exposure Assessed in Human Studies of Chloroform Exposure and Reproductive Outcomes.

Study		Exposure Windows (trimester) ¹										
	PTB	SGA	LBW	VLBW	BW	ŚAB	SB	BD	Other			
Botton et al.* 2015									Postnatal weight gain at 6 months			
									Entire pregnancy			
Smith et al. 2015					1 st , 2 nd , 3rd Entire pregnancy							
lszatt et al. 2014			Entire pregnancy	Entire pregnancy			Entire pregnancy					
Grazuleviciene et al.‡‡ 2013								1 st 1 st month 2 nd month 3 rd month				
Rivera-Nuñez and Wright 2013	1 st , 2nd	1 st , 2 nd , 3rd			1 st , 2 nd , 3rd							
Costet et al. 2012	1st, 2 nd , 3rd	1 st , 2 nd , 3rd										
Danileviciute et al.‡ ‡ 2012		1 st , 2 nd , 3 rd Entire pregnancy	1 st , 2 nd , 3 rd Entire pregnancy									
Levallois et al. 2012		3 rd										
Summerhayes et al.		1 st , 2 nd , 3rd			1 st , 2 nd , 3 rd							
2012		Entire Pregnancy			Entire pregnancy							
Grazuleviciene et al.‡ ‡		1 st , 2 nd , 3 rd	1 st , 2 nd , 3rd		1 st , 2 nd , 3 rd							
2011		Entire pregnancy	Entire pregnancy		Entire pregnancy							

Abbreviations: BD - birth defects; BW - birth weight; LBW - low birth weight; LMP - last menstrual period; NTD - neural tube defects; PTB - preterm birth; SAB - spontaneous abortion; SB - still birth; SGA - small for gestational age; VLBW - very low birth weight.

¹ For studies that examined more than one window of exposure, the window(s) for which risk estimates are presented in other tables and figures are indicated in **bold**.

Table B3. Windows of Exposure Assessed in Human Studies of Chloroform Exposure and Reproductive Outcomes (con't).

Study	Exposure Windows (trimester) ¹											
-	PTB	SGA	LBW	VLBW	BW	ŚAB	SB	BD	Other			
lszatt et al. 2011								1 st				
Villanueva et al.* 2011	1 st , 2 nd , 3rd	1 st , 2 nd , 3rd	1 st , 2 nd , 3rd		1 st , 2 nd , 3rd							
	Entire pregnancy	Entire pregnancy	Entire pregnancy		Entire pregnancy							
Zhou et al. 2010					1 st , 2 nd , 3 rd , 1 st + 2 nd							
					Entire pregnancy							
Hoffman et al.† 2008		3 rd			3 rd							
Lewis et al.‡ 2007	1 st , 2 nd Entire											
	pregnancy											
	4 weeks before birth											
	4-week risk sets											
Lewis et al.‡ 2006			1 st , 2nd , 3 rd									
			Entire pregnancy									
Hinckley et al. 2005	<37 weeks gestation	3 rd	3 rd									
Porter et al. 2005		1 st , 2 nd , 3rd										
		Entire pregnancy										

Table B3. Windows of Exposure Assessed in Human Studies of Chloroform Exposure and Reproductive Outcomes (con't).

Study	Exposure Windows (trimester) ¹										
-	PTB	SGA	LBW	VLBW	BW	ŚAB	SB	BD	Other		
Savitz et al.† 2005	1 st , 2 nd , 3rd	1 st , 2 nd , 3rd			1 st , 2 nd , 3rd	9 weeks after last menstrual period (LMP) to 20 weeks after LMP					
						4 weeks prior to LMP to 3 weeks after LMP 4 weeks after LMP to 8 weeks after LMP					
Toledano et al. 2005			3 rd	3 rd			3 rd				
Dodds et al. 2004							1 st + early 2 nd trimester				
Infante-Rivard 2004		Entire pregnancy									
Wright et al. 2004	3 rd	3 rd			3 rd						
Windham et al. 2003									Menstrual cycle function 90 day exposure windows		
Dodds and King** 2001								NTD 1 month before conception to 1 month after <u>Cardiovascular</u> anomalies			

Table B3. Windows of Exposure Assessed in Human Studies of Chloroform Exposure and Reproductive Outcomes (con't).

Study	Exposure Windows (trimester) ¹										
-	PTB	SGA	LBW	VLBW	BW	SAB	SB	BD	Other		
								1 st 2 months of			
								pregnancy			
								Cleft defects			
								1 st 2 months of			
								pregnancy			
								<u>Chromosomal</u>			
								abnormalities			
								3 months			
								before			
								pregnancy			
King et al.** 2000							Entire				
							pregnancy				
Wennborg et al.					Entire	Entire					
2000					pregnancy	pregnancy					
Dahl et al. 1999									Fecundability ratio		
									6 months prior to		
									pregnancy		
Waller et al. 1998						1 st					
Kramer et al.	Entire	Entire	Entire								
1992	pregnancy	pregnancy	pregnancy								

Appendix C. OEHHA (2005) Re-analysis of Data from Two Chloroform Epidemiological Studies: Wennborg et al. (2000) and Infante-Rivard (2004).

On November 4, 2004 the Developmental and Reproductive Toxicant (DART) Identification Committee, the State's qualified experts for reproductive toxicity for Proposition 65, met to consider whether chloroform had been clearly shown through scientifically valid testing according to generally accepted principles to cause reproductive toxicity. The committee voted not to list this chemical as known to cause reproductive toxicity under Proposition 65 for the either developmental, male reproductive or female reproductive toxicity endpoints. However, the Committee did request that the Office of Environmental Health Hazard Assessment (OEHHA) try to obtain additional information regarding re-analyses of findings from two epidemiologic studies, one by Wennborg et al. (2000), and the other by Infante-Rivard (2004). OEHHA contacted the primary authors of these articles and, after discussion of the issues raised by the DART Committee, the authors have provided OEHHA with the results of the requested re-analyses. Below is a description of the specific requests made of the authors and the results from their re-analyses.

Re-analysis from Dr. Wennborg:

As summarized in the draft Hazard Identification Document on Chloroform (OEHHA, 2004: pages 13-14), Dr. Wennborg and coauthors conducted an occupational study of women, which examined exposure to chloroform in association with pregnancy outcomes. The study reported a weak association between women working with chloroform during the time before conception and the occurrence of spontaneous abortion (SAB) (odds ratio = 2.3; 95% confidence interval 0.9 – 5.9). The regression analysis resulting in this finding included adjustment for mother's age and previous SAB. However, as discussed at the DART Committee meeting, it was not clear from the study whether the previous SABs occurred before or during the time when the women were exposed to chloroform. If the women were exposed to chloroform and/or other chemicals at the time the previous SAB occurred, including this variable in the regression analysis could have resulted in over control, which would have biased the results. Therefore, following the direction of the DART Committee, OEHHA requested that Dr. Wennborg either: 1) verify that the SABs occurred before exposure to the chloroform, or 2) rerun the statistical analyses of the data omitting the previous SABs.

Dr. Wennborg responded that previous SABs included SABs that were "previous" in relation to the pregnancy in question. Thus these did include SABs that occurred while the women were occupationally exposed to chemicals. Therefore, she reran the analysis excluding the previous SABs, and reported the following results. The odds ratio was 2.1, with 95% confidence interval 1.1 - 4.0. Thus the odds ratio was about the same (2.1 vs. 2.3), but the 95% confidence interval was smaller (1.1 - 4.0 vs. 0.9 - 5.9), and now statistically significant. Dr. Wennborg noted that the analysis in 2000 was performed with STATA 6.0, and the new analysis with STATA 8.0. STATA is a statistical data analysis program similar to programs such as SAS.

Re-analysis from Dr. Infante-Rivard:

As summarized in the draft Hazard Identification Document on Chloroform (OEHHA, 2004: pages 20-22), Dr. Infante-Rivard conducted a case-control study that examined the association between exposure to chloroform and fetal growth. The study also tested for gene-environment interactions to determine whether effects of chloroform exposure were modified by newborn and genetic variants. In analyzing the effect of exposure to trihalomethanes (THMs) and chloroform, Dr. Infante-Rivard used the 90th percentile as a cutoff, thus considering the top 10th percentile of individuals as exposed. The author concluded that the findings suggest exposure to THMs at the highest levels can affect fetal growth but only in genetically susceptible newborns. The results are not statistically significant for chloroform. However, as discussed at the DART committee meeting, the size of the sample of women in the exposed group was small when the 90th percentile cutoff was used. This may have limited the power of the study to detect an effect, if one were present. Therefore, following the direction of the DART committee, OEHHA requested that Dr. Infante-Rivard reanalyze the data using a less conservative cutoff. Table 1 below shows the results of the analysis conducted using the 90th percentile cutoff, as reported in the study, as well as the reanalysis using the 75th percentile cutoff. These results using the 75th percentile were not statistically significant for either THMs or chloroform.

Dr. Infante-Rivard pointed out that she disagreed with choosing a 75th percentile cutoff since she believed one should choose the cutoff based on where effects are likely. The levels of chloroform exposure in this study were considerably lower, even at the 90th percentile, than those in studies that had reported a statistically significant effect.

Table 1. Adjusted ORs (95% CIs) for exposure to THMs (chloroform and total THMs) in drinking water measured as average level at the tap, according to newborn and maternal polymorphisms in the CYP2E1 and MTHFR genes.

		5% CI) ercentile cutoff	OR (95% CI) Using a 75 th percentile cutoff		
Gene	Chloroform	Total THMs	Chloroform	Total THMs	
Newborns					
CYP2E1*5 (G1259C)					
Wild type	0.99 (0.57-1.74)	0.82 (0.47-1.45)	0.92 (0.67-1.28)	0.74 (0.68-1.31)	
1 or 2 variant alleles	5.62 (0.82-38.39)	13.20 (1.19-146.72)*	1.86 (0.63-5.08)	1.32 (0.68-5.98)	
MTHFR C677T					
Wild type	1.78 (0.82-3.87)	1.63 (0.72-3.71)			
1 or 2 variant alleles	0.83 (0.38-1.54)	0.76 (0.38-1.54)			
Mothers					
CYP2E1*5 (G1259C)					
Wild type	0.88 (0.50-1.54)	0.83 (0.48-1.44)	0.94 (0.68-1.38)	0.92 (0.66-1.28)	
1 or 2 variant alleles	4.40 (0.73-26.42)	6.54 (0.59-71.45)	1.38 (0.54-3.52)	1.38 (0.54-3.53)	
MTHFR C677T					
Wild type	1.00 (0.46-2.18)	0.98 (0.46-2.10)			
1 or 2 variant alleles	1.12 (0.56-2.32)	0.94 (0.47-1.89)			

* Chi-square (1degree of freedom) for effect modification = 4.87; p = 0.027. Adapted from Infante-Rivard (2004).

Appendix D. Parameters for Literature Searches on the Reproductive Toxicity of Chloroform.

General searches of the scientific literature on the reproductive and developmental toxicity of chloroform were conducted under contract by the University of California at Berkeley (Charleen Kubota, M.L.I.S.). The goal was to identify peer-reviewed open source and proprietary journal articles, print and digital books, reports and gray literature that potentially reported relevant toxicological and epidemiological information on the reproductive and developmental toxicity of the chemical, chloroform. The search sought to identify all literature relevant to the assessment of evidence on male reproductive, female reproductive and developmental neurotoxicity.

Search Process

ChemSpider was searched first to gather chemical names, synonyms, CAS registry numbers, MeSH and Chemical Abstracts Service headings for chlorpyrifos before searching bibliographic databases. The MeSH database was used to identify relevant subject headings for reproductive and developmental toxicology endpoints. MeSH (Medical Subject Headings) terms at the top of hierarchical lists of subject headings are automatically "exploded" in a search to retrieve citations with more specific MeSH terms. For example, the heading "Congenital Abnormalities" includes numerous specific conditions such as spina bifida and congenital heart defects. The broad subject heading "Pregnancy Complications" encompasses multiple conditions or pathological processes associated with pregnancy. Spontaneous abortion and many fetal diseases are listed under this term.

Relevant MeSH subject terms were entered into the PubMed Search Builder to execute a PubMed search.

("*chloroform*" [Mesh] OR 67-66-3 [RN]) AND ("Congenital Abnormalities"[Mesh] OR "Pregnancy Complications"[Mesh] OR "Reproductive Physiological Phenomena"[Mesh] OR "Embryonic and Fetal Development"[MeSH] OR "Receptors, Androgen"[Mesh] OR "Receptors, Estrogen"[Mesh] OR "Endocrine System"[MeSH] OR "Thyroxine"[MeSH])

Additional databases listed below were then searched. Research strategies were tailored according to search features unique to each database. BIOSIS Previews, for example, was searched by entering chloroform and refining the search by applying these facets: toxicology, neural coordination, nervous system, development, behavior, reproduction, population studies, reproductive system, pediatrics, obstetrics and psychiatry. Hand searching of reference lists from relevant articles, book chapters and other sources was done to find articles that were not retrieved through database searches.

Databases

The researcher utilized some or all of the following databases/ search platforms/database vendors:

BIOSIS Previews® (Thomson-Reuters™, Inc.) 1926 - present

CABI: CAB Abstracts® (Thomson-Reuters™, Inc.) 1910 - present

<u>ChemSpider</u> (Royal Society of Chemistry)

MeSH (Medical Subject Headings) (National Library of Medicine)

Developmental and Reproductive Toxicology Database (DART/ETIC) (National Library of Medicine) early 1900s – present

MeSH (Medical Subject Headings) (National Library of Medicine)

EMBASE® (Elsevier) 2012 - present

Environmental Sciences and Pollution Management (Proquest) 1967 - present

PubMed (National Library of Medicine) 1950 - present

National Technical Research Library (NTRL v3.0) (National Technical Information Service) 1900s - present

ReproRisk® System: REPROTEXT® Reproductive Hazard Reference, REPROTOX® Reproductive Hazard Information, Shepard's Catalog of Teratogenic Agents, TERIS Teratogen Information System (RightAnswer® Knowledge Solutions OnSite™ Applications) date coverage varies

Scifinder®: CAS (Chemical Abstracts Service) 1907 - present

TOXLINE (National Library of Medicine TOXNET) 1840s - present

Web of Science[™] (Thomson-Reuters[™], Inc.) 1900 – present

Attachment 1: OEHHA (2004) Evidence of Developmental and Reproductive Toxicity of Chloroform.