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Introduction 
 
Cyanobacteria, also known as blue-green algae, are a family of single-celled algae that 
proliferate in water bodies such as ponds, lakes, reservoirs, and slow-moving streams when the 
water is warm and nutrients are available.  Many cyanobacteria species produce a group of toxins 
known as microcystins, some of which are toxic.  The species most commonly associated with 
microcystin production is Microcystis aeruginosa [1].  Upon ingestion, toxic microcystins are 
actively absorbed by fish, birds and mammals.  Microcystin primarily affects the liver, causing 
minor to widespread damage, depending on the amount of toxin absorbed.  People swimming, 
waterskiing, or boating in contaminated water can be exposed to microcytins.  Microcystins may 
also accumulate in fish that are caught and eaten by people.  Finally, pets and livestock have died 
after drinking water contaminated with microcystins.   
 
Microcystins have been measured in several water bodies in California including the Salton Sea 
[2], the Klamath River and its reservoirs [3, 4], several lakes in southern California (Lake 
Mathews, Lake Skinner, Diamond Valley Lake, and Lake Perris) [5] and the delta region above 
San Francisco Bay up into the Sacramento and San Joaquin Rivers [6, 7].  In some areas, 
microcystin concentrations have reached high levels, although the amount can vary drastically 
between water bodies and times of the year.  In California, one dog death has been attributed to 
microcystin poisoning [8].  Cattle and wildlife mortalities have been linked to microcystin 
poisoning in other areas [9].  While there have been impacts on human health, no human deaths 
from ingestion of microcystins have been reported in the scientific literature.  In this report, an 
emphasis is placed on the effects of microcystins in fish, wildlife and livestock.   
 

Chemistry of Microcystin 

Microcystins are cyclic peptides, containing seven amino acids.  They are the most numerous of 
the cyanotoxins, comprising over 80 analogs.  Figure 1 shows the general structure shared by all 
microcystins. The seven amino acids are numbered with variable portions shown as X, Z, R1 and 
R2. 

 

Figure 1.  General structure of microcystins 
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The four microcystins that are the subject of this review have different amino acids in the X and 
Z positions in the Figure 1, but are otherwise identical [both R1 and R 2 are methyl groups].  
Microcystins are named using the one letter abbreviation for the amino acids substituted at the X 
and Z positions, respectively.  The table below shows the amino acids that would appear in the 
structure above for the named microcystins. 

 

The most extensive toxicological information is available for the microcystin LR congener.  
However, the LA, RR and YR congeners have similar toxicological effects. The toxic effects of 
microcystins on animals have been studied with both purified microcystins and unpurified 
cyanobacterial extracts.  In these unpurified cyanobacterial extracts, the microcystins isomers are 
sometimes inferred by the species of cyanobacteria from which the extracts were prepared.    

Microcystins are produced by the cyanobacterial cells.   When the algae dies, the cell walls burst, 
releasing the toxin into the water.   Microcystins are extremely stable and resist common 
chemical breakdown such as hydrolysis or oxidation under conditions found in most natural 
water bodies.  These toxins can break down slowly at high temperature (40 °C or 104 o F ) at 
either very low (<1) or high (>9) pH [10].   The half-life, the time it takes for one-half of the 
toxin to degrade, at pH 1 and 40 oC is 3 weeks; at typical ambient conditions half-life is 10 
weeks.  Microcystins break down slowly in full sunlight especially when water-soluble pigments 
are present [11].  Although microcystins can be broken down by some bacterial proteases, in 
many circumstances these bacteria are not present so the toxin persists for months or even years 
once released into cooler, dark, natural water bodies [12-15].  Microcystins can even persist after 
boiling, indicating that cooking is not sufficient to destroy the toxins [1]. 

Name X-position Amino 
Acid 

Z-position Amino 
Acid 

Molecular 
Weight 

Microcystin LA Leucine (L) Alanine (A) 910.06 

Microcystin YR Tyrosine (Y) Arginine (R) 1045.19 

Microcystin RR Arginine (R) Arginine (R) 1038.2 

Microcystin LR Leucine (L) Arginine (R) 995.17 
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I. Toxicology of Microcystins 

A.  Human Mortality and Morbidity 

Although no reports of human deaths occurring from the ingestion of microcystins could be 
found, there are numerous reports of a variety of health effects after exposure to cyanotoxins in 
drinking water or from swimming in water in which cyanobacteria were present.  The most 
common sign of human poisoning with microcystins is liver damage [16].  In 1999, the World 
Health Organization (WHO) convened a panel of international experts and produced what 
remains the most comprehensive review in the field.  “In comparing the available indications of 
hazards from cyanotoxins with other water-related health hazards, it is conspicuous that 
cyanotoxins have caused numerous fatal poisonings of livestock and wildlife, but no human 
fatalities due to oral uptake have been documented”. [1]     

In February 1996, 116 of 131 patients in Caruaru, Brazil experienced visual disturbances, 
nausea, vomiting, and muscle weakness following routine dialysis.  One hundred of those 
affected then developed acute liver failure and 52 eventually died from symptoms of what is now 
called “Caruaru Syndrome” [17].  The cause of this syndrome was determined to be cyanotoxins 
from reservoir water that had not been treated, filtered, or chlorinated [16].  Microcystins were 
found in the water as well as the blood and livers of the patients.  A related cyanobacterial toxin, 
cylindrospermopsin, was also found in the water.   

B. Liver Toxicity 

Microcystins in general are liver toxins.  Most of the understanding about the toxicity of 
microcystins is based on studies with mice and rats that received intra-peritoneal (IP) injections 
of microcystin LR, i.e. injections directly into the abdominal cavity.  In these studies the 
injection of microcystins caused death within a few hours.  Early manifestations of liver damage 
include an increase in serum of liver enzymes, a sign of liver cell death, and increased liver 
weight.  Liver damage and cell death can be seen microscopically as soon as 20 minutes 
following injection of a lethal dose of microcystin LR.  Within an hour, the liver cells 
(hepatocytes) die, losing their connection to each other and disrupting the normal architecture of 
the liver [18, 19].  For example, two mice given oral doses of 16.8 and 20 mg/kg were dead 
within 160 minutes [20]. 

Microcystins inhibit a class of enzymes known as protein phosphatases.  This enzyme removes 
phosphate from a protein, a common step in many biochemical pathways.  This inhibition, with 
subsequent build up of phosphorylated proteins, is believed to be a mechanism by which 
microcystins destroy livers.  Hepatocytes from animals treated with microcystins appear to die 
by a process of programmed cell death or cell suicide called apoptosis [21].  Cells undergoing 
apoptosis disappear in a characteristic fashion, cannibalizing their own cellular organelles [22].  
There is some evidence that microcystin LR increases other proteins in pathways leading to 
apoptosis but this has not been as extensively studied as the inhibition of phosphatases [23].  
Microcystins LA, RR and YR inhibit the same phosphatases and induce histological changes in 
rodent liver similar to microcystin LR [24].  Therefore, the toxicity criteria computed for 
microcystin LR are also used for microcystins LA, RR and YR.   
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 C. Liver tumor promotion 

Some published studies suggest that microcystins might act as tumor promoters, agents that do 
not cause cancer, but stimulate the proliferation of cancer cells.  In June, 2006, the International 
Agency for Research on Cancer (IARC), a branch of the WHO, convened a panel of 
international experts to evaluate the toxicity of Microcystis extracts, microcystin LR, and another 
algal toxin, nodularin [25, 26].  The committee determined that “There is inadequate evidence in 
experimental animals for the carcinogenicity of Microcystis extracts.”  The committee also found 
inadequate evidence for microcystin LR to cause cancer in either laboratory animals or humans.  
The IARC committee concluded that “microcystin LR is possibly carcinogenic to humans,” but 
that “Microcystis extracts are not classifiable as to their carcinogenicity to humans,” noting that 
the studies were all short term exposures.  In summary, the IARC did not find sufficient evidence 
to conclude that microcystin extracts cause cancer. 

However, while microcystin-LR does not cause cancer, microcystin may stimulate the growth of 
cancer cells.  Microcystis extracts in the drinking water increase the number and weight of skin 
tumors in mice topically treated with the carcinogen dimethylbenzanthracene [27, 28].  A short-
term liver tumor promoter assay was conducted with microcystin LR.  Rats treated with 
diethylnitrosamine develop liver tumors that are preceded by pre-cancerous foci of liver cells 
that express a number of enzymes atypical for liver.  Microcystis extracts caused a dose-
dependent increase in the percentage of the livers with these foci [29].  Interestingly, Microcystis 
extracts decreased duodenal tumors in mice [30].   

The National Toxicology Program (NTP), a branch of the National Institutes of Health that 
oversees animal testing of chemicals or substances, conducts 24-month bioassays in rats and 
mice to evaluate carcinogenicity.  The NTP Web site indicates that they are planning to expose 
F344 rats to intravenous mixtures of microcystins LA and LR.  The results of these studies will 
not be available until 2011 at the earliest. 

II. Health-Based Criteria for Safe Exposure to Microcystin 

Prior to the 2006 IARC evaluation, the WHO conducted an evaluation of the Tolerable Daily 
Intake (TDI) level, based on a non-can.cer endpoint [1]. This value, 0.04 micrograms per 
kilogram body weight (µg/kg/d), is based on the results of liver toxicity studies in mice [31, 32].  
A TDI is the maximum daily dose of microcystins that is considered safe.  Using this TDI, WHO 
also developed a drinking water concentration limit of 1.5 μg/L for microcystin LR.  They 
assumed that a 60 kg (132 lbs.) person drinks two liters of water each day and that 80% of the 
two liters is from a contaminated source.  Their calculation was as follows:   

0.04 µg microcystin/kg body weight/day x 60 kg person / (2 L water/day x 0.80) = 1.5 μg/L   

The most recent publication [33] cites the 1998 provisional guideline of 1 μg/L based on the  
above equation and rounded to one significant digit (rounding down to be health-protective).  
WHO also categorized swimming risk levels as mild, moderate, high, or very high based on the 
water concentration of microcystins.  These water concentrations are related to whether a 
swimmer, weighing 60 kg and ingesting 100 ml of water, would exceed the TDI.  
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III. Domestic Animal Poisonings 

The majority of reported cyanotoxin poisonings have occurred in domestic animals that drink 
freshwater containing cyanobacterial blooms [see reviews by 9, 34-36].  Worldwide, thousands 
of livestock fatalities and numerous poisonings in dogs have been linked to the ingestion of 
cyanobacteria [reviewed by 9, 35, 36].  Animal poisonings have even occurred under 
environmental conditions considered unfavorable to cyanobacteria blooms such as cold lakes 
with low nutrient levels [37].   

In North America, domestic animal poisonings have been linked to blooms of Microcystis sp. in 
California [8], Colorado [38], Georgia [39], Michigan [40], Mississippi [41], Oklahoma [42], 
Wisconsin [43], and Saskatchewan, Canada [44, 45].  Most of the poisonings were fatal and were 
associated with visible scum of cyanobacteria.  Symptoms of microcystin poisoning in domestic 
animals include diarrhea, vomiting, weakness and recumbency [8, 9]. 

Unfortunately, some animals appear to be attracted to cyanobacteria in water and dried crusts of 
algae on top of the water [reviewed by 35].  Livestock and dogs have been observed to drink 
infested water while clean water was plainly accessible, and to avidly consume crust and mats 
[46-49].  Lopez-Rodas and Costas [47] found that mice showed a clear preference for 
Microcystis aeruginosa scum (1,000 and 15,000 cells/ml) over clean drinking water.  These mice 
did not prefer non-cyanobacterial phytoplankton over clean drinking water and did not 
differentiate between toxic and non-toxic strains of the cyanobacteria.  These observations and 
experiments indicate that at least some animals preferentially consume cyanobacteria.  Domestic 
animals should be prevented from drinking or entering untested bloom waters and from eating 
crust or mats on the shoreline.     

IV. Effects of Microcystins on Fish and Wildlife 

A.  Fish  
Microcystins are toxic to fish at concentrations as low as a few micrograms per liter (µg/L) or 
possibly even fractional µg/L [reviewed by 50, 51, 52].  Considering that microcystins has been 
measured in concentrations up to 25,000 µg/L in waters with cyanobacterial blooms [reviewed 
by 1], it is not surprising that potential impacts on fish are receiving increased attention.  Fish 
typically either ingest cyanobacteria or prey that have fed on cyanobacteria [53-55].  To a lesser 
extent, they can absorb the toxins directly from the water [56].     

As with mammals, microcystins are actively taken up by the liver in fish where they disrupt 
normal cellular activity by inhibiting protein phosphatases [54, 57-63].  Inhibition of these 
enzymes in fish can ultimately result in widespread cellular death and loss of liver structure 
[reviewed by 50].  Protein phosphatases are particularly important during fish embryonic 
development because they regulate critical developmental processes [64].  Due to the limited 
capacity of fish to detoxify microcystins, they easily succumb to the toxic effects of increased 
microcystin concentrations [65-72]. 

Field observations of impacts on fish coincide when blooms are abundant.  However, aquatic 
ecosystems are complex and it can be very difficult to discern the exact cause of the impacts.  
For example, fish kills following a bloom could be caused by microcystin released from dying 
cells, but are more likely due to the decreased oxygen and pH levels caused by the decaying 
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bloom [see 51].  Consequently, the toxic effects of microcystins in fish have been studied 
experimentally using several different fish species and exposure routes.   

Like small mammals, most studies on the immediate (acute) lethality of microcystins in fish have 
utilized IP injections of extracted microcystins to determine the dose that is lethal to half the test 
population (LD50).  Reported LD50 values of microcystins in fish range from 20 to 1500 µg 
microcystin LR/kg body weight [reviewed by 50].  The large range of values could reflect 
variation between fish species, or differences in toxin extraction, purification, or measurement 
methods.  As a group, mature fish are less sensitive to acute microcystin toxicity than mammals 
[1, 50].  Data from these acute studies are useful to make general comparisons between species.  
However, IP injections of microcystins are not analogous to field exposures since the toxin is 
absorbed faster and metabolized differently when administered into the abdominal cavity (as 
with the IP route) as compared to oral administration [see 51].  For example, IP injection of 50 
µg MC/kg in carp killed all test fish while an oral dose of 250 µg MC/kg in similar carp resulted 
in no lethality and minimal liver damage [73].  No oral LD50 values were found for microcystins 
in fish.  When developing loach were immersed in solutions of isolated MC-LR (over multiple 
days), the median lethal concentrations (LC50) were 164.3 µg/L in embryos and 593.3 µg/L in 
small hatched juveniles [74]. 

In nature, fish are most likely subject to sublethal impacts resulting from exposure to 
microcystins over days or weeks.  Several studies have observed severe liver damage in fish 
following oral administration of microcystins, usually in the form of freeze-dried cyanobacterial 
cells.  The sublethal microcystin concentrations shown below are commonly found in food items 
of fish during blooms.  For example, a diet containing greater than 130 to 2,500 µg MC/kg diet 
wet weight (ww) for two or more weeks may result in sublethal effects in carp (based on 5 kg 
fish consuming 2% body weight/day).  Microcystin concentrations in cyanobacterial blooms 
commonly reach 20,000 µg MC/kg algae and have been reported as high as 129,000 µg MC/kg 
algae [ww, converted from dry weight, 1].  Mussels, snails and zooplankton collected from areas 
with blooms have contained microcystin concentrations up to 2,500, 2,900 and 13,700 µg MC/kg 
body weight (bw), respectively [ww, converted from dw, reviewed by 50].  These estimates 
indicate that fish exposed to typical microcystin producing blooms may be experiencing 
sublethal toxic effects (i.e., liver damage).  This is in agreement with Carbis et al. [75], where the 
majority of common carp sampled from a lake with 22,000 – 40,000 µg MC-LR/kg bloom 
material (ww, converted from dry) exhibited widespread liver damage consistent with 
microcystin toxicity. 
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Examples of the effects of sublethal oral microcystin doses in fish  
  

Fish 
Dose 

(µg MC/kg)1 
Number 
of Doses 

Exposure  
Time 
(days) 

Total Dose  
(µg MC/kg) 

Sublethal  
Effect Ref. 

Carp  
(adult) 2.5 16 16 40 

Widespread liver 
damage [76] 

Carp  
(adult) 50 28 28 1,400 

Severe liver 
damage [77] 

Carp 
(juvenile) 400 1 1 400 

Severe liver and  
kidney damage [78] 

Trout 550 8 4 4,400 
Severe liver 

damage [53] 

Perch 1,150 8 4 9,200 
Severe liver 

damage [79] 

Tilapia 1,200 21 21 25,200 

Significant 
oxidative stress 

in liver  
  

[80] 
1 MC-LR equivalents in administered cyanobacteria cells 
Additional sublethal effects of microcystins have been described in fish including effects on 
kidney, gill, growth, immune status and cardiac function [73, 81-84]. 

Developing fish appear to be very sensitive to chronic exposures to microcystins [reviewed by 
50].  In general, exposure of embryos and larvae to environmentally relevant concentrations of 
microcystins has resulted in oxidative stress, reduced growth, developmental defects, and 
lethality, as well as the lack of significant impacts. Fish embryos can take up significant levels of 
dissolved microcystins from the surrounding water [85].  Exposures as low as 0.25 µg/L resulted 
in oxidative stress to zebrafish embryos [86].  Immersion of embryos and larvae in solutions of 
0.5 - 50 µg MC/L for up to 30 days resulted in interferences with hatching, developmental 
defects, liver damage and/or increased mortality in several species including chub, carp, loach, 
trout and zebrafish [reviewed by 50].  Reported concentrations of microcystins in water (not 
cells) during blooms range from trace amounts to 1,800 µg/L [median was 2 ug/L, 1]. 

Maternal transport of microcystins from the female to developing eggs may be an additional 
exposure route to developing fish.  Although this route has not been demonstrated for 
microcystins, experiments indicate that developing fish embryos would be more sensitive to 
maternal transport of microcystins compared to uptake from water [87, 88].  Microinjection of 
minute amounts of microcystin into medaka embryos significantly reduced survival rates [87].  
Similar experiments in zebrafish resulted in significant disruption of development and reduced 
survival [88].  These studies reveal potential impacts of microcystin maternal transport.  The 
precise mechanisms of exposure and effects in fish embryos have not been fully determined.  

Extracts from cyanobacteria, with or without microcystins present, disrupt development and 
growth of fish [89, 90].  Most studies have utilized purified cyanotoxins to isolate specific 
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toxicity thresholds and effects.  However, most natural blooms contain more than one 
cyanobacteria species, many of which produce more than one toxin [reviewed by 1].  Typically, 
crude extracts of cyanobacteria elicit more severe effects in fish embryos and larvae than purified 
microcystins.  Observed effects of exposure to crude extracts include increased oxidative stress, 
liver damage, gross malformations, osmoregulatory imbalance, and decreased survival [86, 91-
94].  

 B. Birds 
Bird deaths have been linked to cyanobacterial blooms in Canada and the United States since the 
early 1900s [reviewed by 9, 34].  Blooms of cyanobacterial species that produce microcystins 
and/or anatoxin-a have coincided with the deaths of ducks, gulls, songbirds, pheasants and 
hawks, as well as several other bird species.  The severity of such bird kills have ranged from a 
few individuals to several thousand birds per incident.  In California, high mortality in birds 
wintering at the Salton Sea has been linked to microcystins [2].  Levels of microcystins found in 
many of the dead birds were similar to those in mice exposed to lethal levels of this toxin.  
Microcystin poisoning has also been linked to the mortality and illness of great blue heron from 
Chesapeake Bay [2, 95].   

In other countries, microcystins have also been specifically implicated in bird poisonings.  In 
Japan, approximately 20 spot-billed ducks died at a pond containing a bloom of M. aeruginosa 
[96].  Bloom material contained high levels of microcystins and produced acute toxicity in a 
mouse bioassay that was consistent with the effects of the toxin.  Waterfowl and other animals 
died at a reservoir containing an extensive Microcystis sp. bloom in South Africa [reviewed by 
35].  Examined individuals showed liver damage consistent with acute and chronic microcystin 
toxicity.  Furthermore, water from the reservoir was used to recreate the same effects in 
experimental animals.   

Little experimental work has been completed in birds. Takahashi [97] reported an IP LD50 of 256 
µg microcystin RR/kg in quail, which is low compared to that of mice [600 ug/kg, see  1].  
Skocovska et al. [98] administered a daily oral dose of up to 46 µg microcystins, as Microcystis 
sp. biomass, to quail for up to 30 days.  No mortality was observed during the experiment.  
However, histopathological lesions were observed in livers.  More work is needed to better 
understand the impacts of microcystins on birds.   

V.  Conclusions 

The blue-green algae Microcystis aeruginosa can produce a family of toxins known as 
microcystins.  They can cause liver damage that can lead to death in dogs and livestock.  No 
known deaths have been reported in humans from the ingestion of microcystins.  Fish and birds 
are also at risk for microcystin toxicity.  Regardless of species, the mechanism of action is the 
same – the inhibition of protein phosphatase which causes primarily liver damage, but also 
affects other organs.  Microcystins also act as a tumor promoter.   

While microcystins are not as toxic as many natural toxins, they are becoming more and more 
ubiquitous in California, leading to greater opportunities for exposures.  Microcystis blooms 
occur in quiet, warm waters that are nutrient-rich; the type of conditions that are found in lakes, 
reservoirs, dammed rivers, and even agricultural drainage ditches throughout the state.  
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Microcystins have also been detected in the Delta.  Steps are being taken to begin to address this 
problem.  In 2008, the Klamath River was added to the Clean Water Act’s 303d list as an 
impaired waterbody as a result of microcystis blooms.  It appears that some dams on this river 
will be removed along the Klamath, which should reduce the frequency or possibly eliminate 
toxic blooms.  Affirmative steps such as these will help reduce the risk of exposure and adverse 
effects associated with microcystins.  
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