Presentation to the Scientific Review Panel on Toxic Air Contaminants

Trimethylbenzenes Reference Exposure Levels (RELs) Technical Support Document for the Derivation of Noncancer RELs

Office of Environmental Health Hazard Assessment

Trimethylbenzenes (TMBs)

Trimethylbenzenes exist in (3) isomeric forms:

- 1,2,3-trimethylbenzene (hemimellitene)
- 1,2,4-trimethylbenzene (pseudocumene)
- 1,3,5-trimethylbenzene (mesitylene)

TMBs: Chemical-Physical Properties

- Molecular formula C₉H₁₂
- Volatile aromatic hydrocarbons
- Clear, colorless liquids at room temp (25°C)
- Nearly insoluble in water (range 48-75 mg/L @ 25°C)
- Boiling points range from 164.7-176.1°C @ 760 mm Hg (torr)
- Vapor pressures range from 1.69 2.48 mm Hg (torr)
 @ 25°C

TMB: Uses and Occurrence

- TMBs occur naturally in petroleum deposits and are common components of petroleum refinery distillation fractions: white spirit, high flashpoint naptha, and gasoline
- Also emitted by steel-making facilities and coal-fired plants
- Other emission sources include construction, cement, paving mixtures, asphalt and metal coatings, as well as other sources
- TMBs are found in printing inks, paint solvents, hydraulic fracturing fluids, and as a pesticide additive
- All (3) TMB isomers are found as constituents of biogas (municipal landfills)

TMB: California Emissions

- Trimethylbenzenes (aggregated) and 1,2,4-TMB stationary point source emissions are reportable to the California Air Resources Board (CARB) under the Hot Spots Program
- For 2020, 1,141 lbs of Trimethylbenzenes (from 34 facilities) and 55,839.5 lbs of 1,2,4-TMB (from 485 facilities) were reported
- This does not necessarily represent every source of TMB emissions in the state; only those applicable to AB 2588 (Air Toxics Hot Spots Information and Assessment Act, 1987)

TMB: Toxicokinetics

- In humans, TMBs are readily absorbed via inhalation (high respiratory uptake)
- Based on their blood/air and oil/air partition coefficients, accumulation in adipose tissue is expected
- In both animals and humans, the 3 TMB isomers demonstrate similar metabolic profiles
- Currently, it is not known which cytochrome P450 isozyme is most responsible for TMB metabolism

TMB: Toxicokinetics (continued)

- All 3 isomers metabolize primarily to dimethylbenzoic and hippuric acids
- In humans, exhalation of the unchanged parent compound is an important route of elimination (20-37% of the absorbed amount, depending on the specific isomer)
- Urinary excretion of unchanged TMBs is very low (< 0.002%)
- In human toxicokinetic studies, following a 4 hr exposure to 25 ppm 1,3,5-TMB, the majority of the absorbed dose was excreted in the first 50 hrs post-exposure; however, urinary levels of metabolites were still detected 160 hrs post-exposure

TMB Acute Effects: Humans

- Paucity of viable human data for an acute REL (< 24 hour exposure)
 - Human exposure studies consist only of chamber studies, largely conducted in healthy adult males, that evaluated sensory irritation (25 ppm for up to 4 hrs)
 - No evidence of respiratory irritation, CNS toxicity or other toxicity (self-reported) in human exposure studies
- Effects on the nervous system are seen in acute animal studies - and these form the basis of the Acute TMB REL

TMB Acute Effects: Experimental Animal Exposure

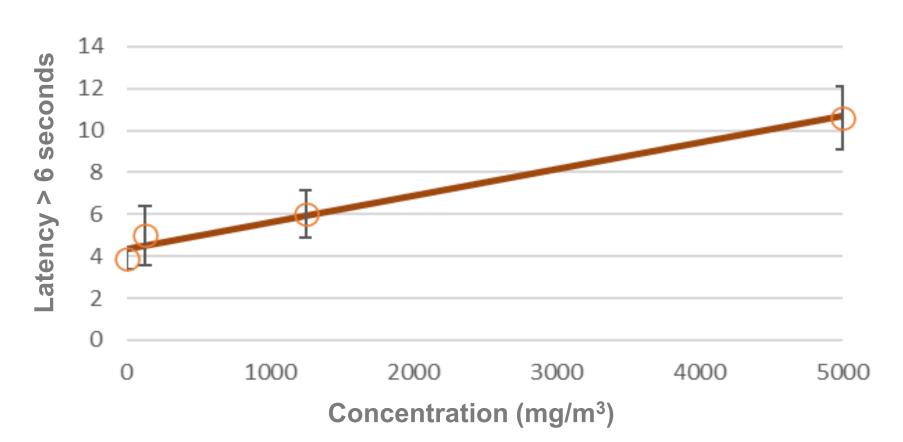
- Acute exposure to TMBs causes primarily respiratory and neurotoxic effects in animals. Exposure duration in most of the acute TMB animal inhalation studies was from 4-6 hours
- There is one animal inhalation developmental study with exposure to TMBs (Saillenfait *et al.*, 2005)
 - Significant decreases in maternal body weight and food consumption @ concentrations of 300 and 600 ppm 1,3,5-TMB and 1,2,4-TMB, respectively
 - Significant dose-dependent decreases in fetal body weights @ 600 (5%) and 900 ppm (11%) 1,2,4-TMB, and 600 (5%) and 1200 ppm (12%) 1,3,5-TMB, compared to control animals
- The Saillenfait et al. (2005) developmental study was not used for the Acute REL because neurotoxicity proved a more sensitive endpoint; Saillenfait did not evaluate neurological/behavioral endpoints

TMB Acute Effects: Experimental Animal Exposure (continued)

- The McKee *et al.* (2010) neurobehavioral inhalation rat study was conducted on 3 consecutive days (up to 8 hrs/day). Rats were exposed to 0, 125, 1250 or 5000 mg/m³ (0, 25, 250, or 1,000 ppm) <u>1,2,4-TMB</u>, and tested after each exposure
- Significant increases (latencies) in a number of neurobehavioral tests were seen after a single 8-hour exposure to 5,000 mg/m³ (1,000 ppm) 1,2,4-TMB
- Significant latencies have been observed in several acute animal studies following exposure to TMBs

Treatment-Related Neurobehavioral Test Result in Rats Following a Single 8-hour Inhalation Exposure to 1,2,4-TMB (McKee et al., 2010)

Concentration mg/m³ (ppm) n = 8/group	Latency> 6 seconds ^a (mean <u>+</u> SD)		
0	3.88 <u>+</u> 0.58		
125 (25)	5.00 <u>+</u> 1.69		
1250 (250)	6.00 <u>+</u> 1.34		
5000 (1000)	10.63 <u>+</u> 1.80 ^b		


^a = the number of responses taking more than 6 seconds

b = p < 0.05

Acute REL derivation for TMBs (drink response latency)

Polynomial Degree 2 Model (BMR_{1SD}) fit to the McKee et al. (2010) 1,2,4-Trimethylbenzene study for neurotoxicity in male rats

- Acute REL intended to protect against infrequent 1-hour exposures
- Benchmark Concentration, 1 SD change from the control mean (BMC_{1SD}) = 970 mg/m³
- Lower 95% confidence limit on the benchmark concentration, 1 SD change from the control mean (BMCL_{1SD}) = 709 mg/m³
- 709 mg/m³ = Point of Departure (POD)
- 8-hr exposure adjusted for a 1-hr exposure = 1417 mg/m³ (288 ppm)
- HEC (Human Equivalent Concentration) adjustment was applied, which accounts for differences in the blood/air concentration in rats vs humans
- In this case, the RGDR (Regional Gas Dose Ratio) used to derive the HEC = 0.98 (rounded to 1) for systemic effects

- Interspecies Uncertainty Factor (UF): 6
 - Toxicokinetic UF = 2, for residual toxicokinetic differences when using the HEC adjustment
 - Toxicodynamic UF = $\sqrt{10}$, for lack of toxicodynamic data on interspecies differences

Intraspecies Uncertainty Factor (UF): 100

- Toxicokinetic UF = 10, due to no information on pharmacokinetic differences for TMBs among adults, infants and children
- Toxicodynamic UF = 10, because TMBs are neurotoxicants and children are potentially more sensitive than adults

Cumulative UF = 600

Acute TMB REL = 2400 μ g/m³ (490 ppb)

TMB Chronic/Subchronic Effects: Humans

- No human controlled chronic/subchronic studies or childspecific toxicity data were identified
- No occupational exposure studies with exposure uniquely to TMBs
- Occupational studies in workers exposed to paint thinners containing > 80% TMBs report CNS effects, including neuropsychological changes, memory deficits, reduced motor speed/coordination, as well as anemia and bronchitis
- In biomonitoring studies of factory workers exposed to solvents containing TMBs, vestibular disorders have been reported

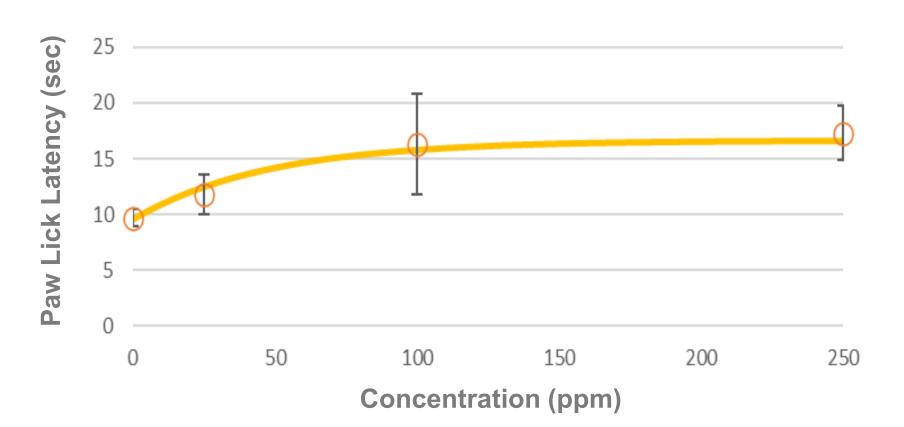
TMB Chronic/Subchronic Effects in Experimental Animals

- No lifetime chronic animal studies were identified for any of the 3 TMB isomers
- Subchronic animal studies show largely respiratory and neurological effects (behavioral alterations)
- Subchronic inhalation studies in rodents also show organ effects (liver, kidneys), hematological (♠ WBC, ♣ RBC, etc), and clinical chemistry effects
- The most sensitive endpoint is neurotoxicity (sensorimotor impairment)

- The Korsak and Rydzynski (1996) subchronic neurotoxic inhalation study in rats was used to develop the chronic and 8hr TMB RELs (lowest POD)
- Concentration-dependent disturbances in pain sensitivity and motor behaviors were seen in male rats following a 6 hr/day, 5 day/week, 3 month exposure to 0, 25, 100, 250 ppm TMBs
 - Significant effects on pain sensitivity @ ≥ 25 ppm 1,2,3-TMB and ≥ 100 ppm 1,2,4-TMB
 - Significant effects on rotarod performance (measures neuromuscular function) @ ≥ 100 ppm 1,2,3-TMB and @ 250 ppm 1,2,4-TMB
- Separately, 1,3,5-TMB has also been found to result in behavioral disturbances (latency of reactions @ 100 ppm) in a related study by same authors

Pain Sensitivity (Latency of the Paw-Lick Response) Results from the Korsak and Rydzynski (1996) Neurotoxicity Study in Rats

TMB Isomer	No Animals/Response (seconds)	Exposure Concentration			
		Control	25 ppm (123 mg/m³)	100 ppm (492 mg/m³)	250 ppm (1230 mg/m³)
1,2,4-TMB	# of Animals	9	10	9	10
	Paw-Lick	15.4 ± 5.8	18.2 ± 5.7	27.6 ± 3.2*	30.1 ± 7.9*
1,2,3-TMB	# of animals	30	20	10	10
	Paw-Lick	9.7 ± 2.1	11.8 ± 3.8*	16.3 ± 6.3*	17.3 ± 3.4*


Paw-lick latency values are expressed as mean ± SD

^{*}Statistically significant (at p < 0.05 or p < 0.01)

Chronic REL Derivation for TMBs (paw-lick latency)

Exponential 4 Model (BMR_{1SD}) fit to the 90-day 1,2,3-Trimethylbenzene Korsak and Rydzynski (1996) study for neurotoxicity in male rats

- The 1,2,3-TMB isomer yields the lowest Point of Departure (POD)
- Benchmark Concentration, 1 SD change from the control mean (BMC_{1SD}) = 86 mg/m³ (18 ppm)
- Lower 95% confidence limit on the benchmark concentration, 1 SD change from the control mean (BMCL_{1SD}) = 47 mg/m³ (10 ppm)
- 47 mg/m 3 = POD
 - The 6 hr/day, 5 day/week exposure adjusted for a continuous 24 hr exposure = BMCL_{1SD} (adj) of 8 mg/m³ (2 ppm) 1,2,3-TMB
 - Human Equivalent Concentration (HEC): RGDR = 0.98 for systemic effects

- Chronic REL intended to protect over lifetime, including sensitive subpopulations
- Subchronic UF = $\sqrt{10}$ (13 week study)
- Interspecies Uncertainty Factor (UF): 6
 - Toxicokinetic UF = 2, for residual toxicokinetic differences when using the HEC adjustment
 - Toxicodynamic UF = $\sqrt{10}$, for lack of toxicodynamic data on interspecies differences

Intraspecies Uncertainty Factor (UF): 100

- Toxicokinetic UF = 10, due to no information on pharmacokinetic differences for TMBs among adults, infants and children
- Toxicodynamic UF = 10, because TMBs are neurotoxicants and children are potentially more sensitive than adults

Cumulative UF = 2000

Chronic TMB REL = $4 \mu g/m^3$ (1 ppb)

8-Hour REL Derivation for TMBs

- Based on same animal study by Korsak and Rydzynski (1996)
- Same POD = 47 mg/m^3 (10 ppm) 1,2,3-TMB
- Time adjustment is different:
 - Adjusted for 8-hr workday and to represent the breathing rate of workers
- All UFs are the same as the chronic REL

8-Hour TMB REL = $8 \mu g/m^3$ (2 ppb)

Proposed TMB RELs: Summary

Acute: 2400 µg/m³ (490 ppb)

Chronic: 4 µg/m³ (1 ppb)

8-Hour: $8 \mu g/m^3$ (2 ppb)

Public Comments

- OEHHA did not receive any public comments on the draft TMB REL document
- Public comment period: January 27, 2023 March 13, 2023
- Public Workshops were held on February 23, 2023 in Southern California and on March 2, 2023 in Northern California

