Air Toxics Hot Spots Program

Trimethylbenzenes

Reference Exposure Levels

Technical Support Document for the Derivation of Noncancer Reference Exposure Levels

Appendix D1

May 2023

Scientific Review Panel Draft

Air and Site Assessment and Climate Indicators Branch Office of Environmental Health Hazard Assessment California Environmental Protection Agency

Page Intentionally Left Blank

Trimethylbenzenes Reference Exposure Levels

Technical Support Document for the Derivation of Noncancer Reference Exposure Levels

Appendix D1 Scientific Review Panel Draft

Prepared by the Office of Environmental Health Hazard Assessment

Lauren Zeise, Ph.D., Director

Authors

Moira Sullivan, M.S.

Technical Reviewers

Daryn E. Dodge, Ph.D.

John D. Budroe, Ph.D.

May 2023

Page Intentionally Left Blank

Table of Contents

Preface	iv
1. Summary	v
2. Physical & Chemical Properties	1
3. Occurrence and Major Uses	3
3.1 Exposure Assessment	5
4. Toxicokinetics	
4.1 Toxicokinetic Studies in Humans	. 11
4.2 Toxicokinetic Studies in Animals	19
5. Acute Toxicity of Trimethylbenzene	23
5.1 Acute Toxicity to Adult Humans	23
5.2 Acute Toxicity to Infants and Children	26
5.3 Acute Toxicity to Experimental Animals	
6. Chronic Toxicity of Trimethylbenzene	37
6.1 Chronic Toxicity to Adult Humans	37
6.2 Chronic Toxicity to Children	41
6.3 Chronic Toxicity to Experimental Animals	
7. Developmental and Reproductive Effects	54
7.1 Human	
7.2 Animal	
8. Derivation of Reference Exposure Levels	
8.1 Trimethylbenzenes Acute Reference Exposure Level	
8.2 Trimethylbenzenes Chronic Reference Exposure Level	
8.3 Trimethylbenzenes 8-hour Reference Exposure Level	
8.4 RELs for the Mixed TMB Isomers	
9. Evidence for Differential Sensitivity of Children	77
10. References	79

List of Tables

Table 1.	Trimethylbenzene Isomers
Table 2.	Trimethylbenzene isomer physical and chemical properties2
Table 3a.	Point Source Emissions Reported to CARB (2011- 2020) for TMBs
	(CAS # 25551137)
Table 3b.	Point Source Emissions Reported to CARB (2011- 2020) for 1,2,4-TMB (CAS # 95-63-6)
Table 4.	Trimethylbenzene Exposure Concentrations in 3 Urban Areas in Italy ¹
Table 5.	Partition Coefficients of Trimethylbenzenes in Human Blood, Water, and
Table 6.	Oil (37 °C)
Table 0. Table 7.	Trimethylbenzene Metabolic Inhalation Studies in Humans
Table 8.	Experimental Results from Inhalation Exposure of Human Volunteers to 1,2,4- Trimethylbenzene alone, or in White Spirit (mean values + 95% CI)
Table 9.	Effects of 10 mmol/kg-day 1,3,5-Trimethylbenzene by oral gavage for
	three days on microsomal enzyme induction in rat liver, kidney and lung (from
	Pyykko, 1980)
Table 10	Acute Human Trimethylbenzene Inhalation Chamber Studies
	Acute and Subacute Trimethylbenzene Inhalation Toxicity Studies in
	Animals
Table 12.	Treatment-Related Neurobehavioral Test Results in Rats Following Inhalation
	Exposure to 1,2,4-Trimethylbenzene (from McKee et al., 2010)
Table 13.	Summary of Effects from Subchronic Inhalation Trimethylbenzene
	Studies in Animals
Table 14.	Summary of Effects from Subchronic Inhalation Trimethylbenzene
	Mixture Studies in Animals
Table 15.	Developmental Toxicity of 1,2,4- and 1,3,5 Trimethylbenzene in Rats (Reduced
	Maternal and Fetal Bodyweight)
Table 16.	BMR Modeling Results for Saillenfait et al. (2005) 1,2,4- and 1,3,5-
	Trimethylbenzene Developmental Toxicity Study
Table 17.	Treatment-Related Neurobehavioral Test Results in Rats Following a
	Single Eight-Hour Inhalation Exposure to 1,2,4-Trimethylbenzene
	(McKee et al., 2010)
Table 18.	BMR Modeling Results for Latency> 6 Seconds, McKee et al. (2010)
	1,2,4-Trimethylbenzene Study
Table 19.	NOAEL/LOAEL Values for Subchronic Trimethylbenzene Rat Inhalation Studies
Table 20.	BMR Modeling Results for Different Endpoints from Korsak et al.
	Subchronic Trimethylbenzene Studies71
Table 21.	Pain Sensitivity (Latency of the Paw-Lick Response) Results from the
	Korsak and Rydzynski (1996) Trimethylbenzene Neurotoxicity Study
	in Rats72
Table 22.	Lowest BMDS Model Results for Neurotoxicity (Pain Sensitivity - Latency
	of the Paw-Lick Response) in Male Rats following 90-day
	Trimethylbenzene Inhalation Exposure (Korsak and Rydzynski, 1996)73

1 Preface

- 2 The Office of Environmental Health Hazard Assessment (OEHHA) is required to
- 3 develop guidelines (including technical methodologies, factors) for conducting health
- 4 risk assessments under the Air Toxics Hot Spots Program (Health and Safety Code
- 5 Section (HSC) 44360(b)(2)). Pursuant to this mandate, OEHHA developed a Technical
- 6 Support Document (TSD; 2008) that includes the methodologies for deriving Reference
- 7 Exposure Levels (RELs) and OEHHA develops RELs using these methods.
- 8 RELs are airborne concentrations of a chemical that are not anticipated to result in
- 9 adverse noncancer health effects for specified exposure durations in the general
- 10 population and sensitive subpopulations thereof. They explicitly account for possible
- 11 differential effects on the health of infants, children, and other sensitive subpopulations
- 12 in accordance with the mandate of the Children's Environmental Health Protection Act
- 13 (Senate Bill 25, Escutia, Chapter 731, Statutes of 1999, Health and Safety Code
- 14 Sections 39669.5 et seq.).
- 15 RELs are completed using the public process outlined in HSC section 44360(b)(2). This
- 16 includes public comment, and review by the Scientific Review Panel (SRP) on Toxic Air
- 17 Contaminants, an external committee of scientific experts. When finalized the RELs are
- 18 adopted in Appendix D of the TSD.
- 19 The acute, chronic and 8-hour RELs on trimethylbenzenes in this document are being
- 20 developed pursuant to the process described above. The current draft is being released
- 21 for public comment. Following public comment, the document will be revised as needed
- 22 and provided to the SRP for scientific review. Information on participation in this process
- 23 is provided on OEHHA's website: oehha.ca.gov.
- 24

25 26 27 28	Refe	Trimethylbenzenes erence Exposure Levels methylbenzene; 1,2,4-trimethylbenzene; 1,2,3-trimethylbenzene
29 30	• • • •	thylbenzene); 95-63-6 (1,2,4-Trimethylbenzene); 526-73- ylbenzene); 25551-13-7 (Trimethylbenzenes)
31	1. Summary	
32	1.1 Trimethylbenzenes Acu	ute REL
	Reference exposure level	2400 μg/m³ (490 ppb)
	Critical effect(s)	Latency in visual discrimination tests (neurobehavioral)
	Hazard index target(s)	Nervous system
33	1.2 Trimethylbenzenes Chr	onic REL
	Reference exposure level	4 μg/m³ (1 ppb)
	Critical effect(s)	Pain sensitivity behavior
	Hazard index target(s)	Nervous system
34	1.3 Trimethylbenzenes 8-H	our REL
	Reference exposure level	8 μg/m³ (2 ppb)
	Critical effect(s)	Pain sensitivity behavior
	Hazard index target(s)	Nervous system
35		

36 Trimethylbenzenes (TMBs) have a number of commercial uses, as constituents of

37 surface coatings, paints, printing inks, cleaning fluids, and hydraulic fracturing fluids.

38 The 1,2,4-TMB isomer is also used as a chemical intermediate. TMBs are common

۷

- components of petroleum refinery distillation fractions, such as gasoline, high flash point
- 40 napthas, and white spirit. TMBs are emitted by steel-making facilities and coal-fired
- 41 plants. In addition, all three (1,2,4; 1,3,5; and 1,2,3 TMB) TMB isomers are found as
- 42 constituents of biogas.

43 Exposure to TMBs has been found to cause adverse effects on the respiratory, 44 hematologic, and central nervous systems (CNS) in animals and humans. These effects 45 include acute toxicity such as CNS effects and respiratory irritation. Chronic effects 46 include neuromuscular, pulmonary, hematologic, and other organ/tissue toxicity. 47 Several human exposure studies evaluated acute effects, such as sensory irritation, in 48 healthy volunteers. Effects on the nervous system are seen in acute animal studies and 49 these form the basis of the acute TMB REL. There is little information on the chronic 50 toxic effects of TMBs in humans (no human-controlled studies or child-specific toxicity 51 data in the toxicological literature). Occupational studies on TMBs suffer from a lack 52 good exposure data and are confounded by exposure to multiple solvents. No lifetime 53 chronic animal TMB studies were identified in the literature. There are a number of 54 subchronic studies in animals that show effects on the nervous system, including 55 impairment of neuropsychological functions, as well as effects on clinical chemistry and 56 organ weights, following exposure to TMBs. The most sensitive endpoint in the 57 subchronic animal studies is neurotoxicity, and this forms the basis of the 8-hour and 58 chronic RELs. Benchmark dose (BMD) modeling established points of departure 59 (PODs) for the acute, 8-hour, and chronic RELs. For the chronic REL, because the 60 Korsak and Rydzynski (1996) study on which the chronic REL is based is a 13-week 61 study, the POD was adjusted for a continuous 24-hour exposure. For all TMB RELs, the 62 intraspecies toxicodynamic component of the uncertainty factor (UF) was increased to 63 10 from the default factor of 3 because TMBs are neurotoxicants, and likely to impact 64 infants and children disproportionately.

- 65 Literature summarized and referenced in this document covers the relevant published 66 literature for TMBs through July 2022.
- 67

List of Abbreviations

69	AHH	Aryl Hydrocarbon Hydroxylase	116	IUR	Inhalation Unit Risk
	ALB	Albumin	117	KOC	Carbon-water Partition
	AMPH	Amphetamine	118		Coefficient
	ANH	Aniline Hydroxylase	119	KOW	Octanol-water Partition
		Analysis of Variance	120	Row	Coefficient
	AP	Acid Phosphatase	121		
			122	LD ₅₀	Lethal Dose required to kill 50%
	APD	Aminopyrine Demethylase			of the animals in a test
	ATSDR	Agency for Toxic Substances and	123	LOAEL	Lowest-Observed-Adverse-
77		Disease Registry	124		Effect Level
	AUC	Area Under the Curve	125	LP	Lymphocytes Percentage
	BALF	Bronchoalveolar lavage fluid	126	NADPH	Nicotinamide Adenine
	BMC_{1SD}	Benchmark Concentration, 1 SD	127		Dinucleotide Phosphate
81		change from the control mean	128		(Reduced)
	BMCL _{1SE}	Lower 95% confidence limit on	129	NCV	Non-constant Variance
83		BMC _{1SD}	130	NOAEL	No-Observed-Adverse-Effect
84	BMD	Benchmark Dose	131		Level
85	BMDS	Benchmark Dose Software	132	OEHHA	Office of Environmental Health
86	BMR	Benchmark Response	133		Hazard Assessment
87	BUN	Blood Urea Nitrogen	134	O ₃	Ozone
88	BW	Body weight	135	ОН	Hydroxyl Radical
89	CARB	California Air Resources Board	136	OR	Odds Ratio
	CAS	Chemical Abstracts Service	137	PC	Partition Coefficient
	CHMS	Canadian Health Measures Survey	138	PSNG	Percentage of Segmented
92		Confidence Interval	139	_	Neutrophilic Granulocytes
	CK	Creatine Kinase	140	RBC	Red Blood Cell
94		Chemiluminescence	141	RD ₅₀	50% reduction in Respiratory
	CNS	Central Nervous System	142	00	Rate
	CV	Constant Variance	143	REL	Reference Exposure Level
	CYT	Cytochrome	144	RfC	Reference Concentration
	DCF	Dichlorofluorescein	145	RGDR	Regional Gas Dose Ratio
	DMHA	Dimethylhippuric Acid	146	RNS	Reactive Nitrogen Species
	EC ₅₀	Effective Concentration required to	147	ROS	Reactive Oxygen Species
101	L O 50	have a biological effect in 50% of	148	SAS	Statistical Analysis System
102		the cells or animals in a test	149	SD	Standard Deviation
	EEG		150	SEM	Standard Error of the Mean
	ELISA	Electroencephalographic	151	TAC	Toxic Air Contaminant
104	ELISA	Enzyme-Linked Immunosorbent	152		
	00	Assay		TLV	Threshold Limit Value
106		Gestation Day	153	TMB	Trimethylbenzene
	GLDH	Glutamate Dehydrogenase	154	TSD	Technical Support Document
	GOT	Aspartate Aminotransferase	155	TSLP	Thymic Stromal Lymphopoietin
	GPT	Alanine Aminotransferase	156	TWA	Time-weighted Average
110		Hydrocarbon	157	UF	Uncertainty Factor
	HEC	Human Equivalent Concentration	158	US EPA	United States Environmental
	HPLC	High-Pressure Liquid	159		Protection Agency
113		Chromatography	160	VOC	Volatile Organic Compounds
	HVS	High Voltage Spindles	161	WBC	White Blood Cell
115			162		
			I		

163 **2. Physical & Chemical Properties**

- 164 Trimethylbenzenes (TMBs) exist in three isomeric forms: 1,2,3-trimethylbenzene
- 165 (hemimellitene), 1,2,4-trimethylbenzene (pseudocumene), and 1,3,5-trimethylbenzene
- 166 (mesitylene). For simplicity, they will be abbreviated as 1,2,3-TMB, 1,2,4-TMB, and
- 167 1,3,5-TMB, respectively, throughout this document (Table 1, below). 1,3,5-TMB is also
- 168 referred to as symmetrical trimethylbenzene because of the symmetrical arrangement of
- the three methyl groups on the benzene ring. The other two isomers, 1,2,3-TMB and
- 170 1,2,4-TMB, are o-xylenic dimethyls (that is, two of their methyl substituents are bonded
- 171 to adjacent carbon atoms in the aromatic ring).

Isomer	Abbreviation	CAS #	Chemical Structure
1,2,3-trimethylbenzene	1,2,3-TMB	526-73-8	CH3 CH3 CH3
1,2,4-trimethylbenzene	1,2,4-TMB	95-63-6	H ₃ C H ₃ C CH ₃
1,3,5-trimethylbenzene	1,3,5-TMB	108-67-8	H ₃ C CH ₃

172 Table 1. Trimethylbenzene Isomers

173 Abbreviations: CAS = Chemical Abstracts Service; TMB = Trimethylbenzene

174	Table 2. Trimethylbenzene isomer physical and chemical properties
-----	---

Isomer	1,2,3-TMB	1,3,5-TMB	1,2,4-TMB		
Description	Clear, colorless liquid				
Molecular		C9H12			
formula					
Molecular		120.19			
weight (g/mol)					
Melting point, °C	-25.4	-44.8	-43.8		
Boiling point, °C	176.1	164.7	168.9		
@ 760 mm Hg					
Vapor pressure,	1.69	2.48	2.10		
mm Hg @ 25°C					
Density, g/mL at	0.8944	0.8637	0.8758		
20 °C					
Flashpoint, °C	44	50	44		
Water solubility,	75.2	48.2	57		
mg/L at 25 °C					
Other solubilities	Ethanol, acetone,	Alcohol, ether,	Ethanol, benzene,		
	benzene, petroleum	benzene, acetone,	ethyl ether, acetone,		
	ether	oxygenated and	petroleum ether		
		aromatic solvents			
Henry's law	4.36 × 10 ^{−3}	8.77 × 10 ^{−3}	6.16 × 10 ⁻³		
constant, atm					
m³/mol					
Log Kow	3.66	3.42	3.78		
Log Koc	2.80-3.04	2.70-3.13	2.73		
Conversion	1 ppm = 4.92 mg/m ³				
factors	1 mg/m ³ = 0.2 ppm				

175 Adapted from USEPA (2016).

176 Abbreviations: CAS = Chemical Abstracts Service; K_{OC} = carbon-water partition coefficient; K_{OW}

177 = octanol-water partition coefficient.

178 **3. Occurrence and Major Uses**

179 The three TMB isomers occur naturally in petroleum deposits, and are common

180 components of petroleum refinery distillation fractions such as white spirit, high flash

181 point naphtha, and gasoline. The proportion of TMBs in these products has been

reported to vary from about 5 to 50% (v/v) (Jarnberg et al., 1997b). TMBs are also emitted by steel-making facilities (Chang et al., 2010) and coal-fired plants (Shi et al.,

184 2015). In the case of the latter, TMBs were among the largest contributors of the VOCs

185 emitted in the exhaust gases from the stacks (36.3% of all volatile organic chemicals

186 (VOCs)). TMBs are also found in surface coatings, printing inks, paint, cleaners, and as

187 an additive in pesticides. Although all three isomers are typically present in paint

188 solvents, the proportion of the individual isomers may vary considerably. The US

189 Environmental Protection Agency (US EPA) lists TMB as an inert ingredient in 18

190 pesticides (USEPA, 1994a). 1,2,4-TMB is also used as a chemical intermediate.

191 General exposure to TMBs may result from the use of solvent and paint thinner

192 preparations, gasoline and fuel spills, and air pollution emissions. According to

193 Chowdhury and Brock (2001), "There are thousands of sites across the U.S. with fuel

194 spills/underground plumes". The 1,2,4-TMB and 1,3,5-TMB isomers are two of the

195 contaminants of concern that comprise the standard JP-4 jet fuel mixture. Many of these

196 sites are near occupied residential or commercial structures, and may potentially pose

197 an inhalation risk (AFCEE, 1999; USEPA, 2002). At one facility in Utah, onsite soils

198 exhibited high levels of volatile organic carbon compounds (VOCs), including TMB

199 (2,900 ppm).

200 The California Air Resources Board (CARB) provides stationary source (point and

aggregated point) air emissions data for chemicals in the Hot Spots program. TMBs

202 (combined) and data specific for the 1,2,4-TMB isomer are shown in Tables 3a and 3b

for years 2011-2020. The data represent emissions that have been reported to CARB

for facilities by the local air districts (it does not necessarily represent every source of

toxic air emissions in the state). Aggregated TMBs and 1,2,4-TMB are the only two CAS

numbers for which emissions have been reported. The data compiled for TMBs and

207 1,2,4,-TMB can be found using CARB's public Facility Search Tool

208 (<u>https://ww2.arb.ca.gov/our-work/programs/ab-2588-air-toxics-hot-spots/facility-search-</u>

209 <u>tool).</u>

- 210 Table 3a. Point Source Emissions Reported to CARB (2011- 2020) for TMBs (CAS
- 211 **# 25551137)**

	Number of	Emissions of TMBs (lbs/yr)			
Year	Facilities	Total	Min	Max	
2011	11	498.3	0.0576	158.4	
2012	10	411.5	0.0576	142.4	
2013	11	428.3	0.0576	142.4	
2014	11	479.8	0.0056	145.4	
2015	12	524.9	0.0056	145.4	
2016	11	1,251.3	0.0052	1,145.4	
2017	8	110.6	0.0035	68.4	
2018	13	453.4	0.0169	292.0	
2019	26	991.7	0.0039	292.0	
2020	34	1,141.1	0.0006	318.0	

- Abbreviations: CARB = California Air Resources Board; lbs = pounds; TMBs =
- 213 trimethylbenzenes; yr = year.

214	Table 3b. Point Source Emissions Reported to CARB (2011-2020) for 1,2,4-TMB
215	(CAS # 95-63-6)

	Number of	Emissions of 1,2,4-TMB (lbs/yr)			
Year	Facilities	Total	Min	Max	
2011	516	134,411.8	1.0E-05	85,068.1	
2012	455	128,952.0	1.7E-05	85,068.1	
2013	472	120,164.5	1.7E-05	85,168.9	
2014	192	34,194.7	1.7E-05	13,072.5	
2015	241	51,885.1	6.4E-06	13,072.5	
2016	194	36,622.1	6.7E-05	13,072.5	
2017	268	34,307.1	5.4E-07	13,072.5	
2018	220	34,690.3	1.4E-08	13,072.5	
2019	377	68,640.0	1.4E-08	30,822.6	
2020	485	55,839.5	5.0E-08	15,937.9	

Abbreviations: CARB = California Air Resources Board; lbs = pounds; TMB = trimethylbenzene;
 yr = year.

- 218 In California, per CARB, the leading TMBs and 1,2,4-TMB emission sources include:
- 219 petroleum refining, construction, cement, paving mixtures, asphalt and metal coatings,
- petro bulk stations, as well as other sources. Of the sites on U.S. EPA's National
- Priorities List that report TMB isomer contamination, 93% report 1,3,5-TMB

222 contamination. 85% report 1.2.4-TMB contamination. 12% report 1.2.3-TMB 223 contamination, and 17% report contamination by unspecified TMB isomers (USEPA, 224 2016). (The National Priorities List is a list of hazardous waste sites in the U.S. eligible 225 for long-term remedial action, financed under the federal Superfund program). The three 226 TMB isomers are on the US EPA list (US EPA, 2012) for chemicals used in hydraulic 227 fracturing fluids. The isomers have been detected in flowback and produced waters 228 ("hydraulic fracturing wastewater") from fracturing operations. 1,2,4 and 1,3,5-TMB have 229 been detected in air emissions associated with shale gas development and production 230 operations (Rich et al, 2014). All three TMB isomers are also found as constituents of 231 biogas (OEHHA/CARB, 2013); the source of the TMBs is largely municipal landfills 232 which capture/supply the biogas for use in energy applications.

233 3.1 Exposure Assessment

234 There are no studies available that uniquely evaluated exposure to TMB isomers. There 235 are several studies that evaluated residential exposure to a number of different 236 contaminants, including TMBs. Minoia et al. (1996) measured daily indoor/outdoor 237 inhalation exposures to sixteen aromatic and aliphatic hydrocarbons (HCs), including all 238 three TMB isomers, experienced by 3 groups of primary school children (1st and 2nd 239 grade) living in three different urban areas in Italy (towns with 50,000 inhabitants or 240 less). The largest sample (from Treviglio) included 165 children, followed by Valenza 241 (n=137) and Poggibonsi (n = 130). The parents of the children filled out questionnaires 242 about smoking or other possible sources of HCs in the house. Simultaneous use of two 243 personal samplers (radial diffusion passive mini-samplers) for each child, over one 24-244 hour period, determined both indoor (children's houses) and indoor + outdoor daily 245 inhalation concentrations. One sampler was placed in the child's house at a height of 246 80-100 cm and used to determine indoor ambient air HC concentrations. The second 247 sampler was worn by the child near his/her mouth and used to determine indoor + 248 outdoor breathing zone HC concentrations. Additional samplers were used to determine 249 HC background levels. Indoor mean environmental levels for the three towns ranged from 3.6-4.6 μ g/m³ for 1.2.3-TMB, 5.0-7.4 μ g/m³ for 1.2.4-TMB, and 2.8-4.2 μ g/m³ for 250 251 1,3,5-TMB for the period March-April 1995. In general, indoor + outdoor concentrations 252 were somewhat higher. Table 4, below, shows the average indoor and indoor + outdoor 253 environmental TMB concentrations that were determined from the personal samplers 254 worn by the children. For the 1,2,3-TMB and 1,3,5-TMB isomers, in most cases the 255 children's exposure was comparable. 1,2,4-TMB consistently had a somewhat higher 256 profile across all towns. In some cases, indoor only concentrations were higher than 257 indoor/outdoor concentrations.

	Treviglio		Poggibonsi		Valenza	
	(μg/m³)		(µg/m³)		(µg/m³)	
ТМВ	Indoor	Indoor + Outdoor	Indoor	Indoor + Outdoor	Indoor	Indoor + Outdoor
Isomer	Mean <u>±</u> SD		Mean <u>±</u> SD		Mean <u>±</u> SD	
	(number samples with		(number samples with		(number samples with	
	detections)		detections)		detections)	
1,2,3-	3.6 <u>±</u> 1.5	4.2 <u>±</u> 1.8	3.6 <u>±</u> 1.8	2.8 <u>±</u> 1.3	4.6 <u>±</u> 2.2	5.3 <u>±</u> 2.6 (34)
TMB	(97)	(106)	(61)	(56)	(34)	
1,2,4-	5.0 <u>±</u> 2.6	6.2 <u>±</u> 2.9	7.4 <u>±</u> 2.8	6.9 <u>±</u> 2.2	5.0 <u>±</u> 2.3	6.8 <u>±</u> 11.2
TMB	(139)	(144)	(117)	(117)	(102)	(128)
1,3,5-	2.8 <u>±</u> 2.1	2.9 <u>±</u> 1.4	3.2 <u>±</u> 1.9	2.6 <u>±</u> 1.3	4.2 <u>±</u> 3.6	4.2 <u>±</u> 3.8 (20)
TMB	(82)	(104)	(84)	(90)	(19)	

258 Tab	e 4. Trimethylbenzene	Exposure Concentration	s in 3 Urban Areas in Italy ¹
----------------	-----------------------	------------------------	--

259 Adapted from Minoia et al. (1996).

260 Abbreviations: TMB = trimethylbenzene; SD = standard deviation

¹ each sample was taken over one 24-hour period between March–April of 1995.

262 Zhu et al. (2013) conducted a population-based survey of residential indoor air in

263 Canada as part of the Canadian Health Measures Survey (CHMS). CHMS is an on-

264 going survey designed to provide health measures data at the Canadian national level.

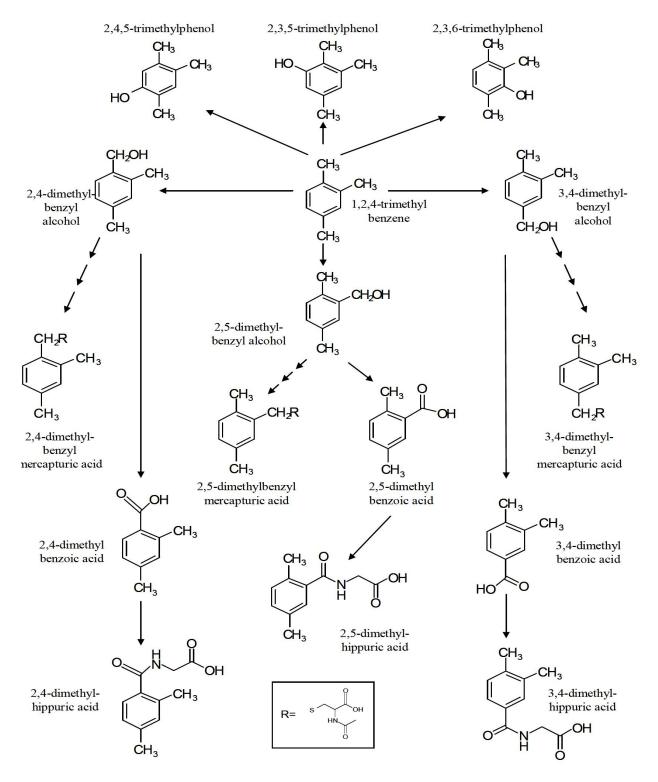
265 Canadians aged 3 - 79 living in private households were included. Indoor air samples

were collected from 5 geographic regions between 2009-2011. A total of 8,520

households were selected, with 6,465 households participating. A total of 4,722

268 households reported to a mobile examination center where physical measures and

heath examinations were performed. There was one indoor air sampler per household.

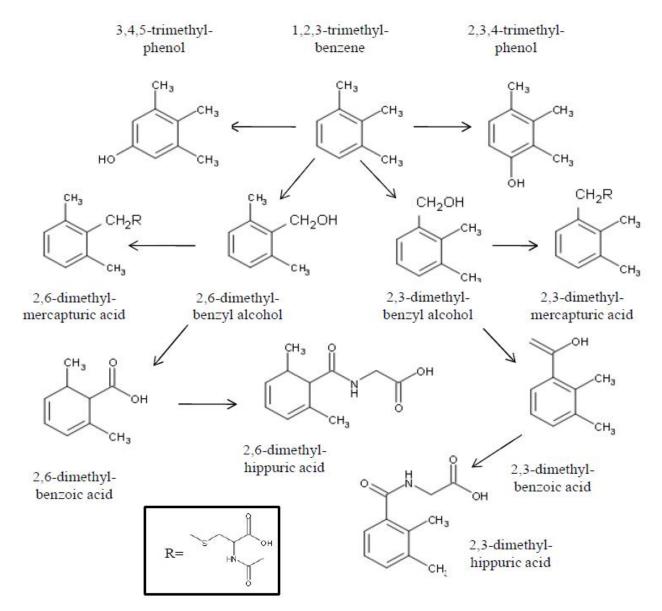

- 270 Samples were collected using a passive sampler tube and had a sampling duration of 4-
- 271 10 days. Indoor air quality from 3,587 households were included in the analysis.
- 272 Statistical analyses were performed using SAS version 9.2 and SUDAAN version 10
- software. A total of 84 VOCs were measured in this survey, including 1,2,4- and 1,2,3-
- TMB. Forty-seven VOCs had detection frequencies above 50%, including the two TMB
- isomers. The percentage of detection frequency for 1,2,4- and 1,2,3-TMB were 98.96
- and 99.74, respectively. The arithmetic and geometric means (with its respective 95%

- 277 CI, μ g/m³), and 95th/99th percentile for the 1,2,4-TMB isomer were 1.37 (1.01 1.73), 278 0.51 (0.42 – 0.61), 5.18 (95th percentile), 14.96 (99th percentile). For the 1,2,3-TMB
- 279 isomer, the mean values were 4.33(3.24 5.43), 1.58(1.31 1.90), $18.65(95^{\text{th}})$
- 280 percentile), 61.61 (99th percentile). Upper range distribution values are useful for
- 281 assessing upper boundary estimates of human exposure to these TMB isomers. A
- 282 comparison of the indoor air arithmetic mean values for 12 of these VOCs, including
- 283 1,2,4- and 1,2,3-TMB, with the results of a prior Canada National Health Survey from
- 284 1992, showed a decrease in indoor air levels for 1,2,4-TMB (from 11.5 to 1.37 μ g/m³)
- 285 (no results reported for 1,2,3-TMB). The authors attributed this to reductions in vehicle
- emissions through improved emissions technology in Canada.
- 287 McKenzie et al. (2012) conducted a health risk assessment to assess how proximity to
- air emissions from the development of unconventional (*e.g.*, directional drilling,
- 289 hydraulic fracturing) natural gas resources impacts the health of the surrounding
- 290 community. Residents in Garfield County, Colorado living $< \frac{1}{2}$ mile from shale gas wells
- had greater risk of health impacts due to subchronic and chronic exposure to TMBs and
- 292 other hydrocarbons than those living at a distance > $\frac{1}{2}$ mile (subchronic defined as a
- 293 20-month exposure duration, and chronic as a 30-year exposure duration). Of the 78
- 294 compounds analyzed, trimethylbenzenes were the primary contributor to both the
- subchronic hazard index, and the chronic non-cancer hazard index, 46 and 45%,
 respectively. Median and maximum air concentrations for 1,2,3-, 1,2,4-, and 1,3,5-TMB
- were 0.11 and 0.85 μ g/m³, 0.18 and 3.1 μ g/m³, and 0.12 and 1.2 μ g/m³, respectively.

298 **4. Toxicokinetics**

- 299 There are some differences in metabolism between the three TMB isomers. At least one 300 study reported that the methyl group configuration on the benzene ring of 1.2.3-TMB is 301 not stable, and that oxidation or reduction of the methyl group at the C₂ position takes 302 place more easily than for 1,3,5-TMB or 1,2,4-TMB (Tomas et al. 1999a). However, in 303 both animals and humans, the three TMB isomers demonstrate similar qualitative 304 metabolic profiles. All three isomers metabolize primarily to dimethylbenzoic and 305 hippuric acids. Specifically, TMB isomers are metabolized via side-chain oxidation to 306 alcohols and aromatic carboxylic/mercapturic acids, or by hydroxylation to form phenols, 307 and are excreted as glucuronides and sulphate esters (Jarnberg et al., 1996; Huo et al., 308 1989; Milkuski and Wiglusz, 1975; USEPA, 2016). Currently, it is not known which 309 CYP450 isozyme is most responsible for TMB metabolism.
- 310 There are some quantitative metabolism differences between humans and other animal
- 311 species (Jarnberg et al., 1996; Milkulski and Wiglusz, 1975). When the human data are
- 312 compared with the animal metabolism studies, it appears humans are less likely to

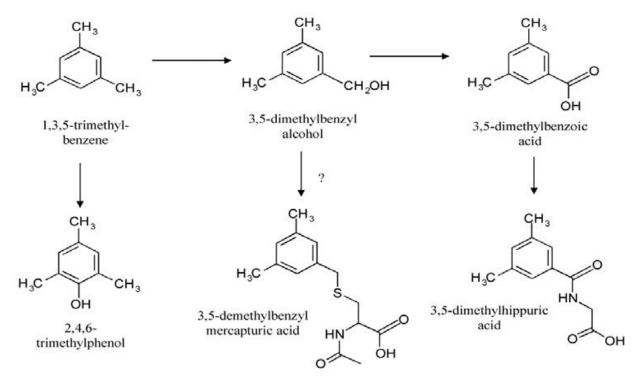
- eliminate TMBs via glycine conjugation (*i.e.*, dimethylhippuric acids, DHMAs). In 1,3,5-
- TMB metabolism studies in animals, 78% of the dose was eliminated as 3,5-DMHA or
- 315 3,5-dimethylbenzoic acid in rabbits (Laham and Potvin, 1980) and rats (Mikulski and
- 316 Wiglusz, 1975).
- 317 In humans, the following routes of metabolism appear to contribute substantially to the
- 318 elimination of TMBs: excretion of unconjugated (free) dimethylbenzoic acids, formation
- of glucuronides, and benzyl alcohols conjugated with glucuronic acid or sulfates
- 320 (Jarnberg et al., 1997). Figures 1, 2, and 3 below (from USEPA, 2016) show the
- 321 proposed metabolic scheme in mammals for the three TMBs. Additionally, in humans at
- 322 least, exhalation of the unchanged parent compound is an important route of
- elimination, accounting for 20-37% of the absorbed amount depending on the specific
- 324 TMB isomer. In comparison, urinary excretion of unchanged TMBs is very low, <
- 325 0.002% (Jarnberg et al., 1996).



326

327 Figure 1. Metabolic Scheme for 1,2,4-Trimethylbenzene in mammals. Broken

328 arrows indicate a postulated pathway (*e.g.* mercapturic acid formation via side-chain


329 oxidation of alcohols) (US EPA, 2016).

330

- 331 Figure 2. Metabolic Scheme for 1,2,3,-Trimethylbenzene in mammals (US EPA, 2016).
- 332

333

334

Figure 3. Metabolic Scheme for 1,3,5-Trimethylbenzene in mammals (US EPA,
 2016).

337 4.1 Toxicokinetic Studies in Humans

338 A number of *in vitro* and *in vivo* studies designed to elucidate the distribution and 339 metabolism of TMB isomers in humans have been conducted. Liquid/air partition 340 coefficients (PCs) for the three TMB isomers were determined in vitro using 341 physiological saline, adult human blood, and olive oil (Jarnberg and Johanson, 1995). 342 The blood/air, water/air, oil/air and oil/blood PCs are shown in Table 5. While the 343 oil/blood PC are in the order of 1,3,5-TMB < 1,2,4-TMB < 1,2,3-TMB, other PCs 344 increased in the order of 1,3,5-TMB < 1,2,4-TMB < 1,2,3-TMB. The TMBs have high 345 blood/air and oil/air PCs; their affinity for water is limited. From these results, high 346 respiratory uptake and accumulation of TMBs in adipose tissue is expected (Jarnberg 347 and Oahanson 1995). Of the three isomers, 1,3,5-TMB has the highest oil/blood PC. 348 indicating it has a somewhat greater affinity for adipose tissue than 1.2.4-TMB and 349 1,2,3-TMB.

- Note that Hissink et al. (2007), in an industry study designed to predict a no-effect level
- for acute CNS depression in humans from white spirit, a complex hydrocarbon solvent,
- 352 used a different set of blood/air PC values for the 1,2,4-TMB isomer in humans and rats:
- 353 148 and 85, respectively. The Hissink study only evaluated the 1,2,4-TMB isomer
- 354 (where it is a component of white spirit). OEHHA was not able to obtain the unpublished

- 355 proprietary report that derived the 1,2,4-TMB liquid/air PCs that Hissink used to develop
- their blood/air PC values in its study (Leenheers et al., 1996). It was therefore not
- 357 possible to validate how the PC values for the 1,2,4-TMB isomer were generated.

Table 5. Partition Coefficients of Trimethylbenzenes in Human Blood, Water, and Oil (37 °C)

		Calculated Values		
Isomer	Blood/Air (<i>n</i> =39)	Water/Air (<i>n</i> =42)	Oil/Air (<i>n</i> =25)	Oil/Blood*
1,3,5-TMB	43	1.23	9,880	230
	(40.0-45.2)	(1.11-1.35)	(9,620-10,140)	
1,2,4-TMB	59.1	1.61	10,200	173
	(56.9-61.3)	(1.47-1.75)	(9,900-10,400)	
1,2,3-TMB	66.5	2.73	10,900	164
	(63.7-69.3)	(2.54-2.92)	(10,500-11,300)	

Adapted from Jarnberg and Johanson (1995). *Oil/Blood is calculated by dividing oil/air byblood/air.

- 362 Abbreviations: *n* = number of samples; blood samples taken from 10 "healthy" volunteers (5
- 363 men, 5 women); TMB = trimethylbenzene.

For comparison purposes, Table 6 shows the human and animal blood:air partition coefficients for the three TMB isomers, as determined by Meulenberg and Vijverberg (2000). In this study, reported values of partition coefficients were compiled from the scientific literature and then modeled by the authors; the human values used for the TMB isomers were initially derived from the Jarnberg and Johansson(1995) *in vitro* study, and the rat values were calculated by the authors.

370 Table 6. Human and Rat Blood:Air Trimethylbenzene Isomer Partition Coefficients

TMB Isomer	Human	Rat
1,3,5-TMB	43.0	55.7
1,2,4-TMB	59.1	57.7
1,2,3-TMB	66.5	62.6

371 Source: Meulenberg and Vijverberg (2000). TMB = trimethylbenzene

372 A number of experimental inhalation studies in humans, using both volunteers and

373 workers, have been carried out to obtain toxicokinetic data on the absorption and

374 elimination of TMBs and their metabolites (Table 7). A few of these studies also

evaluated toxicological endpoints and those findings are discussed in Section 5.1, Acute

376 Toxicity to Adult Humans.

Study	Study Type	TMB Isomer(s)	# Subjects (sex)	Exposure (time/concentration)
lchiba et al. (1992)	0	1,2,4-TMB, 1,2,3-TMB, 1,3,5-TMB	7 (sex not specified)	8 hours/3-8 ppm (15-40 mg/m³)
Fukaya et al. (1994)	0	1,2,4-TMB, 1,2,3-TMB, 1,3,5-TMB	6 (M)	8 hours/25 ppm (123 mg/m ³)
Kostrewski and Wiaderna-Brycht (1995)	С	1,3,5-TMB	5 (sex not specified)	8 hours/10-150 mg/m ³ (2-30 ppm)
Ashley and Prah (1997)	С	1,2,4-TMB	5 (4 M,1 F)	4 or 6 hours/VOC mixture containing 1,2,4-TMB, 3.2 or 6.4 ppm (16 or 32 mg/m ³)
Jarnberg and Johanson, (1997a)	С	1,2,4-TMB, 1,2,3-TMB, 1,3,5-TMB	10 (M)	2 hours/25 ppm (123 mg/m ³)
Jarnberg and Johanson (1997b)	С	1,2,4-TMB	9 (M)	2 hours/ 2 ppm (9 mg/m ³)
Kostrzewski et al. (1997)	С	1,2,4-TMB, 1,2,3-TMB, 1,3,5-TMB	8 (sex not specified)	4 or 8 hours/5-150 mg/m ³ (1-30 ppm)
Jones et al. (2006)	C/O	1,2,4-TMB, 1,2,3-TMB, 1,3,5-TMB	4 (2M,2 F)/12 workers (sex not specified)	4 hours/25 ppm (123 mg/m ³) 1,3,5- TMB; separate occupational hygiene study (1,2,4- TMB, 1,3,5-TMB, 1,2,3-TMB)

377 Table 7. Trimethylbenzene Metabolic Inhalation Studies in Humans

Abbreviations: C = chamber exposure study; F = female; M = male; O = occupational
 exposure study; TMB = trimethylbenzene; VOC = volatile organic compound.

380 Ichiba et al. (1992), in a biological monitoring study of Japanese transfer printing

381 workers, reported that the correlation between the urinary excretion level of the 1,2,4-

382 TMB metabolite 3,4-DMHA and 1,2,4-TMB exposure was statistically significant at low

383 exposures (3-8 ppm). The print workers were exposed to a solvent mixture containing 384 all 3 TMBs and, in addition, toluene and ethyltoluene. Urine samples were collected from two workers during the work period, and from additional workers at the end of shift 385 386 (n = 7; gender not specified), and analyzed for metabolites by high-pressure liquid 387 chromatography (HPLC). The authors did not quantify TMB metabolites other than 3,4-388 DMHA, and did not specify why they only quantified 3,4-DMHA. Urinary 3,4-DMHA 389 concentrations in the samples ranged from 14-96 mg/g creatinine (Cr). The urinary 3,4-390 DMHA concentration showed a positive correlation with the level of exposure to 1,2,4-391 TMB (r = 0.72). In the first urine of the next day, the concentration of 3.4,-DMHA was 392 below the detection limit of 0.5 mg/L. The metabolite was not detected in the urine of 393 nonexposed workers.

394 In another study that evaluated Japanese printing workers, occupational exposure to 395 TMBs at the TLV of 25 ppm (123 mg/m^3) resulted in a mean urinary concentration of 396 410 mg 3,4-DMHA/g Cr (r = 0.897, p < 0.001) (Fukaya et al., 1994). Urine samples from 397 six male workers, with a mean age of 51.0 ± 4.8 years and an average duration of 398 exposure to TMBs of 20.8 ± 9.0 years, were collected at the start and end of the 399 workshift for 5 days. Urinary samples were analyzed for the 3,4-DMHA metabolite using 400 HPLC. Analysis of airborne TMBs showed that 1.2.4-TMB comprised approximately 401 70% of the total. The other isomers, 1,3,5-TMB and 1,2,3-TMB, contributed 20% and 402 10%, respectively. A small amount of xylene was detected in some samples. According 403 to the study authors, the urinary concentration of 3,4-DMHA was low at the start of each 404 shift and high at the end (mean 3,4-DMHA concentrations were between 0-100 mg/g Cr 405 at the start, whereas mean concentrations at shift end ranged between 250-500 mg/g 406 Cr). Total TMB air levels (mean \pm SD) over the 5 days ranged from a low of 18.4 \pm 3.03 407 to a high of 38.3 ± 3.94 ppm; mean 1,2,4-TMB air concentrations were consistently 408 higher than the other two isomers.

409 In humans, statistically significant differences in respiratory uptake between the various 410 isomers have been observed (Jarnberg et al., 1996). Ten healthy male volunteers were 411 exposed to 25 ppm (123 mg/m³) 1,2,4-, 1,2,3- or 1,3,5-TMB vapors in a 20 m³ exposure 412 chamber on four different occasions for 2 hours, at a constant workload of 50 watts (as 413 displayed on a bicycle ergometer). Twenty-five ppm corresponds to the occupational 414 exposure limit in Sweden for all three TMB isomers. Volunteers were also exposed to 2 415 ppm (10 mg/m³) 1,2,4-TMB for the same length of time. Urine was collected at the onset 416 of exposure (0) and at 2, 4, 11, and 20 hours postexposure, and analyzed via HPLC for 417 all six possible DMHA isomers. Following a 2-hour exposure to 25 ppm (123 mg/m³) of 418 1,3,5-TMB, 1,2,3-TMB, or 1,2,4-TMB during light physical exercise, relative respiratory 419 uptake for 1,2,3-TMB was significantly lower (56%) than 1,2,4-TMB (64%) and 1,3,5-420 TMB (62%). The average concentration of 1,2,3-TMB in arterial blood was significantly 421 higher than the corresponding concentrations of 1,2,4-TMB and 1,3,5-TMB. The authors

422 concluded that the slower metabolic rate of 1.2.3-TMB explains the lower respiratory 423 uptake and higher blood levels (despite its higher blood:air partition coefficient) that are 424 seen for 1.2.3-TMB, compared with the two other isomers. Calculations of area under 425 the curve (integral or AUC) during exposure, which references the total amount of the 426 chemical absorbed by the body over time, gave a significantly greater value for 1,2,3-427 TMB than for 1,3,5-TMB. 1,3,5-TMB had a higher total blood clearance (significantly 428 different than 1,2,4-TMB and 1,2,3-TMB) and higher metabolic clearance than 1,2,4-429 TMB and 1,2,3-TMB. Significantly less (20-25%) 1,2,4-TMB and 1,3,5-TMB was 430 exhaled unchanged compared to 1,2,3-TMB (as much as 37% of the absorbed 1,2,3-431 TMB was exhaled unchanged). Thus, respiratory excretion makes an important 432 contribution to total clearance, especially for 1.2.3-TMB. Twenty-two percent of the 433 inhaled 1.2.4-TMB was excreted as DHMA acids within 24 hours, mainly as 3.4-DMHA. 434 The twenty-four hour recovery of 1,2,3-TMB was 11%, mainly as 2,3-DMHA. Only 3% of 435 the absorbed amount of 1,3,5-TMB was excreted as 3,5-DMHA. The excretion of 436 unconjugated dimethylbenzoic acids in urine was approximately 3% of the dose of 437 TMBs. The study authors stated that the short (*i.e.*, 1 day) follow-up period resulted in an 438 underestimation of the more slowly excreted 3.5-DMHA, as compared with the other 439 DMHA isomers (3,5-DMHA isomer has the longest half-time, 16 hours, of the six 440 DMHAs).

441 Two different studies by the same research group (Kostrewski and Wiaderna-Brycht,

442 1995; Kostrewski et al., 1997) studied the elimination kinetics of 1,3,5-TMB and 1,2,4-

443 TMB, respectively, following human inhalation exposure. In the first study (Kostrewski

444 and Wiaderna-Brycht, 1995), five volunteers (gender not specified) were exposed in a

445 closed chamber to 1,3,5-TMB concentrations ranging from 10-150 mg/m³ (2-30 ppm) for

446 8 hours. 73% of the absorbed 1,3,5-TMB dose was metabolized to 3,5-DMHA or 3,5-

dimethylbenzoic acid. Pulmonary ventilation in the volunteers ranged from 0.56 to 0.99
 m³/hr. During the first minute of 1,3,5-TMB exposure at 100 mg/m³, retention was as

449 high as 77%. After 2 hours exposure, the retention stabilized at 67%.

450 Kostrzewski et al. (1997), using human volunteers, reported that pulmonary retention 451 appears to be comparable for the three TMB isomers. Five subjects (gender not 452 specified) aged 20-39 years with no history of exposure to TMBs inhaled 1,2,4-TMB, 453 1,3,5-TMB, or 1,2,3-TMB at concentrations ranging from 5-150 mg/m³ (1-30 ppm) of air 454 for 4 or 8 hours in an exposure chamber (the two exposures were spaced at "3-4 week" 455 intervals). Exhaled air, blood, and urine samples were collected before, during and after 456 all exposures. Blood samples were collected just prior to exposure, at the last minute of 457 exposure, and 15-20 minutes following exposure termination. Urine samples were 458 collected just prior to exposure, during the exposure and 2, 4, 6, and 8 hours from 459 exposure onset. Urine was also collected at 2, 4, 6, 8, 15, 19, 23, 27, 31, 39, 43, 47, 51, 460 55, 63, 67, 71, 75, 79, 83, 87, and 95 hours post-exposure. During experiments

involving exposure to 100 or 150 mg/m³ TMB for 4 hours, determinations of lung
ventilation and absorption were also carried out. The kinetics of 1,2,4- and 1,3,5-TMB
absorption and elimination from capillary blood at a concentration of 150 mg/m³, and
1,2,3-TMB at 100 mg/m³, was evaluated at the time of exposure and "several hours"

- 465 after exposure termination. Dimethylbenzoic acid concentrations were determined using
- 466 gas chromatography. Pulmonary ventilation in the volunteers ranged from 0.56-1.0
- 467 m³/hour. The retention of 1,2,4-TMB, 1,3,5-TMB, and 1,2,3-TMB in the lungs was 68, 67
- 468 and 71%, respectively (preliminary experiments on TMB inhalation found that constant
- pulmonary vapor retention was reached after 3-4 hours of continuous exposure). Blood
 TMB concentrations were higher for all 3 isomers at 8 hours than at 4 hours exposure.
- 471 In one human subject study, TMB blood concentrations were shown to be directly
- 472 related to TMB air exposure concentrations. Ashley and Prah (1997) exposed human
- 473 subjects in a controlled inhalation chamber to a mixture of 21 VOCs, including 1,2,4-
- 474 TMB, to determine the kinetics of VOC blood uptake and elimination. Five adult
- subjects, 4 men and 1 woman (ages not provided), were exposed for either 4 hours on
- 476 each of two occasions (n = 1 subject) or for 6 hours on one occasion (n = 4 subjects) to
- either 3.2 or 6.4 ppm (12 or 24 mg/m³) toluene-equivalent VOC mixture. The authors
- 478 were unclear as to the definition of the term "toluene equivalent", but it appears that
- 479 VOC mixture ppm values were generated from VOC mixture mg/m³ values using the
- 480 molecular weight of toluene. 1,2,4-TMB concentrations in the 3.2 and 6.4 ppm VOC
- 481 mixtures were 0.0079 ppm (0.039 mg/m³) and 0.0158 ppm (0.078 mg/m³), respectively.
 482 Blood concentrations were measured before, during, and after exposure. Mean plateau
- 483 blood 1,2,4-TMB concentrations were 0.14 + 0.03 ppb and 0.21 + 0.2 ppb (0.14 + 0.03
- 484 and $0.21 + 0.2 \mu g/L$) for the two 4-hour exposures to the 3.2 and 6.4 ppm VOC mixtures
- 485 respectively. Mean 1,2,4-TMB blood concentration elevations associated with 2-, 4-,
- 486 and 6-hour exposures to an air concentration of 0.0158 ppm 1,2,4-TMB (air
- 487 concentration for the 6.4 ppm exposure), were 0.082, 0.15, and 0.40 ppb (0.4, 0.74, and
- 488 2 μ g/m³) 1,2,4-TMB, respectively.

489 Jarnberg et al. (1997a) exposed ten male volunteers to approximately 25 ppm (123

490 mg/m³) of each TMB isomer for 2 hours duration on four separate occasions and to 2

- 491 ppm (11 mg/m³) 1,2,4-TMB for 2 hours on four separate occasions in a 20 m³ exposure
- 492 chamber while exercising on a bicycle ergometer at a constant workload of 50 watts.
- 493 About 22% of the inhaled amount of 1,2,4-TMB was excreted as dimethylhippuric acids
- 494 (DMHAs) within 24 hours, mainly as 3,4-DMHA. The 24-hour recovery of 1,2,3-TMB as
- 495 DMHAs was 11%; only 3% of the absorbed amount of 1,3,5-TMB was excreted as 3,4-
- 496 DMHA. Of the 6 DHMAs, the 3,5-DMHA isomer had the longest half-life. In addition, the
- 497 recovery of 1,3,5-TMB as 3,5-DMHA was much lower than that of the other two TMB
- 498 isomers. No significant difference was seen in the excretion pattern of DMHA isomers
- between the 2- and 25-ppm exposures to 1,2,4-TMB.

500 In a related study, the inhalation toxicokinetics of exposure to the 1,2,4-TMB isomer in 501 white spirit and to 1,2,4-TMB alone were compared (Jarnberg et al., 1997b). White spirit 502 is comprised of a complex mixture of hydrocarbons (e.g., nonane, decane, undecane, 503 xylene, TMBs, aliphatic compounds, and other aromatic compounds). Healthy male 504 volunteers (n = 9, average age 36) were exposed in an inhalation chamber for 2 hours 505 to 10 mg/m³ (2 ppm) 1,2,4-TMB or 300 mg/m³ white spirit, while doing light physical 506 work. One year elapsed between the 1,2,4-TMB and white spirit exposures; the same 507 subjects were used for both experiments. The proportion of 1,2,4-TMB in the white spirit was 3.8% (w/w), corresponding to 11.3 mg/m³ 1.2.4-TMB. Exhaled air was collected at 508 509 30, 60, 90 and 120 minutes during the exposure, and after the exposure was 510 terminated. Blood and urine samples were taken at the onset, during, and post-511 exposure, 1.2.4-TMB was analyzed in blood and exhaled air by gas chromatography. 512 The authors stated that, "neither the absolute nor relative uptake differed between the 513 two experimental conditions" (data not shown). Table 8, below, summarizes some of the 514 toxicokinetic results. Blood levels of 1,2,4-TMB were significantly higher during and after 515 exposure to white spirit compared to 1,2,4-TMB alone (data not shown). The area under 516 the curve (AUC) was significantly higher (p < 0.0001) after exposure to white spirit 517 compared to 1,2,4-TMB alone. Both the urinary excretion rate, as well as the cumulative 518 excretion of 3,4-DMHA, were significantly higher after exposure to white spirit. 519 Respiratory excretion rates did not differ significantly. The authors concluded that, 520 "...results indicate that exposure to white spirit alters the relation between internal 521 (blood levels) and external exposure (air levels) to 1,2,4-TMB". The authors further 522 stated that "urinary excretion of the 3,4-DHMA metabolite seems to reflect internal 523 (blood levels) but not external exposure (air levels) to 1,2,4-TMB."

524 **Table 8. Experimental Results from Inhalation Exposure of Human Volunteers to** 525 **1,2,4-Trimethylbenzene alone, or in White Spirit (mean values + 95% CI)**

Exposure	1,2,4-TMB	1,2,4-TMB in White Spirit	<i>p</i> -value
Net Respiratory Uptake (mmol)	0.15 <u>+</u> 0.01	0.14 <u>+</u> 0.02	0.5 ^a
AUC (µM x min), 0-3 h	53 <u>+</u> 4	86 <u>+</u> 9	<0.0001ª
Half life of 3,4-DMHA (h)	3.7 <u>+</u> 0.4 ^b	3.0 <u>+</u> 0.7	0.2 ^c
Excretion of 3,4-DMHA (%) ^d , 0-6 h	11 <u>+</u> 2	18 <u>+</u> 3	0.007°

- 526 Adapted from Jarnberg et al., 1997b (9 male volunteers, 2 h exposure).
- 527 Abbreviations: AUC = area under the curve; CI = confidence intervals; DMHA =
- 528 dimethylhippuric acid, metabolite of 1,2,4-TMB; h= hour.
- 529 ^a Student's paired t-test
- ^b recalculated from 9 subjects from a 120 mg/m³ exposure to 1,2,4-TMB
- 531 ° Analysis of Variance
- 532 ^d % of net respiratory uptake

533 Jones et al. (2006) conducted chamber and occupational exposure TMB biological 534 monitoring studies. For the chamber study, two male and two female volunteers were

535 exposed to 25 ppm (123 mg/m³) 1,3,5-TMB in an inhalation chamber for 4 hours. Urine,

536 blood, and expired air samples were collected before, during, and after exposure.

537 Blood and exhaled air samples showed 1,3,5-TMB was readily absorbed, reaching a

538 mean level in the bloodstream of 0.85 µmol/L (0.85 ppb). Steady state was reached

- 539 within one hour of exposure onset. In urine, the TMB metabolites dimethylbenzoic acids
- 540 were used as biomarkers. The peak urinary dimethylbenzoic acid level for a 4 hour
- exposure to 25 ppm 1,3,5-TMB was 42 mmol/mol Cr (range 30-58 mmol/mol Cr).
 Exhaled air 1,3,5-TMB levels peaked within an hour of exposure and averaged 137
- 542 Exhaled air 1,3,5-TMB levels peaked within an hour of exposure and averaged 137 543 nmol/L (0.137 ppb, 0.674 μ g/m³) during the exposure. The majority of the absorbed
- 544 dose was excreted in the first 50 hours post-exposure; however, levels of the urinary
- 545 metabolite 3,5-dimethylbenzoic acid were still detected after 160 hours post-exposure.

546 For the occupational exposure component of the study (Jones et al., 2006), 12 workers

547 (gender not specified) at a screen-printing company underwent biological and

548 environmental monitoring. Urine, blood, and expired air samples were collected before,

- 549 during, and after exposure. Air monitoring showed that all three isomers of TMB were
- 550 present, with 1,2,4-TMB predominating (70% of the TMB detected; percentages of the

other TMB isomers were not reported. Total TMB levels ranged from none to 25.3 ppm

552 (124 mg/m³) (8-hour TWA); two air sampling results marginally exceeded the

553 occupational exposure standard of 25 ppm. All of the workers showed some detectable

554 dimethylbenzoic acid levels in their pre-shift samples (sample type not specified by

authors). Urinary dimethylbenzoic acid levels correlated very well with airborne TMB

556 personal air samples. According to the authors, the regression equation from this study

557 indicated that an 8-hour exposure to 25 ppm TMB would result in a urinary

558 dimethylbenzoic acid level of 206 mmol/mol Cr.

559 In summary, TMBs are readily absorbed in humans via inhalation (*i.e.,* high respiratory 560 uptake); some significant differences in respiratory uptake have been reported between

the different TMB isomers (Jarnberg et al., 1996). Based on their high blood/air and

562 oil/air PCs, accumulation in adipose tissue is expected (the 1,3,5-TMB isomer has the

- 563 highest oil/blood PC). Toxicokinetic findings (*i.e.*, elimination rate in blood and
- 564 concentration of dimethylbenzoic acids in urine) indicate that TMBs accumulate in the
- 565 body (Kostrewski et al., 1997). TMBs are metabolized primarily to dimethylbenzoic and
- 566 hippuric acids. In the Kostrewski and Wiaderna-Brycht 1995 study, 73% of the absorbed
- 567 1,3,5-TMB dose was metabolized to 3,5-DMHA or 3,5-dimethylbenzoic acid. In at least
- one study, 3,5-DMHA had the longest half-life of the six DMHA metabolites, 16 hours
- 569 (Jarnberg et al., 1997a). Respiratory excretion appears to represent an important
- 570 contribution to total clearance, especially for the 1,2,3-TMB isomer. Respiratory
- 571 excretion accounts for 20-37% of the absorbed amount, depending on the specific

- 572 isomer (Jarnberg et al., 1996). The 1,3,5-TMB isomer appears to have a significantly
- 573 higher total blood clearance and a higher metabolic clearance than 1,2,3- and 1,2,4-574 TMB.

575 **4.2 Toxicokinetic Studies in Animals**

576 4.2.1 Inhalation

577 In adult female Sprague-Dawley rats (n = 5/group) exposed to air concentrations of 120, 578 180, 400 or 720 ppm (590, 885, 1966 or 3539 mg/m³) 1,3,5-TMB for 2 hours in a 579 dynamic glass chamber (air flow 1.25 L/minute), the corresponding blood 580 concentrations (mean ± standard error of the mean [SEM] from 5 rats/group) were 15.7 581 + 2.2, 19.6 + 3.2, 75.8 + 2.1, and 143.5 + 4.3 µmol/L, respectively (Freundt et al., 1989); 582 there was no control group. Exposure concentrations during the inhalation period were 583 monitored repeatedly. Blood was collected from the retro-orbital plexus immediately 584 after cessation of exposure. Co-administration of varying amounts of ethyl acetate (an 585 ester commonly found in paints, coatings and printing inks along with TMBs) lowered 586 the blood level of inhaled 1,3,5-TMB at all exposure levels in a dose-dependent manner.

- 587 However, the reduction was not statistically significant at any exposure level. The
- 588 authors' conclusion was that interactions between aromatic HCs and esters can be
- 589 expected because of a common pathway of biotransformation.

590 TMBs have been shown to cross the blood:brain barrier following inhalation exposure.

- 591 Zahlsen et al. (1990) exposed male Sprague-Dawley rats (number unspecified,
- 592 maximum number = 24) to 1000 ppm (4916 mg/mg³) 1,2,4-TMB 12 hours/day for 14
- 593 consecutive days in a dynamic inhalation chamber. The absorption, distribution, and 594 accumulation of 1,2,4-TMB were assessed by measuring the concentration of 1,2,4-
- accumulation of 1,2,4-TMB were assessed by measuring the concentration of 1,2,4 TMB in blood, brain, and perirenal fat immediately after the 12 hour exposure on days 1,
- 596 3, 7, 10 and 14 of the exposure period. The concentration of 1,2,4-TMB in the inhalation
- 597 chambers was monitored by on-line gas chromatography, measured in 15 minute
- 598 intervals. The concentration of 1,2,4-TMB in biological material was determined using 599 head space gas chromatography. The highest concentration of 1,2,4-TMB in blood and
- head space gas chromatography. The highest concentration of 1,2,4-TMB in blood and
 other tissues was found after the first day of exposure. Those concentrations in blood,
- brain and perirenal fat were $537 \pm 100 \,\mu$ mol/L, $998 + 250 \,\mu$ mol/kg, and 49,190 + 12,840
- 602 μmol/kg 1,2,4-TMB, respectively. For all tissues/organs, the 1,2,4-TMB concentration
- 603 measured on day 1 was significantly higher (p < 0.05) than those measured from days 3-
- 604 14. The fat/brain distribution ratio for 1,2,4-TMB was 31.5 calculated at steady state.
- 605 The authors suggest that the pattern of decreasing biological concentrations with time is 606 likely a result of metabolic enzyme induction.

Lam et al. (1992) measured brain concentrations of all three TMB isomers in rats
following a three-week inhalation exposure to white spirit. Male Wistar rats, 3 months of

age, were exposed in inhalation chambers to 0, 400, or 800 ppm white spirit vapor 6

610 hr/day, 5 days/week, for 3 weeks. The concentration of the TMB isomers in the solvent

611 was not reported. The mean whole rat brain concentration of the 1,3,5-TMB isomer (n =

612 5) was 0.10 <u>+</u> 0.09 and 0.08 <u>+</u> 0.08 mg/kg wet weight for 400 and 800 ppm white spirit,

613 respectively. The 1,2,4-TMB and 1,2,3-TMB isomers were not detected at the 400 ppm

- 614 exposure concentration. At 800 ppm white spirit (n = 5), the 1,2,4-TMB and 1,2,3-TMB
- 615 mean whole brain concentrations were 0.40 ± 0.03 and 0.07 ± 0.10 mg/kg wet weight,
- 616 respectively.
- 617 In male rats (4/group) exposed to concentrations of 25, 100 or 250 ppm (0, 123, 492,

618 1230 mg/m³) 1,2,4-TMB for 6 hours for 4 weeks (6 hours/day, 5 d/week) in a dynamic

619 inhalation chamber, lung and brain concentrations were similar after single and

620 repeated exposures of similar magnitude (Swiercz et al., 2003). 1,2,4-TMB

621 concentration levels were lower in liver at the 100 and 250 ppm exposure levels after

- 622 repeated exposure than after a single exposure. Concentration levels were measured
- by head space gas chromatography. Much lower concentrations of 1,2,4-TMB were
- 624 found in arterial blood than venous blood; the venous blood/arterial blood distribution
- 625 after repeated exposure at 25, 100, and 250 ppm 1,2,4,-TMB was 1.7, 2.6 and 1.8,
- 626 respectively (this may be an artifact and due to "possible mixing of arterial blood with
- 627 other body fluids during decapitation of the rat"). Amongst the brain structures evaluated
- 628 in exposed animals (*e.g.*, brainstem, temporal cortex, hippocampus, cerebellum), a

629 significantly higher concentration (p < 0.05) of 1,2,4-TMB was found in brainstem. The 630 authors stated that "The higher concentrations of pseudocumene [1,2,4-TMB] in

631 brainstem can be associated with higher fat affinity of this structure as compared to the

632 other structures under study."

633 Swiercz et al. (2016) exposed male Wistar rats (5/group) in a dynamic inhalation

634 chamber to 25, 100, or 250 ppm (123, 492, 1229 mg/m³)1,2,3-TMB vapors for either a

single 6-hour exposure, or for 6 h/day, 5 days/week for 4 weeks duration. The highest
 1,2,3-TMB levels were found in kidneys, following either single or repeated exposures.

636 1,2,3-TMB levels were found in kidneys, following either single or repeated exposures.
 637 Following repeated exposure to the lowest concentration of 25 ppm, significantly higher

- 638 levels of 1,2,3-TMB were found in kidneys and lung tissues compared to those after
- 639 single inhalation exposure (p < 0.01 for lung and p < 0.001 for kidneys). Significantly
- lower concentrations of 1,2,3-TMB were detected in blood (at 25 and 250 ppm, p < 0.01
- and p < 0.001, respectively) and liver tissue (at 100 and 250 ppm, p < 0.05 and p < 0.01,
- 642 respectively) after repeated inhalation exposures, compared to the single, 6-hour
- 643 exposure. The major metabolites formed were the two dimethylbenzoic acids, 2,3,-
- 644 dimethylbenzoic acid and 2,6-dimethylbenzoic acid. The authors concluded that the
- 645 significantly higher urinary excretion of the 2,3-dimethylbenzoic acid metabolite after
- 646 repeated exposure was indicative of enzymatic induction by 1,2,3-TMB. In this study,

647 liver induction appears to have occurred in rats somewhere between 25 and 100 ppm648 1,2,3-TMB.

649 Other authors have similarly reported that at high exposure levels (1,2,4-TMB levels of 650 25-1000 ppm) the alkyl benzenes induce their own metabolism, increasing elimination 651 rates. McKee et al. (2010) conducted a number of neurobehavioral tests in rats 652 following acute exposure to 1,2,4-TMB. Male Wistar rats (8/group) were exposed via 653 whole body inhalation for periods "up to 8 hours/day" on 3 consecutive days to 1,2,4-654 TMB. Animals were observed for up to 1 day post exposure. Target TMB exposure 655 concentrations were 125, 1250 and 5000 mg/m³ (25, 250, 1000 ppm) 1,2,4-TMB. The 656 mean analytically determined concentrations were 128, 1255, and 4980 mg/m³ 1,2,4-657 TMB. 1,2,4-TMB was rapidly taken up into the blood and brain. At 2, 4, and 8 hours 658 exposure, and including after 3 consecutive days of 8-hour exposure, brain 659 concentrations were 2-3 times the corresponding blood concentrations at all exposure 660 levels. After 3 consecutive days of exposure, concentrations of 1,2,4-TMB in the blood 661 and brain of rats from the high exposure group (5000 mg/m³) were approximately half 662 the concentrations seen in animals after a single 8-hour exposure; the blood levels for the single 8-hour exposure and the 3 consecutive day's exposure were 65,000 ± 3786 663 664 and 36,167 ± 1590 ng/mL, respectively, and brain 1,2,4-TMB levels were 160,000 665 versus $93,333 \pm 2048$ ng/g for the single and consecutive day exposures, respectively. 666 The authors stated this implied that TMB induced its own metabolism at the highest

- 667 exposure concentration
- 668 4.2.2 Oral

Following oral administration of TMBs, some marked differences in kinetics have been
noted between isomers. When isomeric TMBs were administered individually to male
Wistar rats (9/group) at a dose of 1.2 g/kg, approximately 59, 37, and 33% of the dose

- of 1,3,5-TMB, 1,2,4-TMB, and 1,2,3-TMB, respectively, were excreted in urine within 48
- 673 hours (Mikulski and Wiglusz, 1975). Approximately 78% of the 1,3,5-TMB was excreted
- as 3,5-DMHA; an additional 7.6 and 8.2% were excreted as glucuronic and sulphate
- 675 conjugates. The investigators were not able to isolate any metabolites from urine
- 676 following administration of 1,2,4-TMB or 1,2,3-TMB (the 48 hour time period was
- 677 inadequate to assess total urinary excretion). Using kinetic data developed for the
- 678 various TMB isomers (i.e. excretion half-life, the velocity constant, maximal excretion
- time), the authors calculated that approximately 57% of the dose of 1,2,3-TMB is
- 680 excreted within 8-15 days.
- 681 The authors of this study reported that the primary urinary metabolite of 1,2,4-TMB was
- 682 3,4-dimethylbenzoic acid. The corresponding urinary excretion of the glycine,
- 683 glucuronic, and sulphate conjugates for the 1,2,4-TMB isomer were 43.2, 6.6, and

684 12.9%, respectively, and 17.3, 19.4, and 19.9% for the 1,2,3-TMB isomer, respectively. 685 The kinetic data for the excretion of conjugates were found to be similar for the 1,3,5-686 TMB and 1.2.4-TMB isomers whereas the half-life of excretion for the glycine and 687 glucuronic acid conjugates of 1,2,3-TMB was four times greater. The half-life values for 688 the sulphate conjugates were similar for all three compounds. The authors suggested 689 that the qualitative and quantitative differences in the metabolism of TMBs may be due 690 to differences in the rate of aromatic hydroxylation, oxidation of the methyl substituent, 691 or conjugation.

- 692 The effects of 1,3,5-TMB exposure on liver, kidney and lung microsomal enzyme activity 693 was investigated in rats (Pyykko, 1980). Male Sprague-Dawley rats (n = 8-10/group)
- 694 were given 1,3,5-TMB in corn oil by gastric tube once per day for 3 successive days at a
- 695 dose of 10 mmol/kg-day (1200 mg/kg-day). The control rats were given only the corn oil 696 vehicle (n = 6-10/group). All rats survived through the treatment period. All animals lost
- 697 weight (according to the authors, this was likely due to fasting periods during the
- 698 experiments). Weight loss in the 1,3,5-TMB-treated group differed significantly (p < 0.05)
- from controls (27.0 \pm 1.9 g vs. 6.4 \pm 1.5 g). 1,3,5-TMB significantly increased mean
- absolute liver weight (9.28 \pm 0.25 g vs. 7.54 \pm 0.28 g in controls). Lung and kidney
- absolute weights of the 1,3,5-TMB-treated group were decreased, but not significantly,
- from control animals. The effect of 1,3,5-TMB treatment on microsomal enzymes is
- summarized in Table 9, below. Values are mean <u>+</u> standard error (SE) for 8-10 animals
 for the 1.3.5-TMB-exposed group, 1.3.5-TMB-treatment significantly increased
- for the 1,3,5-TMB-exposed group. 1,3,5-TMB-treatment significantly increased
 cytochrome P-450 in liver and kidney and NADPH-cytochrome *c* reductase in liver.
- 706 (Cytochrome content in lungs was not determined). 1,3,5-TMB-treatment affected most
- 707 of the cytochrome P-450 dependent monooxygenase enzymes. Significant increases
- 708 were seen in liver and lung for aminopyrine demethylase and aryl hydrocarbon
- 709 hydroxylase, and in liver and kidney for aniline hydroxylase. Aniline hydroxylase
- activities in kidney showed the most significant effect, a greater than 3-fold increase
- compared to control kidneys. In contrast, 1,3,5-TMB treatment significantly decreased
- aniline hydroxylase activity in the lungs.

- 713 Table 9. Effects of 10 mmol/kg-day 1,3,5-Trimethylbenzene by oral gavage for
- three days on microsomal enzyme induction in rat liver, kidney and lung (from
- 715 **Pyykko, 1980)**

	Cytochrome (CYT) content (percentage of control)			Enzyme activity (percentage of control)		
Organ	CYT P-450	CYT b ₅	NADPH- CYT-C reductas e ¹	APD	AHH ²	ANH
Liver	123 <u>+</u> 4***	160 <u>+</u> 4***	161 <u>+</u> 9**	165 <u>+</u> 7***	154 <u>+</u> 7***	125 <u>+</u> 8*
Kidneys	132 <u>+</u> 9**	127 <u>+</u> 7*	90 <u>+</u> 9	93 <u>+</u> 15	74 <u>+</u> 11	199 <u>+</u> 29**
Lungs	Not determined		102 <u>+</u> 1	152 <u>+</u> 17*	183 <u>+</u> 13**	48 <u>+</u> 3**

716 ⁺Values in the table represent the mean <u>+</u> SEM for 8-10 animals, expressed as percentages of

717 the values of individual control groups in *each* treatment (6-10 animals).

718 *p<0.05; ** p<0.01; *** p<0.001 indicates values are significantly different from controls.

719 Means <u>+</u> SEM of all the controls (14-29 animals) are as follows: cytochrome *P*-450 in liver,

720 0.616 + 0.022, and in kidneys, 0.096 \pm 0.007 nmol/mg microsomal protein; cytochrome b_5 ,

721 0.247 <u>+</u> 0.012 in liver and 0.078 <u>+</u> 0.003 nmol/mg microsomal protein in kidneys. Control values

of enzyme activities in liver, kidneys, and lungs are: NADPH-cytochrome c reductase 187 \pm 13,

723 82 \pm 8, and 68 \pm 5 nmol of cytochrome *c* reduced/minute/mg protein, respectively; APD 9.6 \pm

1.2, 0.65 ± 0.04 , and 0.64 ± 0.06 nmol of formaldehyde formed/min/mg protein, respectively;

AHH 357 ± 55 , 20 ± 5 , 16 ± 3 fluorescent units/min/mg protein, respectively; and ANH 0.627 ± 200

726 0.036, 0.022 <u>+</u> 0.005, and 0.012 <u>+</u> 0.001 nmol *p*-aminophenol formed/min/mg protein,
 727 respectively.

Abbreviations: AHH = aryl hydrocarbon hydrolase (CYP1A1); ANH = aniline hydroxylase; APD =

aminopyrine demethylase; CYT = cytochrome; NADPH = Nicotinamide adenine dinucleotide

- 730 phosphate.
- 731 ¹ nmol/min-mg protein
- 732 ² fluorescent units/min-mg protein

733 **5. Acute Toxicity of Trimethylbenzene**

734 **5.1 Acute Toxicity to Adult Humans**

735 Table 10 lists the controlled acute human experimental exposure studies that entail

inhalation exposure to one or more of the TMB isomers. A number of these studies

737 were described previously in the section on toxicokinetics and are, additionally, included

here for information on potential toxic effects.

Study	TMB Isomer(s)	Gender (#)	Exposure	Toxic Effects
Jarnberg et al., 1996	1,2,4-TMB, 1,3,5-TMB, 1,2,3-TMB	Male (10)	2 hours to 2 or 25 ppm (10 or 123 mg/m ³) 1,2,4-TMB, or 25 ppm (123 mg/m ³) 1,3,5-TMB or 1,2,3-TMB	None reported
Jarnberg and Johanson, 1997a	1,2,4-TMB, 1,3,5-TMB, 1,2,3-TMB	M (10)	Four 2-hr exposures to 25 ppm (123 mg/m ³) PM, 1,2,3-TMB, or 1,3,5-TMB	None reported
Jarnberg and Johanson,19 97b	1,2,4-TMB	Male (9)	2 hour exposure to 2 ppm (10 mg/m³)	None reported
Jarnberg et al., 1998	1,2,4-TMB	Male (9)	2 hour exposure to 2 ppm (10 mg/m ³); concomitant exposure to white spirit	None reported
Jones et al., 2006	1,3,5-TMB	M (2) F (2)	4 hour exposure to 25 ppm (123 mg/m ³)	"Little to no" sensory irritation of the eyes, nose, throat

739 Table 10. Acute Human Trimethylbenzene Inhalation Chamber Studies

Abbreviations: F = female; M = male; # = number of subjects; ppm = parts per million;
TMB = trimethylbenzene.

In a series of inhalation studies using human volunteers exposed to approximately 25
ppm (123 mg/m³) of 1,3,5-TMB, 1,2,3-TMB, or 1,2,4-TMB for 2 hours, no evidence of
respiratory irritation, CNS toxicity or other toxic effects were reported (Jarnberg et al.,
1996; Jarnberg and Johanson, 1997a and 1997b; Jarnberg et al., 1998). These studies
are described in greater detail, below.

747 In two short-term inhalation exposure studies (Jarnberg et al., 1996; Jarnberg et al.,

1997a) ten healthy male volunteers were exposed in an inhalation chamber for 2 hours

duration on four occasions while doing light physical work to 25 ppm (123 mg/m³) 1,2,4-

750 TMB, 1,3,5-TMB, or 1,2,3-TMB or 2 ppm 1,2,4-TMB. There was a time interval of at 751 least 2 weeks between successive exposures. The relative respiratory uptake rate was in the range of 56-64%. The occurrence of acute effects was studied by means of a 752 753 questionnaire. Subjects rated the degree of irritation and CNS effects using a visual 754 analog scale. Symptoms were graded from "no effect at all" to "unbearable". Subjective 755 ratings were analyzed in terms of time vs. exposure condition, and well as interaction 756 (time x substance and time x exposure level). According to the authors, no acute 757 symptoms were reported in either study; subjects reported "no effect" or "hardly any 758 effect or discomfort". Statistically significant differences in smell, however, were seen at 759 all exposure conditions in the Jarnberg et al. (1996) study (p values were not provided). 760 Ratings of smell were also statistically significantly higher at the 25 ppm (123 mg/m^3) 761 1,2,4-TMB exposure than the 2 ppm (10 mg/m³) exposure (p values were not provided 762 by the study authors).

763 In a related study, Jarnberg and Johanson (1997b) exposed healthy male volunteers (n 764 = 9, average age 36) in an inhalation chamber for 2 hours to 11 mg/m³ (2 ppm) 1,2,4-765 TMB while doing light physical work. The subjects did not have occupational exposure 766 to solvents. Exhaled air, urine, and blood samples were collected at exposure onset, 767 during, and after exposure termination. Subjects were asked to rate symptoms of irritation and CNS-related effects before, during and after exposure: irritation of eyes, 768 769 nose, throat; headache, fatigue, nausea, dizziness, intoxication, difficulty breathing, and 770 solvent odor. Symptoms were graded from "no effect at all" to "unbearable" (visual 771 analog scale). Only toxicity results are described here. The authors stated that, "No 772 significant irritation or central nervous system effects were detected at these exposure 773 conditions. All mean values of rating (except those of smell) corresponded verbally to 774 something from 'no effect' to 'hardly any effect or discomfort'". In a follow-up study 775 which also used healthy male volunteers (n=9), exposure to white spirit (3.8% w/w 776 1,2,4-TMB, corresponding to 11.3 mg/m³ or 2 ppm) under the same exposure conditions 777 did not result in any toxic effects (Jarnberg et al., 1998).

778 Jones et al. (2006) conducted a chamber and occupational TMB toxicokinetic study 779 using human volunteers for the chamber study, and printing workers for the 780 occupational study. For the chamber study, the volunteers (two males and two females) 781 were exposed in a laboratory controlled atmosphere to 25 ppm (123 mg/m³) 1,3,5-TMB 782 for 4 hours. Urine, blood, and expired air samples were collected before, during, and 783 after exposure. Before and during exposure, volunteers completed a detailed 784 questionnaire for recording subjective experiences of eye, nose, or throat irritation. 785 Only the sensory irritation findings are reported here. According to the study authors, 786 "Almost no sensory irritation [of the eyes, nose and throat] was reported by the 787 volunteers". No further details regarding the sensory irritation effects were provided.

788 Solvent odor was apparent.

- 789 For the occupational hygiene portion of the study (study details described in Section
- 4.1), there was no indication from the study description that the workers were surveyed
- 791 for health effects.

792 **5.2 Acute Toxicity to Infants and Children**

Exposure of children to TMBs is a concern due to anatomical and other developmental

differences that make them more susceptible to inhaled toxicants (*e.g.*, higher rate of

respiration than adults) (OEHHA, 2008). There are no acute TMB toxicity studies

796 pertaining specifically to infants and/or children.

797 **5.3 Acute Toxicity to Experimental Animals**

Most of the acute TMB studies in animals are inhalation studies. There are, in addition,

- a few oral studies. Acute exposure to TMB causes primarily respiratory and neurotoxic
- 800 effects. Table 11 provides a summary of the acute inhalation toxicity studies in animals;
- 801 the inhalation exposure studies largely investigated neurobehavioral endpoints.

There are some notable differences in toxicity amongst the three TMB isomers. In many instances only one, or sometimes two of the three isomers, were evaluated in a toxicity study. Therefore it is not known what effect(s) the other isomers may have had under the conditions of a particular study. There are some differences in metabolism between the isomers, and this can result in differences in toxicity.

807 Koch Industries Inc., (1995) exposed male and female Sprague-Dawley rats (n =808 10/group/sex) via gavage to 60, 150, or 600 mg/kg-day 1,3,5-TMB (20, 50 and 200 809 ppm), consecutively, for 14 days. There were 10 vehicle controls/sex. Data were 810 analyzed by Analysis of Variance (ANOVA), followed by Dunnett's multiple-range 811 comparison using Systat software (Systat, Inc., Evantston, IL, version 5). A significant 812 increase in relative liver weights was seen in mid- and high-dose female rats (p < 0.05) 813 compared to vehicle controls. In addition, increased cholesterol levels were seen in mid-814 and high-dose females. Mean monocyte counts were significantly increased in mid-dose 815 females. In male rats, there were a number of significant effects on clinical chemistry 816 parameters at the lowest exposure dose. Statistically significantly affected parameters 817 in treated animals compared to vehicle controls included: creatine kinase (CK). 818 increased in 60 mg/kg-day males; urea nitrogen (BUN), decreased in 60 and 150 819 mg/kg-day males; albumin (ALB), decreased in 60 mg/kg-day males. According to the 820 authors, all changes in clinical chemistry parameters, except for cholesterol, were not 821 considered treatment related (largely because they were not seen in high-dose males In 822 high-dose males, treatment-related effects included increased white blood cell counts, 823 with corresponding increases in neutrophils and lymphocytes, statistically significant 824 increases in relative and absolute liver weights, and relative adrenal weights (p < 0.05).

- 825 Centrilobular hepatocyte hypertrophy was observed in 10/10 males and 3/10 females in 826 the 600 mg/kg-day group at termination of treatment.
- 827 5.3.1 Mortality Studies

Acute 4-hour inhalation LC_{50} values of 18,000 mg/m³ (3,662 ppm) and 24,000 mg/m³

829 (4,882 ppm) have been reported in rats for the 1,2,4-TMB and 1,3,5-TMB isomers,

830 respectively (Firth, 2008). Differences in median oral lethal dose (LD₅₀) toxicity between

- the TMB isomers have been observed: 1,2,3-TMB appears to be the most acutely toxic,
- and 1,2,4-TMB the least (*i.e.*, 1,2,3-TMB>1,3,5-TMB>1,2,4-TMB) (Janik-Spiechowicz et
- al., 1998). Male/female mice (4 mice/dose group) were injected (single intraperitoneal
- injection) with 5 different doses of each TMB isomer. The LD₅₀ values were found to be
- 835 3670 mg/kg (male) and 2700 mg/kg (female) for 1,2,3-TMB; 4500 mg/kg (male) and
- 836 3700 mg/kg (female) for 1,3,5-TMB; and 5000 mg/kg (male) and 4100 mg/kg (female)
- for 1,2,4-TMB. Age, weight, and breed of the mice were not provided but, across all
- 838 three TMB isomers, females appeared more sensitive than males in this lethality assay.

Table 11. Acute and Subacute Trimethylbenzene Inhalation Toxicity Studies in Animals

Study	Sex/Species	TMB Isomer(s)	Exposure	Results
Wiglusz et al., 1975a	M/ Wistar Rats	1,3,5-TMB	6 hour inhalation, 0.3, 1.5, 3.0 mg/L (300, 1,500, 3,000 mg/m ³ ; 61, 305, 610 ppm)	Significant ↑ in serum alkaline phosphatase levels at 3.0 mg/L (3,000 mg/m ³)
Wiglusz et al., 1975b	M/ Wistar Rats	1,3,5-TMB	6 hour inhalation, 0, 1.5, 3.0 or 6.0 mg/L (0, 1500, 3000, and 6000 mg/m ³)	Significant ↑ in PSNG with corresponding ↓ in LP at highest concentration, 6.0 mg/L (6,000 mg/m ³)
Frantik et al., 1974	M/ Albino SPF Rats and F/ H strain mice	1,2,4- TMB, 1,3,5- TMB, 1,2,3-TMB	Inhalation; varying concentrations for either 2 (mice) or 4 (rats) hours	Neurotoxicity: for rats, doses evoking a 37% seizure discharge depression were 440, 489, and 636 ppm (2163, 2404, and 3126 mg/m ³) for 1,3,5-TMB, 1,2,3- TMB, and 1,2,4-TMB, respectively; in mice, doses evoking a 30% seizure discharge depression were 611, 416, 391 ppm (3000, 2045, 1922 mg/m ³) for 1,3,5-TMB, 1,2,3- TMB, and 1,2,4-TMB, respectively

841 Abbreviations: F = female; LP = lymphocytes percentage; M = male; mmol = millimole;

842 ppm = parts per million; PSNG = percentage of segmented neutrophilic granulocytes;

843 TMB = trimethylbenzene; \uparrow = increase; \downarrow = decrease.

Table 11. Acute and Subacute Trimethylbenzene Inhalation Toxicity Studies in
 Animals (continued)

Study	Sex/Species	TMB Isomer(s)	Exposure	Results
Korsak et al., 1995	M/ Balb/C Mice,Wistar Rats	1,2,4-TMB	Rats: 4-hours inhalation, 250-2000 ppm (1230-9840 mg/m ³) ^a ; Mice:12 minutes to same range of concentrations	Neurotoxicity in rats (rotarod performance, pain sensitivity)/Respirator y Irritation in mice (↓ respiratory rate)
Korsak and Rydzynski, 1996	M/ Wistar Rats	1,2,4- TMB, 1,3,5- TMB, 1,2,3-TMB	4-hour inhalation, 250-2000 ppm (1230-9840 mg/m ³)ª	Neurotoxicity (rotarod performance, pain sensitivity)
Korsak et al., 1997	M/ Balb/C Mice	1,2,4- TMB, 1,3,5- TMB, 1,2,3-TMB	6-minute inhalation to varying air concentrations	Respiratory Irritation (↓respiratory rate)
McKee et al., 2010	M/ Wistar Rats	1,2,4-TMB	up to 8-hour inhalation, 0, 125, 1250 or 5000 mg/m ³ (25, 250, or 1000 ppm) on 3 consecutive days (tested after each daily exposure)	Neurotoxicity (↓ forelimb grip strength at 125 mg/m ³ , visual discrimination latencies at ≥ 5000 mg/m ³ after 1 st exposure; ↓ motor activity at 5000 mg/m ³ after 3 rd exposure)

846 Abbreviations: F = female; LP = lymphocytes percentage; M = male; mmol = millimole;

847 ppm = parts per million; PSNG = percentage of segmented neutrophilic granulocytes;

848 TMB = trimethylbenzene; \downarrow = statistically significant decrease relative to controls.

849 ^a Individual concentrations not specified.

TSD for Noncancer RELs

850 5.3.2 Inhalation Studies in Animals

851 Wiglusz et al. (1975a) examined the effect of TMB toxicity on blood serum enzymes 852 (elevated liver enzymes are indicative of inflammation or damage to liver cells). Male 853 Wistar rats (n = 6/group) were exposed via inhalation to a concentration of 0.3, 1.5, 3.0 854 mg/L (300, 1,500, 3,000 mg/m³; 61, 305, 610 ppm) 1,3,5-TMB for a single 6-hour 855 exposure. There were 6 controls. Blood samples were collected from the caudal vein 3 856 days prior to exposure and at 2, 7,14 and 28 days post-exposure. A significant increase 857 in serum alkaline phosphatase (AP) levels (p < 0.05) was seen at the highest 858 concentration of 3.0 mg/L (3.000 mg/m³). The value, 58.7 mg/l, was 57% higher than 859 the baseline value of 37.3 mg/l at 7 days post-exposure (the authors noted that the 860 study does not rule out the possibility of the appearance of the maximum value between 861 the 2nd and 7th day post-exposure window). After 14 days, AP enzyme activity was only 862 slightly higher than initial values. No significant changes in aspartate amino transferase 863 (GOT) or alanine amino transferase (GPT) enzyme activity at 2, 7, 14, and 28 days 864 post-exposure was found. No glutamate dehydrogenase (GLDH) activity was detected 865 in blood serum.

866 In a related study, Wiglusz et al. (1975b) evaluated the hematological/immunological 867 effects of 1,3,5-TMB on the peripheral blood of rats. Only the acute portion of the study 868 is described here. Male Wistar rats were exposed (n = 5-8/concentration) to 1.5, 3.0 or 869 6.0 mg/L (1500, 3000, and 6000 mg/m³, respectively) of 1,3,5-TMB in an inhalation 870 chamber for 6 hours. Blood samples were collected from control and exposed animals 3 871 days prior to the start of the experiments, and then on days 1, 7, 14 and 28 after 872 completion of the exposure. No changes in erythrocyte or leukocyte counts were seen 873 in any 1,3,5-TMB-exposed groups. Exposed rats showed increases in the percentage of 874 segmented neutrophilic granulocytes (PSNG) in relation to dose (*i.e.*, neutrophilia). A 875 significant increase (p < 0.02) in PSNG, with a corresponding decrease in lymphocytes 876 percentage (LP), was seen in rats exposed to the highest 1,3,5-TMB concentration, 6.0 877 mg/L (6,000 mg/m³). These changes usually appeared on the first day of exposure and 878 remained for the period of 7-14 days. Neutrophils are an essential part of the immune 879 system and one of the first responders of inflammatory cells to migrate to the site of 880 infection (as a result of bacterial or environmental exposure). They express and release 881 cytokines, which in turn amplify inflammatory reactions by several other cell types. 882 There are significant differences between neonatal and adult neutrophils (Lawrence et 883 al., 2018).

All three TMB isomers were evaluated to determine their ability to induce seizure
discharge depression in an acute neurotoxicity inhalation study by Frantik et al. (1994).
In rodents, inhibition of the generation, propagation, and maintenance of the seizure

887 discharge is considered to be a sensitive measure of neurotoxicity. Male albino SPF

rats, 6 months to 1 year of age (n = 4/group) and female H strain mice, 2-4 months of age (n = 16/group) were exposed in inhalation chambers to varying air concentrations of the TMB isomers for either 2 (mice) or 4 (rats) hours. The authors did not specifically report the exposure concentrations used for each TMB. Ranges of effective air concentrations were estimated in preliminary experiments; three concentrations were selected in the linear part of the effective-concentration curve (ECC, btw 25-75% of the

894 maximum effect).

895 Each TMB isomer was tested in at least 2 independent experiments on two samples of 896 animals (*i.e.*, most animals went through several exposures to various solvent 897 concentrations; the intervals between exposures were a minimum of 3 weeks). All 898 animals were given three control tests at weekly intervals before the first exposure. 899 Following removal from the inhalation chamber, a short electrical impulse (0.2 seconds. 900 50 Hz, 180 V in rats and 90 V in mice) was applied through ear electrodes to elicit a 901 seizure. The duration of tonic extension (shortening the duration of seizures) of 902 hindlimbs was investigated in rats exposed to each TMB isomer singly for 4 hours. The 903 velocity of tonic extension (slowing the propagation of a seizure) was determined in 904 female mice exposed for 2 hours. According to the authors, "the duration of tonic 905 extension of hindlimbs in the rats and the velocity of tonic extension in mice were the 906 most sensitive and reproducible response measures". Inhibition of propagation and 907 maintenance of the electrically-evoked seizure discharge was used as the criterion for 908 the acute neurotoxic effect. All data were analyzed using linear regression analysis. 909 Isoeffective air concentrations, corresponding to the critical level of effect (*i.e.*, the effect 910 in the lower third of the *linear* part of the dose-response function was chosen as the 911 critical level), were interpolated on all regression lines as 37% and 30% of the maximum 912 effect in rat and mice, respectively. The study authors considered this level of effect 913 (approximately one third of the maximum possible effect) physiologically significant. Per 914 the authors, high correlation between ECC values in rats and mice support a broader 915 biological significance of the estimates.

- For male rats, the air concentrations evoking a 37% seizure discharge depression were 440, 489, and 636 ppm (2163, 2404, and 3126 mg/m³) for 1,3,5-TMB, 1,2,3-TMB, and 1,2,4-TMB, respectively. In female mice, the air concentrations evoking a 30% seizure discharge depression were 611, 416, 391 ppm (3000, 2045, 1922 mg/m³) for 1,3,5-TMB, 1,2,3-TMB, and 1,2,4-TMB, respectively. According to the authors, the chemicallyinduced changes in seizure activity are "perhaps a better model of chemical effects on complex psychological functions than other behavioral endpoints".
- 923 Korsak et al. (1995) evaluated the toxic effects of acute inhalation exposure to 1,2,4-
- TMB in experimental animals (mice and rats). Male Wistar rats (*n*=10/group) were
- 925 exposed in a dynamic inhalation chamber for 4 hours to concentrations of 250 2000

926 ppm (1230 – 9840 mg/m³) 1,2,4-TMB. Individual concentrations were not specified.

- 927 Male Balb/C mice (n = 8-10/group) were exposed to "various concentrations of 1,2,4-
- 928 TMB" (ranging from 250 2000 ppm) for 6 minutes to determine the concentration
- 929 depressing the respiratory rate of exposed animals to 50% of the pre-exposure
- 930 respiratory rate (RD₅₀).

931 Mice were placed in a plethysmograph attached to a small dynamic inhalation chamber.

- The respiratory rate was recorded continuously before the exposure, during the 6
- 933 minute exposure, and for 6 minutes following termination of exposure. In rats, rotarod
- 934 performance and pain sensitivity behavior were tested before exposure and immediately 935 after termination of exposure. Probit analysis was used to determine the median
- 935 after termination of exposure. Probit analysis was used to determine the median 936 effective concentration (EC_{50}) in the rotarod performance test. The EC_{50} is the
- 937 concentration required to have a biological effect in 50% of the animals in a test. The
- 938 concentration depressing the respiratory rate in mice, and the latency of paw-lick
- 939 response (pain sensitivity behavior) to 50% over control (EC₅₀) were calculated from
- 940 least squares regression lines of concentration-effect relationship.
- 941 In rats, 1,2,4-TMB caused a concentration-dependent disturbance in rotarod
- 942 performance. Results were expressed as the probit of failures x concentration. The
- 943 rotarod performance behavior disturbance EC value with 95% confidence intervals (CI)
- 944 was 4693 mg/m³ (3891-5493 mg/m³). This is equivalent to 954 ppm 1,2,4-TMB (791-
- 945 1113 ppm). 1,2,4-TMB decreased sensitivity to pain (measured latency of the paw-lick
- response) in a concentration–dependent manner. Latency results were expressed as a
- 947 percentage, the mean value of separate measurements of latency over the control (n =
- 948 10). The EC value with its 95% CI was 5682 mg/m³ (2715-7596 mg/m³) 1,2,4-TMB. This
- 949 was equivalent to 1115 ppm (552-1544 ppm) 1,2,4-TMB. 1,2,4-TMB caused a
- 950 concentration-dependent decrease in respiratory rate in mice. The maximum decrease
 951 was observed in the first 1-2 minutes of exposure. After an exposure recovery period of
- was observed in the first 1-2 minutes of exposure. After an exposure recovery period of
 6 minutes duration, the respiratory rate in the mice recovered. The RD₅₀ with its 95% CI
- 952 6 minutes duration, the respiratory rate in the mice recovered. The RD₅₀ with its 95% CI
 953 was 578 ppm (311-793) 1,2,4-TMB. The authors stated that the RD rate in mice
- 954 correlates well with the extent of eye and respiratory irritation seen in humans.
- 955 In a subsequent study, Korsak et al. (1997) evaluated the acute respiratory toxicity in
- 956 mice of the other two TMB isomers, 1,2,3-TMB and 1,3,5-TMB. Adult male Balb/C mice
- 957 (8-10/group) were exposed for 4 hours in a dynamic inhalation chamber. The RD₅₀
- 958 concentrations were 519 and 541 ppm (2551 and 2659 mg/m³) for 1,3,5-TMB and 1,2,3-
- TMB, respectively. This can be compared to the RD_{50} of 578 ppm (2841 mg/m³) for
- 960 1,2,4-TMB reported in Korsak et al. (1995).
- Korsak and Rydzynski (1996) evaluated both acute and subchronic exposure to thethree TMB isomers in rats; only the acute findings are discussed here. In the acute

study, adult male Wistar rats (n = 10/group) were exposed to 250-2000 ppm (1230-9830 mg/m³) 1,3,5-TMB, 1,2,3-TMB, or 1,2,4-TMB for 4 hours in an inhalation chamber.

965 Neurotoxicity was evaluated via the rotarod performance test and the hot plate behavior

test (the latter measures a decrease in sensitivity to pain). All rats in all experiments

- 967 survived the exposures. Clinical observations were unremarkable. Exposure to TMB
- 968 isomers caused a concentration-dependent disturbance in rotarod performance and
 969 pain sensitivity, but because control animal data for the acute experiments were not
- 970 shown, it was not possible to determine if the changes were statistically significant. For
- 971 rotarod performance, EC₅₀ values were 4693 mg/m³ (954 ppm), 4738 mg/m³ (963 ppm)
- 972 and 3779 mg/m³ (768 ppm) for 1,2,4-TMB, 1,3,5-TMB, and 1,2,3-TMB, respectively.
- 973 EC $_{50}$ values for the hot-plate test were 5682 mg/m³ (1155 ppm), 5963 mg/m³ (1212
- 974 ppm), and 4172 mg/m³ (848 ppm) for 1,2,4-TMB, 1,3,5-TMB, and 1,2,3-TMB,
- 975 respectively. The neurotoxic effects of 1,3,5-TMB and 1,2,4-TMB were similar, and the
- 976 effect of 1,2,3-TMB was more pronounced; 1,2,3-TMB elicited the lowest EC₅₀ values in
- 977 both neurotoxicity tests.
- 978 In a related study (Korsak et al.,1997), 1,3,5-TMB and 1,2,4-TMB appeared to have
- 979 comparable airway irritation activity in mice. The exposure concentration producing a
- 980 50% reduction in respiratory rate (RD_{50}) was 519 and 578 ppm (2551 and 2841 mg/m³),
- respectively. The 1,2,3-TMB isomer was not evaluated in this study.

982 McKee et al. (2010) conducted a number of neurobehavioral tests in rats following acute 983 exposure to 1,2,4-TMB. Male Wistar rats (8/group) were exposed via whole body 984 inhalation for periods "up to 8 hours/day" on 3 consecutive days. Animals were observed for up to 1 day post exposure. Target TMB exposure concentrations were 985 986 125, 1250 and 5000 mg/m³ (25, 250, 1000 ppm) 1,2,4-TMB. The mean analytically 987 determined concentrations were 128, 1255, and 4980 mg/m³ 1,2,4-TMB. Probability 988 values of p < 0.05 were considered significant. Continuous variables from the functional 989 observational battery were analyzed using repeated measures of ANOVA. ANOVA was 990 performed at each test time point if a significant effect of treatment, or a significant 991 treatment-by-time interaction, was indicated. Group comparisons were made using 992 Dunnett's multiple comparison tests. No data were reported or shown for the second 993 dav's experimental exposure.

Prior to visual discrimination performance testing, rats were evaluated for 2-choice
visual discrimination performance. The testing apparatus consisted of a number of
operant chambers equipped with 2 levers, 2 stimulus lights, and a water dipper for
delivering water reinforcement, connected to recording and programming equipment.
Water-deprived rats were trained to obtain water reinforcements and to press a lever.
Rats subsequently received four weeks of training, 5 days/week, on a discrete-trial

- 1000 light/dark visual discrimination task to stabilize baseline response (*i.e.,* if the rat presses
- the illuminated lever under the stimulus light, it gets a water reward). A given trial
- 1002 remained in effect until the correct lever was pressed; trials were separated by an inter-
- 1003 trial interval of 10 seconds. Rats were tested on the day prior to the first exposure, and
- 1004 on each day of exposure immediately after the exposure period.
- 1005 Significant increases in drink response latency, latency > 6 seconds, trial response 1006 latency, and discrimination ratio were seen after a single 8-hr exposure in the 5000 1007 mg/m³ exposure group. Drink response latency was also statistically significant in the 1008 1250 mg/m³ exposure group compared to controls following the first 8-hour exposure. 1009 However, the 1250 mg/m³ exposure group rats also showed a statistically significant 1010 increase in drink response latency compared to controls when tested one day prior to 1011 exposure. Because of this observation, the authors considered the increase in drink 1012 response latency shown in the 1250 mg/m³ exposure group after the first 8-hour 1013 exposure to not be treatment-related. For all these effects, elucidated in Table 12, there 1014 was a relationship (*e.g.*, reduction in movement, latency) to exposure level. Significantly 1015 reduced latencies in neurobehavioral tests have been seen in several other studies 1016 following exposure to TMB (Gralewicz and Wiaderna, 2001; Gralewicz et al., 1997;
- 1017 Wiaderna et al., 2002).

1018 Also in this study, a significantly reduced mean grip strength was observed in the low 1019 exposure group (only) after the first 8-hr exposure period (p < 0.05). The authors state 1020 that this finding is not treatment related as there was no dose-response observed. A 1021 statistically significant increase (p < 0.05) in forelimb grip strength was seen following the 1022 third exposure in the high exposure group. The authors believed that it was implausible 1023 that TMB exposure would increase forelimb grip strength, and therefore, this response 1024 was spurious. Significant reductions in motor activity (e.g., total distance traveled, 1025 number of movements) were seen at the highest exposure concentration following the 1026 third exposure. The data show a clear trend in reduction of movements and distance 1027 traveled at each exposure concentration from the first through the third exposures. 1028 There were some treatment-related effects on the visual discrimination performance 1029 tests. These data are summarized in Table 12.

1030 Table 12. Treatment-Related Neurobehavioral Test Results in Rats Following 1031 Inhalation Exposure to 1,2,4-Trimethylbenzene (from McKee et al., 2010)

Visual	One Day Pre-	First 8–Hour	Third 8-Hour	One Day Post
Discrimination	Exposure	Exposure	Exposure	Exposure
Test				
(concentration in				
mg/m³)				
Discrimination Ration	D ¹			
Control	0.81 ± 0.84	0.86 ± 0.02	0.89 ± 0.02	0.87 ± 0.03
125	0.84 ± 0.03	0.91 ± 0.03	0.88 ± 0.03	0.89 ± 0.03
1250	0.83 ± 0.02	0.91 ± 0.01	0.94 ± 0.01	0.92 ± 0.02
5000	0.83 ± 0.03	0.95 ± 0.01	0.95 ± 0.02	0.88 ± 0.03
Repetitive Inter-Tria	l Responses ²			
Control	3.63 ± 1.02	6.13 ± 1.73	7.25 ± 1.24	6.63 ± 1.94
125	5.88 ± 1.33	3.88 ± 1.22	3.25 ± 0.88	2.88 ± 0.83
1250	7.25 ± 1.93	5.63 ± 1.97	2.25 ± 1.52	5.13 ± 1.54
5000	3.25 ± 1.35	8.38 ± 2.50	1.63 ± 0.98	2.63 ± 0.68
Trial Response Late	ency ³			
Control	1.83 ± 0.18	1.70 ± 0.18	1.91 ± 0.23	1.68 ± 0.16
125	2.25 ± 0.55	2.38 ± 0.43	2.69 ± 0.69	2.70 ± 0.60
1250	2.06 ± 0.40	2.52 ± 0.40	2.75 ± 0.94	2.18 ± 0.73
5000	2.28 ± 0.43	3.91 ± 0.73	1.82 ± 0.13	1.45 ± 0.06
Latency > 6 Second	s ⁴	I		l
Control	3.38 ± 0.71	3.88 ± 0.58	4.25 ± 0.98	2.13 ± 0.67
125	5.38 ± 1.48	5.00 ± 1.69	5.63 ± 2.44	6.00 ± 1.68
1250	4.63 ± 1.15	6.00 ± 1.34	5.63 ± 1.92	3.38 ± 1.40
5000	4.00 ± 1.05	10.63 ± 1.80	3.13 ± 0.61	1.88 ± 0.35
Drink Response Lat	ency⁵	1	1	1
Control	0.29 ± 0.01	0.26 ± 0.01	0.30 ± 0.02	0.27 ± 0.01
125	0.32 ± 0.02	0.30 ± 0.02	0.32 ± 0.03	0.34 ± 0.03
1250	0.38 ± 0.03	0.43 ± 0.03	0.37 ± 0.02	0.36 ± 0.03
5000	0.33 ± 0.02	0.49 ± 0.03	0.34 ± 0.03	0.30 ± 0.02

1032 n = 8 for all groups. Bolded values indicate statistical significance at the p < 0.05 level. Data sets are

1033 included if they show a clear dose-response trend in reduction of movement/distance traveled or latencies

1034 in the first or third 8-hour exposure. Abbreviation: SD = standard deviation.

1035 ¹ number of *correct* trial responses divided by the number of trial responses.

1036 ² total number of inter-trial intervals (ITI) responses following an initial ITI response.

1037 ³ the latency (seconds) to make a correct trial response.

1038 ⁴ the number of responses taking more than 6 seconds.

1039 ⁵ the mean latency (seconds) to obtain reinforcements.

1040

TSD for Noncancer RELs

1041 5.3.3 Oral Studies in Animals

1042 Neurotoxic effects have also been observed following acute oral exposure to TMBs. 1043 Tomas et al. (1999a) measured changes in electrocortical arousal following acute oral 1044 exposure to the 3 TMB isomers in rats. Male WAG/Rij rats (n=18/group) had 1045 electroencephalographic (EEG) recording electrodes implanted surgically 14 days prior 1046 to the start of the experiment in the fronto-parietal cortex. The rats were exposed to 0, 1047 0.002, 0.008, or 0.032 mol/kg (240, 960, 3800 mg/kg) 1,2,3-TMB, 1,3,5-TMB or 1,2,4-1048 TMB via gavage (6 rats/group). For each solvent, at all doses applied, the number and 1049 duration of high-voltage spindles (HVS) episodes decreased. (HVS represent bursts in 1050 spike-wave discharges). 1,2,3-TMB was more potent than 1,2,4-TMB or 1,3,5-TMB in 1051 the inhibition of HVS activity. At the highest doses, 0.008 and 0.032 mol/kg (960 and 1052 3800 mg/kg), 1.2.3-TMB completely eliminated HVS activity, 1.2.4-TMB had the least 1053 marked effect on HVS activity. The efficacy of 1,3,5-TMB and 1,2,3-TMB was similar. 1054 The authors stated that, "the EEG records support a hypothesis that the solvents

1055 examined exert a depressive effect on CNS functions".

1056 Tomas et al. (1999c) also evaluated the acute effects of the three TMB isomers on 1057 spontaneous locomotor activity as assessed using the open-field test. Male WAG/Rij 1058 strain rats were exposed by gavage to 1,2,3-TMB, 1,2,4-TMB and 1,3,5-TMB at doses 1059 of 0, 0.008, 0.016, and 0.032 mol/kg (961,1923, and 3846 mg/kg, respectively) (n = 101060 and 30 for controls and TMB treatment groups, respectively). Of the 3 TMB isomers, 1061 only 1,3,5-TMB caused a stimulating effect on locomotor activity at the two highest 1062 doses, 0.016 and 0.032 mol/kg. Other toxic effects were also noted. At the two lowest 1063 doses, moderate piloerection, and enhanced locomotor activity were seen; this behavior 1064 was dose-related. Rats given TMB at a dose of 0.032 mol/kg showed an increase in 1065 mobility 15 minutes following exposure, and their gait was disturbed (paresis of the hind 1066 legs). Rats at this dose also showed tachypnea, tremor, piloerection, and blood 1067 contaminated secretion from the upper airways, especially in the 1,2,3-TMB and 1,2,4-1068 TMB groups. Ninety minutes post-exposure, the rats were motionless. Mortality was 1069 noted in all high-dose TMB treatment groups 24 hours post-exposure (3 dead animals in 1070 the 1,2,4-TMB group, 4 in the 1,2,3-TMB group, and 2 in the 1,3,5-TMB group). No 1071 mortality was noted in the low and mid-dose groups (observed up to 5 days post 1072 exposure).

1073 Myhre and Fonnum (2001) determined that 1,2,4-TMB stimulates the formation of free 1074 radical reactive oxygen species (ROS) and reactive nitrogen species (RNS) in rat brain 1075 synaptosomes. Male Wistar rats were used as a source of synaptosomes. The rat brain 1076 synaptosome fraction was exposed to different concentrations of 1,2,4-TMB (320, 640, 1077 and 1280 μ M), and the production of ROS and RNS was measured as the formation of 1078 2',7'-dichlorofluorescein (DCF) from non-fluorescent H₂DCF. The concentrations of

- 1079 1,2,4-TMB chosen for the study were comparable to rat brain 1,2,4-TMB concentrations
- 1080 after inhalation of white spirit. TMB increased fluorescence in a concentration-
- 1081 dependent manner and there was a statistically significant difference between the
- 1082 controls and 1,2,4-TMB at all three concentrations. The highest concentration,1280 μ M
- 1083 1,2,4-TMB, showed the strongest stimulatory effect on ROS/RNS production
- 1084 (approximately 150% of control).
- 1085 5.3.4 Dermal Studies in Animals

1086 Several of the TMB isomers, 1,3,5-TMB and 1,2,4-TMB, have been shown to induce 1087 thymic stromal lymphopoietin (TSLP). TSLP is a cytokine similar to interleukin-7 which 1088 is produced by epithelial cells and mast cells, stimulates Th2-type immune responses 1089 and plays a role in the initiation of allergic dermal inflammation in mice (Satou et al., 1090 2012). A number of organic solvents, including 1,3,5-TMB and 1,2,4-TMB, were painted 1091 (separately) on the earlobes of male BALB/c mice (20 µl each of a 0.04 µg/µl TPA 1092 solution). The earlobe tissue was excised 24 h after the painting and the level of TSLP 1093 in the tissue homogenate was determined by enzyme-linked immunosorbent assay 1094 (ELISA). Both 1,3,5-TMB and 1,2,4-TMB significantly induced the production of TSLP. 1095 The mean level of TSLP + SEM (n= 6-10 mice) was 0 + 74, 1,531 + 184 (p <0.01), and 1096 2,178 + 279 (p < 0.01) pg/ml for the no solvent-exposed, 1,3,5-TMB, and 1,2,4-TMB 1097 groups, respectively. Thus, in this study, the 1,2,4-TMB isomer elicited a greater 1098 cytokine response than 1,3,5-TMB. Because TSLP production has been shown to be 1099 increased in patients with asthma, atopic dermatitis, and allergic rhinitis, the authors 1100 suggest that inhalation of these solvents may also induce TSLP in respiratory tissue as 1101 well.

1102 6. Chronic Toxicity of Trimethylbenzene

1103 6.1 Chronic Toxicity to Adult Humans

1104 There is little information on the chronic toxic effects of TMBs in humans overall.

- 1105 OEHHA has not found either human controlled studies or child-specific toxicity data in
- 1106 the TMB scientific literature. In general, the occupational studies suffer from a lack of
- 1107 good exposure data and are confounded by exposure to multiple organic solvents. In an
- 1108 occupational study translated by OEHHA from German to English, CNS effects,
- 1109 including nervousness, anxiety, tension, as well as anemia and bronchitis, were found in
- 1110 a significant number of male workers (n=27) who were exposed over several years to a
- paint thinner containing more than 50% 1,2,4-TMB, 30+ % 1,3,5-TMB, and traces of
- 1112 1,2,3-TMB (Battig et al., 1956). The presence of benzene could not be excluded.
- 1113 Examination of the peripheral blood showed a tendency toward hyperchromic anemia,

- 1114 and abnormal blood coagulation. Airborne concentrations of hydrocarbon vapors in the 1115 workplace ranged from 10-60 ppm (50-295 mg/m³).
- 1116 A number of other studies that evaluated low-level, prolonged exposure to white spirit in
- 1117 painters have reported behavioral and physiological changes (Arlien-Sobog et al., 1992;
- 1118 Mikkelsen et al., 1998; Triebig et al., 1992). The toxic effects of white spirit are
- 1119 hypothesized to depend on aromatic compounds (Myhre and Fonnum, 2001). In most of
- 1120 these studies, the percentage of TMB in the solvent mixture is not specified.
- 1121 In one case study, a 55-year old female worked with liquid scintillation counting
- solutions in a laboratory for 2 ½ years (Kenndler et al., 1989). 1,2,4-TMB is often used
- as a solvent for liquid scintillation counting solutions. A serum sample taken 2 hours
- after handling of the scintillation cocktail showed the presence of 1,2,4-TMB; the 1,2,4-
- 1125 TMB serum concentration was 200 ppb. However, the 1,2,4-TMB concentration was
- below the detection limit of 10 ppb in a serum sample taken 24 hours post-exposure.
- 1127 According to the study authors, the patient experienced "euphoric calmness after
- 1128 handling the solutions, and then agony two or three days later, especially in the
- 1129 morning. Additionally, she felt lassitude and stiffness in the back. Liver toxicity, chronic
- 1130 gastritis, and conjunctivitis occurred. The EEG was "diffusely abnormal". The
- 1131 concentration of the solvent vapor in the workplace air was not determined.

1132 Sulkowski et al. (2002) evaluated the effects of occupational exposure to a mixture of 1133 solvents, including the three TMB isomers, on the inner ear. The study consisted of 61 1134 men who worked in a factory in Poland that produced paints and varnishes. The control 1135 group consisted of 40 non-exposed healthy male workers in the same factory. Exposed 1136 subjects had a mean age of 39.8 ± 11.2 years (range 22-58); they were selected 1137 following a survey questionnaire and otolaryngological examinations. Those with prior 1138 ear pathologies and/or head injuries, diabetes, hypertension, or alcohol abuse were 1139 excluded from the study. Duration of employment and exposure to the solvent mixture in 1140 the study group ranged from 2-34 years (mean 15.8 ± 9.1). The control group mean age 1141 was 39.2 ± 10.5 (range 25-56 years) and they had no exposure to solvents. Individual 1142 dosimeters were used for environmental sampling, and biological monitoring included 1143 blood and urine samples. Several different solvents were identified in the breathing 1144 zone of the workers: 1,2,4-TMB, 1,3,5-TMB, 1,2,3-TMB, xylene, styrene, and toluene. 1145 TMB isomers made up approximately 42% of the solvent mixture. Measured levels of 1146 noise associated with the production processes in the factory were low, below the 1147 permissible hygiene standard of 85 decibels (dBA).

- 1148 Exposed subjects were divided into three categories of cumulative exposure: ≤10, 10-
- 1149 20, and > 20; categories represent the product of exposure duration (in years) multiplied
- 1150 by total exposure rate. Biological monitoring involved analysis of blood levels and

- 1151 urinary metabolites (gas chromatography). Blood samples were collected within 15-20
- 1152 minutes after working shifts and urine samples were taken during the last 4 hours of the
- 1153 shift. Clinical examinations were carried out using a mobile audiological vehicle.
- Audiological tests consisted of air and bone pure tone audiometry, acoustic reflex
- 1155 threshold measurement, and otoacoustic emissions (transiently-evoked and distortion 1156 product optoacoustic emissions). Electronystagmographic testing included a battery of
- product optoacoustic emissions). Electronystagmographic testing included a battery of
 tests: saccadic and eye-tracking test, spontaneous and positional nystagmus
- 1158 optokinetic tests, and rotary and bithermal caloric test. Statistical analysis comprised the
- 1159 Student t-test, calculation of means, and linear regression analysis.
- 1160 The results of biological monitoring showed that blood concentrations of 1,2,4- and
- 1161 1,2,3-TMB ranged from 0.8 53.12 and $0.6 48.24 \mu g/dm^3$, respectively, in exposed
- 1162 subjects. Electronystagmographic tests showed a significant prevalence of vestibular
- disorders of mild and advanced degree in as many as 47.5% of the workers, versus 5%
- of controls. The authors stated this represented a significant prevalence of vestibular
- abnormalities but did not provide *p* values for the significance. This was accompanied
- 1166 by high frequency (above 1 kHz) sensorineural hearing loss with reduced amplitudes of
- 1167 optoacoustic emissions in 42% of exposed subjects, versus 3% of controls. The authors
- 1168 found that frequency and progression of the pathologies closely corresponded with
- 1169 cumulative dose of exposure, defined as exposure duration (years) x (calculated)
- 1170 exposure rate for the solvent mixture; the higher the dose, the more lowered amplitudes
- and the highest thresholds were observed. The authors stated that complaints of vertigo
- 1172 were reported by 26.1 percent of the study subjects but did not report vertigo incidence 1173 data for the control group. Per the study authors, the most significant relationships
- data for the control group. Per the study authors, the most significant relationships
 between audiological findings (*i.e.*, distortion product otoacoustic emission amplitudes)
- 1174 between audiological indings (*i.e.,* distortion product otoacoustic emission amplitudes 1175 and exposure, "were found in the subjects' breathing zone, in which trimethylbenzene
- 1176 isomers predominated as the main constituents of the solvent mixture". The authors
- 1177 concluded that, "the exposure to trimethylbenzene isomers...contributed most
- 1178 significantly to the development of clinically detectable inner ear disorders in the
- 1179 workers...".

1180 One epidemiological study that examined the relationship between indoor air pollution 1181 and respiratory health in France reported that exposure to 1,2,4-TMB is significantly 1182 associated with asthma (OR = 2.10; 95% CI:1.21-3.65) (Billionnet et al., 2011). Data 1183 were collected from a self-administered survey that was carried out by the Indoor Air 1184 Quality Observatory between October 2003 and December 2005. A representative 1185 cross-sectional population-based sample of residences was drawn from an entire 1186 sample of all principal residences in mainland France (24 million). Municipalities with 1187 more than 100,000 residences were selected for inclusion; the final sample was 1188 composed of 567 dwellings, comprising 1,612 individuals > 15 years of age, distributed 1189 among 74 municipalities over 19 regions. Surveys consisted of standardized

- 1190 questionnaires and air quality measurements taken over a 1-week period. Questions
- 1191 were derived from the European Community Respiratory Health Survey. A weekly diary
- about activities and time spent at home was completed by the inhabitants. The survey
- 1193 focused on asthma and rhinitis and was completed by inhabitants > 15 years of age.

The air pollutants measured were selected by a panel of experts on the basis of their potential impact on air quality, toxicity, and ubiquitous nature. The pollutants included 20 volatile organic compounds, 4 common allergens, carbon monoxide, carbon dioxide, relative humidity, particulate matter (PM), and radon. VOCs were measured using passive samplers in the bedroom of the reference person of the household. Adsorbed

- 1199 VOCs were extracted through thermodesorption and analyzed using gas
- 1200 chromatography and/or mass spectrometry.

1201 Selected confounders were gender, age, smoking habit, relative humidity, time of 1202 survey, pets, mold, highest educational level among household, and outdoor sources of 1203 pollution (e.g., highways, rail, airports, industrial and sewage treatment plants within 500 1204 meter radius of dwelling). Correlations between pollutants were checked with 1205 Spearman's rank correlation coefficient. Relationships between air pollutants and health 1206 outcomes were analyzed using the generalized estimating equation approach with 1207 exchangeable covariance matrix to adjust for correlation within persons living in the 1208 same residence (who tend to exhibit the same habits, etc.). Exposure to each VOC was 1209 categorized as a binary variable, as low versus high exposure, using the 3rd guartile 1210 value of the distribution as a threshold value. To take into account multiple exposure to 1211 pollutants and correlation between VOCs, a global VOC score variable was created. 1212 The global VOC score was equivalent to the number of air pollutants in each dwelling 1213 for which elevated (> 3rd guartile) concentrations were found. All variables associated 1214 with asthma or rhinitis with a p<0.3 were retained. Age, sex, and smoking status were 1215 included in all models. Survey respondents were 47.9% male; 52.1% female. The 1216 median age of the respondents was 44 years (range 15-89). The employed population 1217 represented 47.9%, retired 21.1%, students 12.2%, unemployed 5.2%, and

- 1218 housewives/husbands 4.9%. 8.6% of respondents reported asthma; 38.3% rhinitis.
- 1219 VOC concentrations were differently distributed in the 450 dwellings. The highest
- 1220 median and 3rd quartile concentrations were found for formaldehyde. Of the 20
- 1221 chemicals assessed in the study, 1,2,4-TMB was one of only two VOCs significantly
- associated with asthma (8.6%), N-undecane being the other. The median 1,2,4-TMB
- 1223 concentration in the dwellings (n = 490) was 4.0 µg/m³ (0.8 ppb). The maximum 1224 concentration was 111.7 µg/m³ (23 ppb) 1,2,4-TMB.

TSD for Noncancer RELs

1225 6.2 Chronic Toxicity to Children

- 1226 OEHHA was not able to locate any scientifically adequate subchronic or chronic TMB
- 1227 toxicity studies pertaining specifically to infants and/or children.

1228 **6.3 Chronic Toxicity to Experimental Animals**

- 1229 No lifetime chronic animal toxicity studies were identified for any of the three TMB
- 1230 isomers. Table 13, below, provides a summary of adverse effects reported in
- 1231 subchronic TMB toxicity studies in animals. Table 14 comprises studies that entail
- 1232 subchronic exposure to mixtures containing one or more TMB isomers. More detailed
- 1233 descriptions of the studies in Tables 13 and 14 follow below.
- 1234

1235	Table 13. Summary of Effects from Subchronic Inhalation Trimethylbenzene
1236	Studies in Animals

Study	Sex/Species	TMB	Exposure	Results
Battig et al., 1958	M/ Rats (n = 8, age/ strain not specified)	Isomer(s) 1,2,4-TMB	1700 ppm (8,357 mg/m ³) 8 h/day, 5 d/week for 4 months (neurotoxicity, kidney effects, blood changes)	↑ PSNG and ↓ in LP
Koch industries, Inc (1995)	M/F Spraque- Dawley Rats (<i>n</i> = 10/group, 8 weeks old)	1,3,5-TMB	0, 60, 150, 600 mg/kg-day (0, 12, 30, or 122 ppm) for 14 consecutive days	↑ organ weights (liver, kidney, adrenal) ≥ 150 mg/kg-d; ↑ monocyte counts at 150 mg/kg-d; ↑ clinical chemistry effects (CK, BUN, ALB) ≥ 60 mg/kg-d; Centrilobular hepatocyte hypertrophy and ↑ WBC at 600 mg/kg-d
Korsak and Rydzynski , 1996	M Wistar rats (1,2,4- TMB: <i>n</i> =9- 10/group; 1,2,3-TMB: <i>n</i> =10=30/gro up)	1,2,4- TMB, 1,2,3-TMB	6 h/day, 5 d/week for 3 months to 0, 25, 100, 250 ppm (0, 123, 492, 1230 mg/m ³)	Significant ↓ in pain sensitivity (latency) at ≥ 100 ppm 1,2,4-TMB, and ≥ 25 ppm 1,2,3-TMB; significant ↑ in rotarod disturbances at 250 ppm 1,2,4-TMB and ≥ 100 ppm 1,2,3-TMB
Korsak et al.,1997	M/ Wistar Rats (<i>n</i> = 6- 7/group, age not specified)	1,2,4-TMB	6 h/day, 5 d/week for 90 days to 0, 25, 100, 250 ppm (0, 123, 492, 1230 mg/m ³)	↑ cell macrophages, polymorphonuclear leukoctyes, lymphocytes; ↑ LDH & AP in BALF, total protein content ≥25 ppm (123 mg/m ³)
Gralewicz et al., 1997	M/ Wistar Rats (<i>n</i> = 60, 5 months old)	1,2,4-TMB	6 h/day, 5 d/week, for 4 weeks to 0, 25, 100, 250 ppm (0, 123, 492, 1230 mg/m ³)	Persistent impairment of neuropsychological functions <u>></u> 100 ppm (492 mg/m ³)

Abbreviations: ALB = albumin; AP = alkaline phosphatase; BALF = brochoalveolar lavage fluid;
BUN = blood, urea,nitrogen; CK = creatinine kinase; CNS = central nervous system; F = female;
LDH = lactate dehydrogenase; LP = lymphocytes percentage; M = male; PSNG = percentage of

1240 segmented neutrophilic granuloctyes; WBC = white blood cells; \uparrow = increase; \downarrow = decrease

Table 13. Summary of Effects from Subchronic Inhalation Trimethylbenzene Studies in Animals (continued)

Study.	Sex/Species	ТМВ	Exposuro	Results
Study	Sex/Species	lsomer(s)	Exposure	Results
Wiaderna et al., 1998	Male Wistar Rat (<i>n</i> = 13- 14/group, 5 months old)	1,2,3-TMB	0, 25, 100, or 250 ppm (0, 123, 492, 1230 mg/m ³) for 4 weeks	↑ CNS effects (impaired learning) at 25 and 100 ppm (123 and 492 mg/m³)
Korsak et al., 2000a	M/F Wistar Rats (<i>n</i> = 10 M/F/group, 3 months old)	1,2,3-TMB	6 h/day, 5 d/week, for 90 days to 0, 123, 492, 1230 mg/m ³ (0, 25, 100, 250 ppm)	Treatment-related respiratory effects at all concentrations: ↑ goblet cells, ↓ peribronchial lymphatic tissue at ≥ 492 mg/m³ (100 ppm); ↑ interstitial lung infiltration at 1230 mg/m³ (250 ppm); lymphoepithelium formation at 123, 492 mg/m³ concentration (25 and 100 ppm)
Korsak et al., 2000b	M/F Wistar Rats (<i>n</i> = 10 M/F/group, 3 months old)	1,2,4-TMB	6 hr/day, 5 d/week, for 90 days to 0, 123, 492, or 1230 mg/m ³ (0, 25, 100, 250 ppm)	↑ # animals w/ peribronchial, lung parenchymal, and perivascular lymphocytic infiltrations <u>></u> 492 mg/m ³ (<u>></u> 100 ppm)
Gralewicz and Wiaderna, 2001	M Wistar Rats (<i>n</i> = 11/group for exposed and 10/group for control animals, 5 months old)	1,2,3- TMB, 1,2,4- TMB, 1,3,5-TMB	6 hr/day, 5 d/week, for 4 weeks to 0 or 100 (<u>+</u> 10) ppm TMB (492 mg/m ³)	 ↑ behavioral alterations/functional changes in CNS (1,2,4- and 1,3,5-TMB-exposed rats showed a significantly higher locomotor activity, impaired passive avoidance learning, and longer paw-lick latencies 24 hrs after footshock. Acquisition of the 2-way active avoidance response was significantly impaired in all TMB-exposed groups)

1243 Abbreviations: ALB = albumin; AP = alkaline phosphatase; BALF = brochoalveolar lavage fluid;

BUN = blood, urea, nitrogen; CK = creatinine kinase; CNS = central nervous system; F = female;

1245 LDH = lactate dehydrogenase; LP = lymphocytes percentage; M = male; PSNG = percentage of

1246 segmented neutrophilic granuloctyes; WBC = white blood cells; \uparrow = increase; \downarrow = decrease.

Table 13. Summary of Effects from Subchronic Inhalation Trimethylbenzene Studies in Animals (continued)

Study	Sex/Species	ТМВ	Exposure	Results
	-	lsomer(s)		
Wiaderna	Male	1,3,5-TMB	0, 25, 100, 250	↑ functional changes in
et al.,	LOD:WIST		ppm (123,	CNS (passive and active
2002	Rats		492,1230 mg/m ³)	avoidance <u>></u> 25 ppm;
	(<i>n</i> =		for 4 weeks	paw lick latency at 100
	12/group, 5			ppm)
	months old)			
Lutz et al.,	M/ Wistar	1,2,3-	0, 25,100, or 250	↑ behavioral alterations
2010	Rat	TMB,	ppm (0, 123, 492,	(locomotor and
	(<i>n</i> = 6-8	1,2,4-TMB	1230 mg/m ³) 6	sensitization to the
	animals/grou		hr/day, 5	psychostimulant
	p, adult)		days/week for 4	amphetamine) with
			weeks	1,2,3-TMB and ↓
				behavioral alterations
				with1,2,4-TMB
Adenuga	M/F	1,3,5-TMB	0, 50, 200, 600	↑ monocyte counts > 50
et al.,	Sprague-		mg/kg-d for 90 days	mg/kg-d; ↑ phosphorus
2014	Dawley Rats			levels, and ↓ in kidney
	(<i>n</i> = 60 M/F,			weights at 600 mg/kg-d
	6 weeks of			
	age)			rachachucalar loucara fluidi

1249 Abbreviations: ALB = albumin; AP = alkaline phosphatase; BALF = brochoalveolar lavage fluid;

BUN = blood, urea, nitrogen; CK = creatinine kinase; CNS = central nervous system; F = female;

1251 LDH = lactate dehydrogenase; LP = lymphocytes percentage; M = male; PSNG = percentage of

1252 segmented neutrophilic granuloctyes; WBC = white blood cells; \uparrow = increase; \downarrow = decrease.

1253	Table 14. Summary of Effects from Subchronic Inhalation Trimethylbenzene
1254	Mixture Studies in Animals

Study	Sex/Species	Mixture/TMB	Exposure	Results
Nau and Neal, 1966	Rats/species not specified; Rhesus Monkeys	isomer(s) C9-C10 aromatic fraction/specific TMB isomers not specified*	Rats: 50 and 200 ppm (246 and 983 mg/m ³) 8h/day, 5 days/week for 90 and 93 days, respectively (<i>n</i> =18/group); 616 (<i>n</i> =60) and 1000 (<i>n</i> =38) ppm (3028 and 4916 mg/m ³) 18 h/day, 7 day/week for 108 and 73 days, respectively. Rhesus monkeys (<i>n</i> =3): 50 or 200 ppm (246 and 983 mg/m ³) 7 h/day, 5 d/week, for 90 days	Hematological effects (rats/monkeys), skin irritation (monkeys) at 50 ppm; "pronounced" CNS effects (tremors, sedation) in monkeys at 200 ppm
Lam et al., 1992	M/Wistar Rats (<i>n</i> = 5), 3 months of age	white spirit/1,2,4- TMB, 1,2,3- TMB, 1,3,5- TMB	0, 400, 800 ppm (0, 1,966, and 3,932 mg/m ³) 6 hr/day, 5 days/week, for 3 weeks	↑ levels of the CNS neurotransmitters noradrenaline, dopamine, and 5- hydroxytryptamine <u>></u> 400 ppm

1255 Abbreviations: CNS = central nervous system; M = male; TMB = trimethylbenzene; \uparrow = increase.

*TMBs are produced during petroleum refining as a component of the C9 fraction; individual
 TMB isomers make up approximately 45-55% (USEPA, 1994b).

- 1258 6.3.1 Inhalation Studies
- 1259 6.3.1.1 Neurological Effects

1260 A number of studies have reported neurobehavioral effects in rats and mice following

inhalation exposure to TMBs (Frantik et al., 1994; Gralewicz et al., 1997; Gralewicz and

1262 Wiaderna, 2001; Korsak et al., 1995; Korsak and Rydzynski, 1996; Korsak et al., 1997;

1263 Wiaderna et al., 1998; Wiaderna et al., 2002). Sensorimotor impairment (a deficit in 1264 rotarod performance and a decrease in pain sensitivity) was found in rats within 24 hours following subchronic exposure to 1,2,4-TMB at concentrations of 100-250 ppm(Korsak and Rydzynski,1996).

1267 The data regarding the neurotoxic potency of the individual TMB isomers (vis a vis each 1268 other) are mixed; some subchronic inhalation studies with rats have shown that the 1269 various TMB isomers produce similar effects but that 1,2,4-TMB and 1,3,5-TMB have a 1270 higher neurotoxic potential than 1,2,3-TMB (Korsak et al., 2000a,b; Gralewicz and 1271 Widerna, 2001). Other findings (some from the same laboratory) report that 1,2,3-TMB 1272 is the most toxic isomer with regard to neurotoxic effects (Korsak and Rydzynski, 1996). 1273 In this latter study, in both the acute and subchronic investigations, 1.2.3-TMB was the 1274 most neurotoxic of the three isomers. In one study, 1,2,3-TMB was shown to have a 1275 much greater ability than 1.2.4-TMB to induce behavioral sensitization and/or to 1276 increase the susceptibility of animals to psychostimulant (amphetamine) treatment (Lutz 1277 et al., 2010).

1278 Nau and Neal (1966) exposed rats, mice, rabbits and monkeys via inhalation (whole-

1279 body exposure), skin application, and subcutaneous injection to various concentrations 1280 of C_9 - C_{12} petroleum fractions for varying lengths of time. The authors did not describe

- 1281 the percent content of mixed TMBs in the C_9 - C_{10} fraction, but commercial C_9 aromatic
- 1282 hydrocarbon solvents typically include TMBs (20-45%), ethyltoluene (25-40%),
- isopropylbenzene (<4%), and mixed xylenes (<5%) (Firth, 2008). Only the inhalation
- 1284 data for the C_9 - C_{10} aromatic fraction are discussed here. No data in mice, and very little
- 1285 data in rabbits, were reported by the study authors. Rats (sex not specified) were 1286 exposed to 50 (n = 18), 200 (n=18), 616 (n=60), or 1000 ppm (n=38) (246, 983, 3028, or
- 1286 exposed to 50 (n = 18), 200 (n=18), 616 (n=60), or 1000 ppm (n=38) (246, 983, 3028, or 1287 4916 mg/m³) C₉-C₁₀ for varying lengths of time; maximum days of exposure were 90.
- 49 to fig/m^o) C₉-C₁₀ for varying lengths of time, maximum days of exposure were 90,
 93, 150, and 78 days, respectively. At the 50 and 200 ppm concentrations, rats were
 exposed 8 hours/day, 5 days/week. At the 616 and 1,000 ppm concentration levels, rats
 were exposed up to 18 hours/day, 7 days/week. Animals were assessed for
- appearance/behavior, body weight gain, organ weights, hematological findings, bonemarrow changes, and pathological changes.

1293Rats exposed for 18 hours/day, seven days per week "for as long as 2,424 hours" to1294 $616 \text{ ppm C}_9\text{-}C_{10}$ showed a significant decrease (no *p* value provided) in body weight1295and total white blood cell (WBC) count. Lungs, liver, kidneys, spleen, and omental1296tissues showed evidence of congestion and hemorrhagic changes. After 54 hours of1297exposure, focal, inflammatory changes were seen in the lungs, as well as fatty changes1298in the liver. Seventy percent of the rats developed bilateral cataracts (two months post-1299exposure). No cataracts were observed in unexposed rats.

1300 Rhesus monkeys (4 lbs; 1.8 kg) (n = 3/group) exposed by inhalation to either 50 or 200 1301 ppm C₉-C₁₀ aromatic fraction 7 hours/day, 5 days/week for a total of 90 exposures

- 1302 developed a number of adverse effects at both exposure levels: at the 50 ppm
- 1303 concentration, there was an increase in hematocrit readings and a shift in the
- 1304 polymorphonuclear-lymphocyte ratio and, at 200 ppm, there was a decrease in WBC
- 1305 counts, reversal of the polymorphonuclear-lymphocyte ratio, evidence of skin irritation
- 1306 with loss of hair, and formation of dry, leathery skin. At the higher exposure level,
- 1307 monkeys exhibited a "noticeable tremor" during the first week of exposure, and
- 1308 appeared "groggy and sedated while being exposed".
- 1309 Lam et al. (1992) evaluated neurological effects of white spirit (containing the TMB
- 1310 isomers) in rats following a three week inhalation exposure. Male Wistar rats, 3 months
- 1311 of age, were exposed in inhalation chambers to 0, 400, or 800 ppm white spirit vapor 6
- 1312 hr/day, 5 days/week, for 3 weeks. The concentration of the TMB isomers in the solvent
- 1313 was not reported. Exposure to white spirit did not induce changes in brain weight,
- 1314 protein concentration, or esterase activities (acetylcholinesterase and
- 1315 butyrylacetylcholinesterase). White spirit exposure significantly increased levels of the
- 1316 CNS neurotransmitters noradrenaline, dopamine, and 5-hydroxytryptamine. Because
- 1317 this study entailed exposure to a mix of chemicals, it cannot be concluded from the
- 1318 study data that TMBs increase CNS neurotransmitter levels.
- 1319 Korsak and Rydzynski (1996) evaluated both acute and subchronic exposure to the 1320 three TMB isomers in rats; only the subchronic findings are discussed here. In the 1321 subchronic study, adult male Wistar rats were exposed to 0, 25, 100 or 250 ppm 1,2,4-1322 TMB (n= 10/group) or 1,2,3-TMB (n = 10-30/group) 6 h/day, 5 days/week for 3 months 1323 in an inhalation chamber (equivalent to 0, 123, 492, or 1230 mg/m³). Neurotoxicity was 1324 evaluated via the rotarod performance test and the hot plate behavior test (the latter 1325 measures a decrease in sensitivity to pain). All rats in all experiments survived the 1326 exposures. Clinical observations were unremarkable. According to the authors, no 1327 significant differences in bodyweight were observed between exposed groups and 1328 controls (data not shown). Exposure to TMB isomers caused concentration-dependent 1329 disturbances in rotarod performance and a decrease in pain sensitivity. Changes in pain 1330 sensitivity (latency of the paw lick response) were statistically significant at all exposure 1331 concentrations > 25 ppm 1,2,3-TMB (p< 0.05 and p< 0.01), and at > 100 ppm 1,2,4-1332 TMB (p < 0.01). Recovery in hot-plate behavior was observed two weeks post exposure 1333 (for both isomers). Disturbances in rotarod performance were statistically significant for 1334 1,2,3-TMB exposure > 100 ppm, and for 1,2,4-TMB at 250 ppm (p < 0.005). Recovery in 1335 rotarod performance was not observed two weeks post-exposure. It is not clear from the 1336 study description whether the same cohort of animals was used for testing in both the 1337 rotarod and pain sensitivity experiments.
- 1338 Gralewicz et al. (1997) also observed persistent behavioral disturbances following a 4-1339 week inhalation exposure to 1,2,4-TMB in rats. Male Wistar rats (n = 15/group) were

1340 exposed to 0, 25, 100 or 250 ppm 1,2,4-TMB in an exposure chamber 6 hr/day, 5 1341 days/week for 4 weeks duration. Behavioral tests were performed between 21-54 days 1342 after the last exposure. According to the study authors, there were no overt signs of 1343 toxicity. No differences were found between any of the groups in the radical maze test 1344 (tests short-term spatial memory). Exposed animals demonstrated increased motor 1345 activity at the 100 ppm concentration and a decreased ability to learn passive avoidance 1346 response at 100 and 250 ppm 1,2,4-TMB. Two-way active avoidance learning was 1347 slightly retarded in rats exposed to 250 ppm. Rats exposed to 100 and 250 ppm 1,2,4-1348 TMB appeared more fearful on the hot plate on the second day of testing (reflects 1349 shock-induced fear response). The authors concluded that, "inhalation exposure to TMB

1350 may lead to long-lasting disturbances in CNS function".

1351 Under the same exposure conditions, and using the same concentrations as for 1,2,4-1352 TMB, above, similar findings of neurotoxicity were seen in a parallel study with 1,2,3-1353 TMB (Wiaderna et al., 1998). Male Wistar rats (n=13-14/group) were exposed to 1354 concentrations of 0, 25, 100, or 250 ppm (0, 123, 492, 1230 mg/m³) 1,2,3-TMB 6 hr/day, 1355 5 days/week for 4 weeks in an inhalation chamber. The effects of radial maze 1356 performance, open-field activity, passive- and active-avoidance learning, and shock-1357 induced changes in latency of the paw-lick response to heat were investigated. In rats 1358 exposed to 25 or 100 ppm, but not 250 ppm, passive avoidance learning (*i.e.*, refraining 1359 from stepping off a platform where the animal received an electric shock) was 1360 significantly impaired. In rats exposed to 100 ppm, but not 250 ppm, an increase in 1361 latency of the paw lick response (following a foot shock), as well as retarded acquisition 1362 of the two-way active avoidance response, persisted longer than in control animals. 1363 The non-linear concentration effect relationship could not be explained by the authors, 1364 but as it occurred in both studies, it is not considered to be an artifact. The authors 1365 concluded (as previously in studies with 1,2,4-TMB) that, "low-level exposure to 1,2,3-1366 TMB may lead to long-lasting disturbances in the CNS functions".

1367 Gralewicz and Wiaderna (2001) evaluated the behavioral effects of all three TMB 1368 isomers in rats. Male Wistar rats (10-11/group) were exposed 6 hours/day, 5 days/week 1369 for 4 weeks to either 100 ppm (492 mg/m³) 1,2,3-TMB, 1,2,4-TMB or 1,3,5-TMB in an 1370 inhalation chamber. Controls were sham-exposed. Two weeks post-exposure, behavior 1371 was assessed in a series of tests: radial maze performance, spontaneous activity in an 1372 open field, learning and retention of passive and active avoidance response, and heat-1373 induced paw licking before and after footshock. Rats in the 1,3,5-TMB and 1,2,4-TMB 1374 groups, but not the 1,2,3-TMB group, showed significantly higher locomotor activity, an 1375 impaired passive avoidance learning, and significantly longer paw-lick latencies than 1376 controls. Acquisition, but not retention, of the two-way active avoidance learning was 1377 significantly impaired in all TMB-exposed groups. In this study, the 1,2,3-TMB isomer 1378 was less active than the 1,2,4-TMB and 1,3,5-TMB isomers.

Appendix D1

1379 Low-level inhalation exposure to the TMB isomers 1,2,3-TMB and 1,2,4-TMB appears to 1380 induce behavioral sensitization and/or increase the susceptibility of male rats to 1381 psychostimulants (amphetamine (AMPH)) (Lutz et al., 2010). The behavioral effects are 1382 long-lasting. Male Wistar rats (n = 6-8 animals/group) were exposed independently to 0, 1383 25, 100, or 250 ppm (0, 123, 492, 1230 mg/m³) 1,2,3-TMB or 1,2,4-TMB in an inhalation 1384 chamber, 6 h/day, 5 days/week for 4 weeks. Rats were then administered 0.5 mg/kg 1385 AMPH *i.p.* (intraperitoneal). Motoric behavior in an open field was tested 2- and 3-1386 weeks after inhalation exposure to the TMBs. Afterwards, the rats were subjected to a 1387 sensitization procedure, which consisted of repeated *i.p.* administrations of AMPH at 2.5 1388 mg/kg bw; one injection per day for five consecutive days. TMB exposure resulted in an 1389 alteration in the rat's behavioral sensitivity to an AMPH challenge and susceptibility to 1390 become sensitized by a repeated AMPH treatment. For each isomer, the concentration-1391 effect was non-linear. The authors stated that, "nonlinearity in the concentration-dose 1392 response relationship is common in the case of the acute effects of solvents -1393 psychomotor arousal at low and depression at high concentrations". The behavioral 1394 alterations were most pronounced in rats exposed to 100 ppm 1,2,3-TMB or 1,2,4-TMB. 1395 In 1,2,3-TMB-exposed rats, the augmented behavioral response was significantly more 1396 evident than in controls. In 1,2,4-TMB-exposed rats, the augmenting was significantly 1397 less evident than in controls. Prior experiments by these same authors have not found 1398 qualitative differences in other behavioral effects between the TMB isomers (Gralewicz 1399 et al., 1997; Wiaderna et al., 1998). The authors concluded that, "AMPH sensitization 1400 found in the present experiments may confirm the suggestion that TMB exposures 1401 produce long-lasting changes in the functional state of the dopaminergic system". 1402 AMPH is an indirect dopaminergic agonist and the dopaminergic system plays a key 1403 role in the sensitization to psychostimulants (Berman et al., 2009).

1404 The same authors (Wiaderna et al., 2002) investigated neurotoxic effects of subchronic 1405 exposure to 1,3,5-TMB. Male rats (n=12/group), 5 months old, were exposed to the 1406 solvent at concentrations of 0, 25, 100 or 250 ppm (0, 123, 492, 1230 mg/m³) 6 hr/day, 1407 5 days/week for 4 weeks in an inhalation chamber. The five behavioral responses 1408 tested included: ability to find water in a radial maze (14-19 days post exposure), open 1409 field locomotor activity (25 days post exposure), step-down passive avoidance test (50-1410 51 days post exposure), sensitivity to pain (50-51 days post exposure), and acquiring 2-1411 way active avoidance (54-60 days post-exposure). No long-term effect was seen on 1412 short-term spatial memory (radial maze test) between groups, nor were treatment-1413 related effects seen on open-field behavior (assay of spontaneous motor activity). In the 1414 step-down passive avoidance test (assay of long-term memory), groups exposed to > 1415 25 ppm 1,3,5-TMB remained on the platform significantly less time than the control 1416 group (differences were significant for all groups). Findings were similar for the active 1417 avoidance test (tests ability to learn and memorize). In the hot plate test, an assay of 1418 sensitivity to pain and pain-related stress level, the latency of the reaction to the thermal

Appendix D1

- 1419 stimulus was significantly longer in the group exposed to 100 ppm 1,3,5-TMB than the
- 1420 25 ppm or control groups. There was no statistically significant difference between the
- 1421 100- and 250 ppm-exposed groups. There was, however, no dose-response
- 1422 relationship for any of the endpoints studied. The authors' conclusions were that
- 1423 concentrations close to 20 ppm for trimethylbenzene may produce long-term functional
- 1424 changes in the rat central nervous system.

1425 6.3.1.2 Respiratory Effects

- 1426 TMB exposure via inhalation causes respiratory irritation and inflammation in animals.
- 1427 Korsak et al. (1997) conducted several studies to evaluate the respiratory toxicity of the
- 1428 TMBs in both rats and mice. In a subchronic study, adult male Wistar rats (10/group)
- 1429 were exposed via inhalation to 25, 100 or 250 ppm (123, 492, 1230 mg/m³) 1,2,4-TMB 6
- 1430 hr/day, 5 days/week for 90 days. Inhalation exposure to 1,2,4-TMB significantly
- 1431 increased the total number of cells obtained by bronchoalveolar lavage at all three test
- 1432 concentrations compared with controls: p < 0.001, p < 0.01, and p < 0.05, respectively, at
- the 25, 100, and 250 ppm concentrations. A statistically significant increase in
- 1434 macrophages was seen at concentrations \geq 100 ppm 1,2,4-TMB (*p* <0.01). Total protein
- 1435 and lactate dehydrogenase enzyme activity were significantly increased at the 25 (*p*
- 1436 \geq 0.001) and 100 ppm (*p* \leq 0.05) concentrations (levels were increased versus controls at 1437 the highest concentration, but the results were not significant). Mucoproteins were
- 1438 significantly decreased at the 25 ppm concentration compared to controls (p < 0.05); at
- 1439 higher concentration levels, mucoproteins continued to decrease, but the observed
- 1440 changes showed little progression of effects, even if the exposure was 10 times higher.
- 1441 Finally, acid phosphatase enzyme levels were significantly increased at all
- 1442 concentration levels (p < 0.05), and a trend test for dose-response was statistically
- 1443 significant.
- 1444 Korsak et al. (2000a) exposed male and female Wistar rats to concentrations of 123
- 1445 mg/m³ (25 ppm), 492 mg/m³ (100 ppm) or 1230 mg/m³ (250 ppm) 1,2,3-TMB 6 hr/day, 5
- 1446 days/week for 3 months. There were 10 male and 10 female rats per group except for
- 1447 the highest exposure concentration group, which had 20 male and 20 female rats. High
- 1448 exposure group rats were observed for an additional month after termination of
- 1449 exposure. All animals were necropsied at 3 months. No differences in body weight gain
- 1450 were found between groups. Treatment-related respiratory effects were observed at all
- 1451 3 exposure concentrations. An increased number of goblet cells were noted in the
- bronchi of female rats at the mid- and high concentrations. Trend analysis indicated that the number of goblet cells present was related to the concentration of 1,2,3-TMB (p =
- 1453 (ine number of gobier cens present was related to the concentration of 1,2,3- find (p = 1454 0.001). In addition, a decreased amount of peribronchial lymphatic tissue was noted in
- 1455 female rats at mid- and high exposure concentrations. In male rats, a significant
- 1456 increase in the intensity of interstitial lung infiltration was seen at the highest

1457 concentration (p < 0.01); this was also related to 1,2,3-TMB concentrations (trend 1458 significance at p = 0.006). Lymphoepithelium formation (loss of bronchial epithelium 1459 cuboidal character, forming lymphoepithelium) was observed in male rats at the lowest 1460 and mid concentrations.

1461 Korsak et al. (2000b) exposed male and female Wistar rats to concentrations of 123 1462 mg/m³ (25 ppm), 492 mg/m³ (100 ppm) or 1230 mg/m³ (250 ppm) 1,2,4-TMB, 6 hr/day, 1463 5 days/week for 3 months. Hematological, clinical chemistry, and respiratory effects 1464 were observed in animals of both sexes. There were 10 male and 10 female rats per 1465 group except for the highest exposure concentration group, which had 20 male and 20 1466 female rats. High exposure group rats were observed for an additional month after the 1467 termination of exposure. All animals were necropsied at 3 months. In both male and 1468 female treated rats, an increased number of animals with peribronchial, lung 1469 parenchymal, and perivascular lymphocytic infiltrations were observed. Trend analysis 1470 indicated that the number of alveolar macrophages was concentration-dependent in 1471 both male and female rats (p = 0.002 and 0.03, respectively). Based on a cumulative score of all pathological lung changes in male and female rats, the authors concluded 1472 1473 that 1,2,4-TMB has a toxic effect on the respiratory system at a concentration of 492 1474 mg/m^3 (100 ppm).

1475 6.3.1.3 Organ Effects

A number of experimental animal studies have reported liver and kidney effects
following both inhalation and oral exposure to TMBs (Adenuga et al., 2010; Clark et al.,
1989; Koch Industries, 1995; Korsak et al., 2000a,b; Pykko, 1980, Wiglusz et al.,
1975a). Liver and kidney effects have also been found following inhalation exposure to
organic solvent mixtures containing TMBs.

1481 Wiglusz et al. (1975a) examined the effect of chronic TMB toxicity on blood serum 1482 enzymes: GOT, GPT, AP and GLDH. Elevated liver enzymes are indicative of 1483 inflammation or damage to liver cells. Male Wistar rats (n = 6) were exposed in an inhalation chamber to 3.0 mg/L (3,000 mg/m³; 610 ppm) 1,3,5-TMB 6 hr/day, 6 1484 1485 days/week for 5 weeks. There were 6 control animals. Blood samples were collected 1486 from the caudal vein 3 days prior to exposure and at 2, 7, 14 and 28 days post-1487 exposure. Considerable changes were seen in GOT activity: an initial decrease followed 1488 by a steady increase throughout the first week. The highest enzyme activity, statistically 1489 significant at p< 0.05, was seen at 14 days post-exposure; the value was 38% higher 1490 than the baseline value. The level did not remain elevated throughout the exposure 1491 period. AP activity was considerably (but not significantly) decreased after the first few 1492 days of treatment compared to control animals. AP activity increased "considerably" on 1493 day 7 of treatment. After 14 days, AP activity was only slightly higher than initial values.

GPT activity did not show any noticeable changes. No activity of the GLDH enzyme was
detected in blood serum (the authors stated this may indicate that the mitochondrial cell
structure was left intact under the conditions of the study). No changes in GOT or GPT
activity were seen in control animals.

1498 Clark et al. (1989) exposed groups of 50 male and female Wistar rats to 0 (control), 450 1499 (92 ppm), 900 (183 ppm), or 1800 (366 ppm) mg/m³ high aromatic naphtha (a 50:50 1500 blend of Shellsol A/Solvesso 100) 6 hr/day, 5 days/week for up to 12 months. Analysis 1501 of the test substance showed it was comprised of predominantly C9 isomers (75%), 1502 primarily TMBs (44.8%). Ten males/females were killed after 6 months of exposure, 25 1503 males/females after 12 months of exposure, and 15 males/females 4 months after 1504 exposure termination. Examination included hematology, clinical chemistry, urinalysis, 1505 and pathology: only the organ effects are discussed here. Other toxicological findings 1506 are discussed in their respective sections. Five animals died during the study (3) 1507 controls, and two males exposed at the 900 mg/m³ concentration). No further mortality 1508 information was given. Seven rats were removed from the study during the exposure 1509 period. The authors said the removals were distributed across all groups. At 6 and 12 1510 months necropsy, high exposure males had increased liver and kidney weights 1511 (significant increase at 12 months; p < 0.05) Females in the four month recovery groups 1512 showed significant decreases in kidney weights at all exposure levels. Mineralization of 1513 the cortico-medullary junction was seen in almost all females (including control

1514 animals), but none of the males.

1515 Significant increases in liver weight and accompanying changes in liver biochemistry, 1516 indicative of liver damage, were seen in rats exposed to 1,2,3-TMB (Korsak et al., 1517 2000a) and 1,2,4-TMB (Korsak et al., 2000b). Korsak et al. (2000a,b) exposed male rats 1518 to vapors of 1,2,4-TMB or 1,2,3-TMB at concentrations of 0, 123, 492, and 1230 mg/m³ 1519 (25, 100, and 250 ppm, respectively) 6 hours/day, 5 days/week for 90 days. Statistically 1520 significant (p < 0.05) increases in relative liver weight and sorbitol dehydrogenase 1521 levels(a sensitive biomarker of liver damage seen in studies with other hepatotoxic 1522 chemicals), were seen in males at the highest 1,2,3-TMB exposure concentration (250 1523 ppm). A decrease in red blood cell counts was observed in male and female rats at the 1524 highest concentration; the change was statistically significant in male rats. An increase 1525 in white blood cells was observed in highly-exposed males, and females of all exposure 1526 groups. The authors concluded that the "macrocytic anemia and increased sorbitol 1527 dehydrogenase activity in male rats might be due to hepatotoxic 1,2,3-TMB effects" 1528 despite the absence of histopathological changes in liver.

- 1529 In the Korsak et al. (2000b) 1,2,4-TMB study, female spleen and kidney absolute
- weights were significantly decreased at the 492 mg/m³ (100 ppm) concentration relative
- to controls (p < 0.05). In males, spleen weights were significantly increased at the lowest

- 1532 exposure concentration, 123 mg/m³ 1,2,4-TMB, and lung weights significantly increased
- 1533 at the mid concentration, 492 mg/m³ 1,2,4-TMB, relative to controls (p < 0.05). These
- 1534 organ weight changes were not concentration-dependent, and no apparent
- 1535 histopathological analyses were mentioned. Other adverse effects observed in these
- 1536 studies (*i.e.,* respiratory, hematological, clinical chemistry) are discussed in their
- 1537 respective sections.
- 1538 6.3.1.4 Hematological and Clinical Chemistry Effects
- 1539 TMBs have been shown to be hematotoxic in a number of animal studies (Adenuga et 1540 al., 2014; Battig et al., 1958; Clark et al., 1989; Korsak et al., 2000a,b; Wiglusz et al., 1541 1975a). Battig et al. (1958) exposed male rats (n = 8/dose) 8 hours/day for 5 weeks to 1542 0, 200, 500, and 1700 ppm (0, 954, 2,460 and 8,357 mg/m³) of a solvent, Fleet-X DV 1543 99, comprised of > 50% 1,2,4-TMB and > 30% 1,3,5-TMB (the presence of benzene 1544 cannot be ruled out in this study). The solvent mixture also potentially contained 1,2,3-1545 TMB and numerous methylbenzenes. The authors implied that dose was not consistent 1546 throughout the experiment. Animals were evaluated for effects on growth (measured by 1547 BW), behavior, food consumption, red blood cell count, hemoglobin concentration and 1548 various histological parameters (study in German, translated by USEPA). Behavioral 1549 effects were assessed qualitatively. A statistically significant decrease in lymphocytes 1550 was seen in TMB-exposed rats at the highest dose, 1700 ppm (8,364 mg/m³) (p = 0.5). 1551 A significant increase in urinary phenol excretion (free and total) was seen at the 4-day 1552 exposure mark in rats exposed to the 1700 ppm (8,364 mg/m³) dose, at day 8 in 500 1553 ppm (2,460 mg/m³) exposed rats, and at day 10 in 200 ppm (954 mg/m³) exposed rats. 1554 No further information was translated. Hematological effects in painters (blood 1555 coagulativity and decreased erythrocytes and thrombocytes) have been reported by the 1556 same investigators following long-term exposure to Fleet-X DV 99 (Battig et al., 1956). 1557 These findings are in agreement with other authors that studied the effects of TMBs on 1558 peripheral blood in rats (Wiglusz et al, 1975b).
- 1559 Wiglusz et al. (1975b) evaluated the effect of 1,3,5-TMB on the peripheral blood of rats. 1560 Only the subchronic portion of the study is described here. Male Wistar rats (n=6) were 1561 exposed to a concentration of 3.0 mg/L (3,000 mg/m³, 610 ppm) 1,3,5-TMB 6 hr/day, 6 1562 days/week for 5 weeks. Blood samples were collected from control and exposed 1563 animals 3 days prior to the start of the experiments, and then on days 1, 7, 14 and 28 1564 after completion of exposure. In the 5 week study, no changes in erythrocyte or 1565 leukocyte counts were seen in the 1,3,5-TMB-exposed group. A slight increase in the 1566 percentage of segmented neutrophilic granulocytes (PSNG) and a decrease in the 1567 lymphocytes percentage (LP) were seen after 14 days of exposure only. A few animals 1568 in the 5 week study showed a slight increase in the percentage of monocytes after 14-1569 and 28 days exposure.

1570 A number of statistically significant hematological effects were seen in male and female 1571 rats following subchronic inhalation exposure to 1,2,3-TMB and 1,2,4-TMB (Korsak et 1572 al., 2000a,b). In male/female rats exposed 6 hr/day, 5 days/week for 3 months in an 1573 inhalation chamber to 128, 492 or 1230 mg/m³ 1,2,3-TMB (25, 100, and 250 ppm, 1574 respectively), observations included significant decreases in red blood cell (RBC) 1575 counts in high-concentration male, a decrease in segmented neutrophil counts in both 1576 sexes at the high concentration, and an increase in reticulocyte counts in high-exposed 1577 males and females of all exposure groups (Korsak et al., 2000a). Clinical chemistry 1578 observations include a statistically significant increase in sorbitol dehydrogenase in 1579 high-exposure males and a significant increase in AP in mid- and high-exposure 1580 females. Respiratory findings from this study are discussed in the respective section. 1581 The authors identified the lowest concentration tested, 123 mg/m³ 1,2,3-TMB, as a 1582 NOEL in both male and female rats.

1583 In the Korsak et al. (2000b) study, which was the same study design as Korsak et al. 1584 (2000a) but evaluated the 1,2,4-TMB isomer, hematological, clinical chemistry, and respiratory effects were observed in animals of both sexes. Only hematological findings 1585 1586 are discussed here. In males, a decrease in RBCs and an increase in WBCs were seen. 1587 A trend analysis showed that the changes were concentration-dependent and were 1588 statistically significant at a concentration of 1230 mg/m³ (250 ppm) 1,2,4-TMB. The 1589 WBC count was similar to controls but RBC counts remained depressed at 2 weeks 1590 post-exposure. In females, hematological effects included decreased reticulocyte counts 1591 in all treated groups; changes were significantly different from controls at the 1230 1592 mg/m³ concentration. Clotting time decreased in male/female rats in all treated groups; 1593 changes were statistically significant in female rats at the mid- and high-concentrations. 1594 A two-fold increase in both reticulocyte counts and clotting time was found in male and 1595 female rats two weeks post-exposure, compared to control animals.

1596 **7. Developmental and Reproductive Effects**

1597 TMBs have been detected in the cord blood of infants (Cooper et al., 2001; Dowty and 1598 Laseter, 1976) and in rat fetal blood (Ungvary et al., 1983, Ungvary and Tatrai, 1985) 1599 following exposure to TMBs. Ungvary et al. (1983) and Ungvary and Tatrai (1985) 1600 demonstrated that all TMB isomers can pass the placental barrier in rats, and are found 1601 in fetal blood and amniotic fluid. TMB reproductive/developmental toxicity data are 1602 limited to one developmental toxicity study in pregnant rats exposed on gestational day 1603 (GD) 6-20 (Saillenfait et al., 2005). No chronic, multi-generation reproductive or 1604 developmental toxicity studies have been conducted. No developmental toxicity study to 1605 date has evaluated neurological/behavioral endpoints. All of the TMB isomers have

been shown to have neurotoxic effects in adult animals. All studies are described indetail, below.

1608 7.1 Human

1609 Dowty and Lasseter (1976) analyzed eleven paired cord blood-maternal blood samples 1610 from gravid women at term admitted to the Charity Hospital in New Orleans, LA. Blood 1611 samples were analyzed using GC-MS. All neonates had Apgar scores > 7 (Apgar is a 1612 measure of the physical condition of a newborn infant; a score of 10 represents the best 1613 possible condition). Physical examination at birth was normal except for one infant, who 1614 had a lumbosacral meningomelocele ("abnormally high" concentrations of acetone, the food preservative BHT, and other components were found in this infant's cord blood). 1615 1616 According to the authors, all infants were an appropriate weight for the number of weeks 1617 of gestation (38-42 weeks). TMB was one of a number of chemical constituents isolated 1618 from the cord-maternal blood samples. Neither the number of paired samples TMB was 1619 found in, nor the concentration of TMB in the samples, were provided. The significance 1620 of the study findings are limited since the TMB concentrations are unknown.

- 1621 Cooper et al. (2001) tested maternal urine, cord blood, and placental samples of 1622 pregnant farmworkers (*n*=9) in Weslaco, TX for different analytes. Seven of the women 1623 worked in the fields, and two helped spouses and family members in the fields. All nine 1624 women worked or participated in activities in or near farm fields during their pregnancies 1625 for periods ranging from 2 to 8 months. Overall, the women worked for an average of 1626 5.8 months during their pregnancy. Seven of 51 analytes were found in the biological 1627 samples: DDE, DDT, dichlorobenzene, toluene, TMB, and endosulfan sulfate were 1628 detected in cord blood samples of one or more of the women. The only compound 1629 detected in the maternal urine samples was 2,4-D. No analytes were detected in 1630 placental samples, and apparently only cord blood was tested for TMB. TMB was 1631 detected in cord whole blood in 7 of the 9 subjects, and the range of values was 1.2 -
- 1632 3.9 ppb. TMB is used as an additive in pesticides (USEPA, 1994a).

1633 7.2 Animal

1634 In the sole developmental toxicity study concerning exposure uniquely to TMB isomers, 1635 pregnant Sprague-Dawley rats (n = 17-24) were exposed whole body via inhalation to either 0, 100, 300, 600 or 900 ppm (0, 492, 1,475, 2,949, or 4,424 mg/m³) 1,2,4-TMB, or 1636 1637 0, 100, 300, 600 or 1200 ppm (0, 492, 1,475, 2,949 or 5,899 mg/m³) 1,3,5-TMB 6 1638 hours/day on GD 6-20 (Saillenfait et al., 2005). Actual air concentrations were 1639 measured once a day, and were essentially the same as target concentrations. Data 1640 were presented as mean ± SD. The number of corpora lutea, implantation sites, live 1641 fetuses, and body weights were analyzed by one-way ANOVA, followed by Dunnett's 1642 test if differences were found. Frequency of post-implantation loss, dead fetuses,

Appendix D1

- 1643 resorptions, and alterations among litters were evaluated using the Kruskal-Wallis test,
- 1644 followed by the Mann-Whitney test, where appropriate. Rates of pregnancy and
- 1645 incidences of fetal alterations per dose were analyzed using Fisher's test. The reported 1646 level of statistical significance was p < 0.05.

Significant decreases in maternal body weight and food consumption were seen at concentrations of 300 and 600 ppm 1,3,5-TMB and 1,2,4-TMB, respectively. No other clinical signs of maternal toxicity were noted. There was no evidence of embryolethality or teratogenic effects following inhalation exposure to either of these TMB isomers. Of note: dams were exposed on GD 6-20 (*i.e.*, embryonic and fetal periods) which is not inclusive of implantation and potential early embryolethality. Dams were more sensitive to the 1,3,5-TMB isomer than 1,2,4-TMB.

1654 The incidence of fetuses with incomplete sternebral ossification was slightly, but not 1655 significantly, elevated at 1200 ppm 1,3,5-TMB. Both isomers were shown to cause 1656 developmental toxicity (fetal growth retardation). A dose-dependent decrease in fetal 1657 body weights occurred that was significantly different from controls at concentrations of 1658 600 (*p* < 0.05) and 900 ppm (*p* < 0.01) 1,2,4-TMB (5% and 11% reductions, respectively) 1659 and at 600 (p < 0.05) and 1200 ppm (p < 0.01) 1,3,5-TMB (5% and 12%, respectively). 1660 This effect was only seen at maternally-toxic concentrations. However, the USEPA 1661 Guidelines for Risk Assessment for Developmental Toxicity (1996) state that adverse 1662 developmental effects produced only at doses that result in minimal maternal toxicity 1663 are still considered to represent developmental toxicity. OEHHA also considers the 1664 TMB-induced reduction in fetal body weights observed by Saillenfait et al. (2005) to be 1665 evidence of treatment-related developmental toxicity. 1666

TSD for Noncancer RELs

1667 8. Derivation of Reference Exposure Levels

1668 8.1 Trimethylbenzenes Acute Reference Exposure Level

- 1669 RELs are based on the most sensitive and relevant health effects reported in the
- 1670 medical and toxicological literature. Acute RELs are levels at which infrequent one-hour
- 1671 exposures are not expected to result in adverse health effects (OEHHA, 2008).
- 1672

Study	McKee et al., 2010
Study population	Male Wistar rats (8/group)
Exposure method	Discontinuous whole-body inhalation exposure to
	0, 125, 1250, or 5000 mg/m ³ (0, 25, 250, 1000
	ppm) 1,2,4-TMB
Exposure continuity	3 consecutive days, acute REL based on
	exposure day 1 data
Exposure duration	8 hours/day
Critical effects	CNS effects (visual discrimination performance)
LOAEL	5000 mg/m ³ (1000 ppm)
NOAEL	1250 mg/m ³ (250 ppm)
Benchmark Concentration	709 mg/m ³ (144 ppm)
Time-adjusted exposure	1417 mg/m ³ (288 ppm) (C ⁿ x T = <i>k,</i> where <i>n</i> = 3)
Human equivalent concentration	1417 mg/m ³ (288 ppm) (calculated RGDR = 0.98 ,
	rounded to 1)
Interspecies uncertainty factor	
Interspecies uncertainty factor	rounded to 1)
Interspecies uncertainty factor Toxicokinetic (UF _{A-k})	rounded to 1)
<u>Interspecies uncertainty factor</u> Toxicokinetic (UF _{A-k}) Toxicodynamic (UF _{A-d})	rounded to 1)
<u>Interspecies uncertainty factor</u> Toxicokinetic (UF _{A-k}) Toxicodynamic (UF _{A-d}) <u>Intraspecies uncertainty factor</u>	rounded to 1) 2 $\sqrt{10}$
Interspecies uncertainty factor Toxicokinetic (UF _{A-k}) Toxicodynamic (UF _{A-d}) Intraspecies uncertainty factor Toxicokinetic (UF _{H-k})	rounded to 1) 2 √10 10
<u>Interspecies uncertainty factor</u> Toxicokinetic (UF _{A-k}) Toxicodynamic (UF _{A-d}) <u>Intraspecies uncertainty factor</u> Toxicokinetic (UF _{H-k}) Toxicodynamic (UF _{H-d})	rounded to 1) 2 √10 10 10

1673

- 1674 There are a number of acute inhalation exposure studies, both in humans and
- 1675 laboratory animals that provide information about the effects of short-term exposure to
- 1676 TMBs. These studies are enumerated in Tables 10 and 11 in the document, and
- 1677 discussed in detail in their respective sections.

1678 In humans, all of the acute studies comprise chamber inhalation studies that largely

- 1679 evaluated sensory irritation to TMBs, and found no significant induction of sensory
- 1680 irritation. No TMB-specific human studies have examined the potential for neurological
- effects in sensitive populations. Occupational studies involving inhalation exposure to
 TMB-containing VOC mixtures show a number of adverse neurotoxic effects:
- 1683 neuropsychological changes (El Hamid Hassan et al., 2013; Chen et al., 1999), deficits
- 1684 in short-term memory and reduced motor speed/coordination (Lee et al., 2005),
- 1685 nervousness, anxiety, and/or vertigo (Battig et al.,1956), and visual dysfunction (Gong
- 1686 et al., 2002; Pratt et al., 2000), but it is not known whether these effects are attributable
- 1687 specifically to TMB and/or whether they result from acute or long-term exposure. Acute 1688 effects seen in laboratory animal studies include neurotoxicity, respiratory irritation, and 1689 reproductive/developmental toxicity following exposure to TMBs.
- 1690 The human chamber TMB studies typically included only one exposure concentration,
- 1691 included only a few test subjects, were largely tested in healthy adult males, and
- 1692 provided limited or vague reporting of health effects (most were not designed as toxicity
- 1693 studies per se, but as toxicokinetic studies). Subjects filled out a questionnaire,
- 1694 reporting levels of severity of respiratory irritation and, in some cases, CNS effects. In
- 1695 each of the acute human inhalation studies, the lowest exposure concentration, ranging
- 1696 from 2-25 ppm (10-123 mg/m³), was the NOAEL, regardless of TMB isomer tested
- 1697 (Table 15). No LOAELs were identified. Thus, in accordance with OEHHA's Noncancer
- 1698 REL TSD Guidance document (OEHHA, 2008) which notes that, "OEHHA may use a
- 1699 NOAEL without an associated LOAEL identified in the same study (a free standing
- 1700 NOAEL), but only if there are no other suitable studies, and so long as the overall health
- 1701 hazard data for that substance are consistent with the NOAEL study", the human
- 1702 chamber exposure studies were not relied upon to derive the acute REL.
- 1703 There are two TMB rodent studies that can be used to develop a POD for the derivation
- 1704 of the acute REL: the McKee et al. (2010) neurotoxicity study, and the Saillenfait et al.
- 1705 (2005) reproductive/developmental study. Several additional neurotoxicity studies in
- 1706 mice and rats provide evidence for concentration-dependent acute CNS disturbances
- 1707 (decrease in pain sensitivity and rotarod performance) following a single 4-hour
- 1708 exposure to TMBs (Korsak et al., 1995; Korsak and Rydzynski, 1996). However,
- 1709 NOAEL/LOAEL values could not be determined from these studies for use in REL
- 1710 development because specific concentrations at which altered neurobehavioral changes
- 1711 occurred were not provided. The same is true of the Korsak et al. (1997) acute
- 1712 respiratory irritation study in mice.
- 1713 In the Saillenfait et al. (2005) developmental study in Sprague-Dawley rats, significant
- 1714 decreases in maternal body weight and food consumption were seen at concentrations
- 1715 of 300 and 600 ppm 1,3,5-TMB and 1,2,4-TMB, respectively. Dams were exposed to
- 1716 concentrations of 0 900 ppm 1,2,4-TMB (0 4,424 mg/m³) and 0 1200 ppm 1,3,5-

Appendix D1

1717 TMB $(0 - 5.899 \text{ mg/m}^3)$. There was no significant maternal mortality. There was no 1718 evidence of embryolethality or teratogenic effects following inhalation exposure to either 1719 of these TMB isomers. Of note: dams were exposed on GD 6-20 (*i.e.*, embryonic and 1720 fetal periods) which is not inclusive of implantation and potential early embryolethality. 1721 Dams were more sensitive to the 1,3,5-TMB isomer than 1,2,4-TMB. The only 1722 treatment-related developmental effect, fetal-growth retardation, was statistically 1723 significant at 600 and 1200 ppm 1,3,5-TMB and at 600 and 900 ppm 1,2,4-TMB. The 1724 NOAEL for maternal toxicity was 100 ppm (492 mg/m³) for 1,3,5-TMB and 300 ppm (1,475 mg/m³) for 1,2,4–TMB and the NOAELs for developmental toxicity were 300 ppm 1725 1726 (1,475 mg/m³) for both TMB isomers. While a number of datasets from this study 1727 showed a positive trend (e.g., for 1,3,5-TMB, female fetal body weight, male/female fetal 1728 body weight combined), only those datasets that yielded viable BMDS results are 1729 included in Table 15. BMR modeling results for all Table 15 datasets follow in Table 16.

1730

1731 Table 15. Developmental Toxicity of 1,2,4- and 1,3,5 Trimethylbenzene in Rats

1732 (Reduced Maternal and Fetal Bodyweight)

тмв			Ехр	osure Conce	ntration ^a	
Isomer (Rat Model)	Endpoint	0 ppm	100 ppm (492 mg/m³)	300 ppm (1,475 mg/m³)	600 ppm (2,950 mg/m³)	1200 ppm (5,900 mg/m³)
	Number Treated	24	24	24	24	24
1,3,5- TMB (Dams)	Body Weight (g) (GD 13- 21)	110 ± 14	109 ± 10	95 ± 21*	80 ± 20**	63 ± 26**
1,3,5- TMB	Number Exposed	21	22	21	17	18
(Male Fetuses)	Body Weight (g)	5.8 ± 0.41	5.76 ± 0.27	5.5 ± 0.31	5.39 ± 0.55*	5.1 ± 0.57**
TMB Isomer (Rat Model)	Endpoint	0 ppm	100 ppm (492 mg/m³)	300 ppm (1,475 mg/m ³)	600 ppm (2,950 mg/m³)	900 ppm (4,424 mg/m³)
1,2,4- TMB	Number Treated	25	24	24	24	24
(Dams)	Body Weight (g) (GD 6-13)	27 ± 8	27 ± 6	26 ± 6	19 ± 8**	14 ± 12**
1,2,4- TMB (All	Number Exposed	23	22	22	22	24
Fetuses)	Body Weight (g)	5.71 ± 0.34	5.64 ± 0.31	5.56 ± 0.47	5.4 ± 0.39*	5.06 ± 0.40**
1,2,4- TMB	Number Exposed	23	22	22	22	24
(Male Fetuses)	Body Weight (g)	5.86 ± 0.34	5.79 ± 0.30	5.72 ± 0.49	5.55 ± 0.48*	5.2 ± 0.42**
1,2,4- TMB	Number Exposed	23	22	22	22	24
(Female Fetuses)	Body Weight (g)	5.57 ± 0.33	5.51 ± 0.31	5.4 ± 0.45	5.28 ± 0.40*	4.92 ± 0.4**

1733 Saillenfait et al. (2005). Animals were exposed 6 hours/day, GD 6-20.

^a Values are expressed as mean <u>+</u> 1 SD.

1735 *, ** Significant difference from control, p < 0.05 and p < 0.01, respectively.

1736 Abbreviations: g = grams; GD = gestational day; TMB = Trimethylbenzene.

1737 Table 16. BMR Modeling Results for Saillenfait et al. (2005) 1,2,4- and 1,3,5-

1738 Trimethylbenzene Developmental Toxicity Study

TMB Isomer	Endpoint	BMD Model	BMC _{1SD} ppm (mg/m ³)	BMCL _{1SD} ppm (mg/m ³)	Goodness -of-fit <i>p</i> -value	Scaled Residual for Dose Group near BMD
1,3,5- TMB	Maternal BW (GD 13-21)	Exponential #2 (NCV)	259.14 (1,274)	198.59 (976)	0.26	-0.23
	Fetal BW (Male)	Exponential #3 (NCV)	514.92 (2,531)	362.6 (1,782)	0.51	-0.09
1,2,4- TMB	Maternal BW (GD 6-13)	Exponential #3 (NCV)	578.57 (2,844)	441.84 (2,172)	0.60	-0.67
	Fetal BW (All)	Polynomial #4 (CV)	687.35 (3,379)	475.20 (2,336)	0.99	0.09
	Fetal BW (Female)	Polynomial #4 (CV)	691.75 (3,400)	480.86 (2,364)	0.97	0.27
	Fetal BW (male)	Polynomial #4 (CV)	714.24 (3,510)	497.98 (2,448)	0.99	0.048

1739 Abbreviations: AIC = Akaike Information Criterion; BMC_{1SD} = benchmark concentration, 1 SD

1740 change from control mean; BMCL_{1SD} = lower 95% confidence limit on the benchmark

1741 concentration, 1 SD change from control mean; BMD = benchmark dose; BW = bodyweight; CV

= constant variance; GD = gestational days; NCV = non-constant (modeled) variance; PPM =

1743 parts per million; SD = standard deviation; TMB = trimethylbenzene

BMRs represent continuous data model runs (mean <u>±</u>SD), and one SD change from control

1745 mean. Each dataset only had one viable model result thus AIC values were not included.

1746 In this study, both maternal and fetal parameters were more sensitive to the 1,3,5-TMB

isomer than the 1,2,4-TMB isomer (*i.e.*, yield the lowest BMRs). The lowest BMR for all

1748 datasets (maternal and fetal) is for maternal bodyweight decrease on GD 13-21 for the

1749 1,3,5-TMB isomer, 259 ppm (1,274 mg/m³). Fetal bodyweights were not reported on a

per litter basis, which is the typical unit of analysis, but were instead pooled (*i.e.,* male

- 1751 fetuses, female fetuses, all fetuses). Comparing fetal bodyweight datasets for the 1,2,4-1752 TMB isomer, female offspring appear to be slightly more sensitive than males, with a
- 1752 TMB isomer, female offspring appear to be slightly more sensitive than males, with a 1753 BMD value of 692 versus 714 ppm (3,400 and 3,510 mg/m³), respectively. For the
- 1753 BMD value of 692 versus 714 ppm (3,400 and 3,510 mg/m^o), respectively. For the
- 1754 1,3,5-TMB isomer, only the male fetal bodyweight data could be modeled using BMDS.

1755 The acute rat inhalation study by McKee et al. (2010), which exposed the animals to the

1756 1,2,4-TMB isomer on 3 consecutive days, at concentrations ranging from 25-1000 ppm

- 1757 (125 5000 mg/m³), is the best choice for the development of the acute TMB REL
- because it yields the lowest BMD values of the two studies (*i.e.*, McKee et al., 2010 and

Saillenfait et al., 2005). The McKee study evaluates a well-known and sensitive endpoint

- 1760 for TMBs, neurotoxicity. As stated by the study authors, "acute CNS effects are
- 1761 sensitive indicators of toxicological effects" and, "CNS effects are the most sensitive
- indicators of effects for most hydrocarbon solvents...". USEPA in its 2016 Toxicological
- 1763 Review of Trimethylbenzenes document stated, "Neurotoxicity is the most consistently
- 1764 observed endpoint in the database for TMBs". And, "the weight of evidence for TMB-1765 induced neurotoxicity is coherent across species [*i.e.*, human, mouse, rat], coherent
- 1766 across isomers, and consistent across multiple exposure durations [*i.e.*, acute, short-
- term, and subchronic]". OEHHA concurs with these conclusions.
- 1768 In the McKee acute exposure study, fourteen-week old male rats (n = 8/group) were
- 1769 exposed "up to 8 hours/day" for 3 consecutive days to 0, 125, 1250, or 5000 mg/m³ (0,
- 1770 25, 250, and 1000 ppm, respectively) 1,2,4-TMB, and evaluated for clinical and
- 1771 neurobehavioral endpoints (*e.g.*, motor activity, functional observations, and visual
- 1772 discrimination performance) on exposure days one and three, and 1-day post-exposure.
- 1773 Because the acute REL is meant to protect against an infrequent, 1-hour exposure, data
- evaluated from the McKee et al. (2010) study for the POD comprise the responses for
- 1775 visual discrimination tests, following the first 8-hour exposure only. A clear dose-
- 1776 response was observed for several visual discrimination performance testing endpoints
- 1777 after the first 8-hour exposure: discrimination ratio, trial response latency, latency > 6
- 1778 seconds, and drink response latency. These results are summarized in Table 17, below.
- 1779 These visual discrimination endpoints in the McKee et al. (2010) study were significantly
- different compared to controls at an exposure level of 5000 mg/m³ (1000 ppm) 1,2,4-
- 1781 TMB. Thus, the LOAELs for these endpoints are 5000 mg/m³ (1000 ppm) and the
- 1782 NOAELs are 1250 mg/m³ (250 ppm) 1,2,4-TMB. The drink response latency endpoint
- was also significantly different compared to controls at the 1250 mg/m³ (250 ppm)
 exposure level. However, McKee et al. (2010) reported that the 1250 mg/m³ test groups
- exposure level. However, McKee et al. (2010) reported that the 1250 mg/m³ test group
 animals also demonstrated a significant drink response latency test response compared
- 1786 to controls in the pre-exposure period (zero exposure) and concluded that "the
- 1787 significance of the effect of exposure in this group is questionable". OEHHA agrees with
- 1788 this assessment and does not believe that the increase in drink response latency
- 1789 observed in the 1250 mg/m³ test group animals constitutes a LOAEL.
- 1790

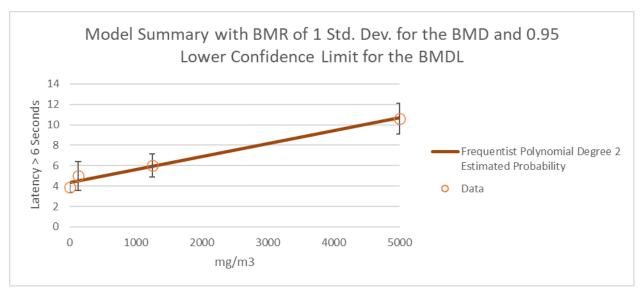
- 1791 Table 17. Treatment-Related Neurobehavioral Test Results in Rats Following a
- 1792 Single Eight-Hour Inhalation Exposure to 1,2,4-Trimethylbenzene (McKee et al., 1793 2010)
 - Visual Discrimination Tests (mean ± SD) Concentration Discrimination Trial Drink Latency > mg/m³ (ppm) Ratio¹ Response 6 seconds³ Response n = 8/groupLatency² Latency⁴ 0 0.86 ± 0.02 1.70 ± 0.18 3.88 ± 0.58 0.26 ± 0.01 125 (25) 0.91 ± 0.03 2.38 ± 0.43 5.00 ± 1.69 0.30 ± 0.02 1250 (250) 0.91 ± 0.01 2.52 ± 0.40 6.00 ± 1.34 0.43 ± 0.03^{a} 5000 (1000) 0.95 ± 0.01^{a} 3.91 ± 0.73^a 10.63 ± 1.80^a 0.49 ± 0.03^{a}
- 1794 Data sets are included if they show a clear dose-response trend in trial responses or
- 1795 latency. Bolded values in the table indicate the data that were used to derive the Acute1796 REL.
- 1797 Abbreviation: SD = standard deviation.
- 1798 ^a *p* <0.05;
- 1799 ¹ number of correct trial responses divided by the number of trial responses.
- 1800 ² the latency (seconds) to make a correct trial response.
- 1801 ³ the number of responses taking more than 6 seconds.
- 1802 ⁴ the mean latency (seconds) to obtain reinforcement.
- 1803 Several neurological endpoints from the McKee et al. (2010) study can be modeled
- 1804 using BMR methodology (visual discrimination Latency > 6 seconds, Latency < 2
- 1805 Seconds, Drink Response Latency). Because the acute REL is meant to protect against
- 1806 an infrequent, 1 hour exposure, the data sets chosen for BMD analysis comprise those
- 1807 responses seen after the first 8 hours of exposure. Benchmark dose analysis was
- 1808 performed using BMDS version 3.2 (USEPA, 2020). A BMR equal to one standard
- deviation change in the model-estimated control mean for neurotoxic effects (BMDL_{1SD})
 was used. As described above, exposed animals at the 1250 mg/m³ concentration for
- 1811 the drink response latency endpoint were significantly different than control animals in
- 1812 the preexposure analysis; thus, this data set was not used for deriving the POD. While
- 1813 there was not a clear dose response for the Latency < 2 seconds test, this visual
- 1814 discrimination endpoint was significantly different compared to controls at the 5000
- 1815 mg/m^3 (1000 ppm) exposure level. It can be modeled using BMDS but yields a BMR

- 1816 that is higher than the result for the Latency > 6 seconds endpoint, so it was not 1817 considered for the POD.
- 1818 BMR results for the visual discrimination Latency > 6 seconds test are shown in Table
- 1819 18, below; the accompanying graph is shown in Figure 4. Of the four BMD models that
- 1820 provided an acceptable fit to the data (Linear, Power, Polynomial Degree 2 and 3), all
- 1821 yielded identical BMCL results, including identical AIC values. The BMD model that
- 1822 provided the best visual fit to the data was the Polynomial Degree 2 model (shown in
- bold in the table). All data were modeled using a modeled (non-constant) variance.
- 1824 The 8-hour study exposure duration was adjusted for a 1-hour exposure using a
- 1825 modified Haber's Law equation, $C^n \times T = k$, where n = 3: $(709 \text{ mg/m}^3)^3 \times 8 \text{ hr} = 2.85 \text{ x}$
- 1826 10^9 ; and (2.85 x $10^9/$ 1 hr) $^{1/3}$ = 1417 mg/m³ (OEHHA, 2008). This yields an adjusted
- 1827 BMCL_{1SD} of 1417 mg/m³ (288 ppm) 1,2,4-TMB.

Table 18. BMR Modeling Results for Latency> 6 Seconds, McKee et al. (2010) 1,2,4-Trimethylbenzene Study

BMD Model (NCV)	BMC _{1SD} (mg/m ³)	BMCL _{1SD} (mg/m ³)	Goodness- of-fit <i>p</i> -value	AIC	Scaled Residual for Dose Group near BMD
Polynomial Degree 2	970.57	708.96	0.105	118.59	0.12
Polynominal Degree 3	970.57	708.96	0.105	118.59	0.12
Power	970.57	708.96	0.105	118.59	0.12
Linear	970.57	708.96	0.105	118.59	0.12

1830 Abbreviations: AIC = Akaike Information Criterion; BMC_{1SD} = benchmark concentration, 1 SD


1831 change from control mean; $BMCL_{1SD}$ = lower 95% confidence limit on the benchmark

1832 concentration, 1 SD change from control mean; BMD = benchmark dose; BMR = benchmark

1833 response; NCV = non-constant variance; ppm = parts per million; TMB = trimethylbenzene.

BMRs represent continuous data model runs (mean \pm SD), and one SD change from control mean. Bolded values in the table indicate the data used to derive the Acute REL.

1836

1837

1838 Figure 4. Polynomial Degree 2 Model (BMR_{1SD}) fit to the McKee et al. (2010) 1,2,4-1839 Trimethylbenzene study for neurotoxicity in male rats (concentration in mg/m³).

- 1840 For calculation of the Human Equivalent Concentration (HEC), the following equation is1841 used:
- 1842 HEC = Average Exposure Concentration × Regional Gas Dose Ratio (RDGR)
- For gases with systemic effects, the RGDR is assumed to be the ratio of the animal blood:air partition coefficient $(H_{b/g})_A$ to the human blood:air partition coefficient $(H_{b/g})_H$ [RGDR = (Hb/g)A/(Hb/g)H] (OEHHA, 2008). For the 1,2,4-TMB isomer, the blood:air partition coefficients are similar, 57.7 and 59.1, respectively, for rats and humans (USEPA, 2016). This yields an RGDR of 0.98 (rounded to 1), indicating that effective rat and human TMB exposures at a given TMB concentration will be similar.
- 1849 The interspecies UF = 6 (2 × $\sqrt{10}$): an interspecies toxicokinetic UF_{A-k} of 2 is applied to 1850 account for residual toxicokinetic differences when using the HEC adjustment. A default 1851 interspecies toxicodynamic UF_{A-d} of $\sqrt{10}$ is applied, since no data on toxicodynamic 1852 interspecies differences were available.
- 1853The intraspecies UF = 100 (10 × 10): this was comprised of a default intraspecies1854toxicokinetic UF_{H-k} of 10, and an intraspecies toxicodynamic UF_{H-d} of 10. The1855intraspecies toxicodynamic UF_{H-d} was increased to 10 from the default factor of 31856because TMBs are neurotoxicants, and children are potentially more sensitive than1857adults to neurotoxicants. The cumulative UF of 600 results in an acute REL of 24001858 μ g/m³ (490 ppb) 1,2,4-TMB.

1859 Limitations of the McKee et al. (2010) study include the following: only adult male rats 1860 were tested, data reporting for some tests were incomplete (data results were not 1861 provided for the second 8-hr exposures for visual discrimination performance tests), the 1862 duration of exposure was imprecise (*i.e.*, animals were exposed "up to 8 hours a day"), 1863 and behavioral experiments were not conducted during the exposure period. The 1864 authors state, "based on previous pharmacokinetic work with TMB, these hydrocarbons 1865 have half times in the CNS of approximately an hour". Functional observations were 1866 completed 10-25 minutes after termination of exposure, whereas motor activity 1867 assessment and visual discrimination performance testing was completed within 1 hour 1868 after termination of exposure. This suggests that TMB concentrations in the CNS may 1869 have decreased by the time motor activity assessment and visual discrimination 1870 performance testing was completed, which could have resulted in reduced test 1871 sensitivity.

1872 In support of the acute REL, significantly reduced latencies in neurobehavioral tests

1873 have been observed in several other animal studies following exposure to TMBs. A

1874 significantly reduced latency in the passive avoidance test in rats was reported in

1875 several studies (males only were tested) following repeated exposure to 1,2,4-TMB or
1876 1,3,5-TMB (Gralewicz et al., 1997; Gralewicz and Wiaderna, 2001; Wiaderna et al.,

1877 2002). Other neurotoxicity studies in male rodents (mice and rats) also observed

1878 adverse effects following acute exposure to TMBs: sensorimotor impairment (a deficit in

1879 rotarod performance and a decrease in pain sensitivity) was observed within 24 hours

1880 following exposure to 1,2,4-TMB at concentrations of 100-250 ppm (Korsak et al., 1995,

1881 Korsak and Rydzynski, 1996).

1882 8.2 Trimethylbenzenes Chronic Reference Exposure Level

The chronic REL is a concentration at or below which adverse noncancer health effects
would not be anticipated over the person's lifetime. RELs incorporate safety factors to
protect sensitive human subpopulations (see Section 6 of the Noncancer REL TSD

1886 (OEHHA, 2008).

Study Study population Exposure method	Korsak and Rydzynski, 1996 Male Wistar rats (10/group) Discontinuous whole-body inhalation exposure to 0, 123, 492, and 1230 mg/m ³ (0, 25, 100, or 250 ppm) 1,2,3-TMB
Exposure continuity	6 hr/day, 5 days/week
Exposure duration	13 weeks
Critical effects	Neurotoxic effects (pain sensitivity behavior and rotarod performance)
LOAEL	123 mg/m ³ (25 ppm)
NOAEL	Not observed
Benchmark Concentration	47 mg/m³ (10 ppm)
(BMCL _{1SD}) (using continuous model)	
Human equivalent concentration	47 mg/m ³ (10 ppm) (calculated RGDR = 0.98, rounded to 1)
Time-adjusted exposure LOAEL uncertainty factor (UF _L)	8 mg/m ³ (2 ppm) = (47 mg/m ³ x 6/24 x 5/7 1 (with use of BMCL _{1SD})
Subchronic uncertainty factor (UFs)	$\sqrt{10}$ (13 weeks = subchronic in rodent studies)
Interspecies uncertainty factor	, , , , , , , , , , , , , , , , , , ,
Toxicokinetic (UF _{A-k})	2
Toxicodynamic (UF _{A-d})	√10
Intraspecies uncertainty factor	
Toxicokinetic (UF _{H-k})	10
Toxicodynamic (UF _{H-d})	10
Cumulative uncertainty factor	2000
Reference Exposure Level	4 μg/m³ (1 ppb)

Aside from acute inhalation chamber studies, there are no exposure studies in humans
exposed uniquely to TMBs. In humans, an occupational study reported systemic effects

1889 in a significant number of the male workers (n = 27) exposed for several years to a paint

1890 thinner comprised of > 80% TMBs: CNS (nervousness, anxiety and/or vertigo),

1891 hematological, and respiratory effects (Battig et al.,1956). Other occupational studies

1892 involving inhalation exposure to TMB-containing VOC mixtures show a number of

Appendix D1

adverse neurotoxic effects: neuropsychological changes (El Hamid Hassan et al., 2013;

1894 Chen et al., 1999), deficits in short-term memory and reduced motor speed/coordination

1895 (Lee et al., 2005), and visual dysfunction (Gong et al., 2002; Pratt et al., 2000). It is not

1896 known whether these effects are primarily attributable to TMBs.

1897 There are a number of subchronic studies in rodents, all conducted by the Nofer

1898 Institute of Occupational Medicine in Poland, that have reported similar findings in

- animals (*i.e.*, CNS, respiratory, and hematological effects), and including clinical
- chemistry and organ weight effects, following exposure to TMBs (Gralewicz et al., 1997;
 Korsak and Rydzynsk, 1996; Korsak et al., 1997; Korsak et al., 2000a,b; Wiaderna et
- 1902 al., 1998, 2002). These studies are summarized in Table 13. The Korsak and Rydzynski
- 1903 (1996), Korsak et al. (1997), and Korsak et al. (2000a,b) studies all similarly exposed
- 1904 male Wistar rats to concentrations of 0, 25, 100 or 250 ppm (123, 492, 1230 mg/m³)
- 1905 pure TMBs for 90 days duration. The NOAEL/LOAELs for all these studies are shown in
- 1906 Table 19, below.

1907 Table 19. NOAEL/LOAEL Values for Subchronic Trimethylbenzene Rat Inhalation 1908 Studies

Study	TMB Isomer	Endpoint	NOAEL (ppm)	LOAEL (ppm)
Korsak and Rydzynski,	1,2,3-TMB	Neurotoxicity	<25	25
1996	1,2,4-TMB	Neurotoxicity	25	100
Korsak et al., 1997	1,2,4-TMB	Respiratory	<25	25
Korask et al., 2000a	1,2,3-TMB	Respiratory/Clinical Chemistry	25	100
Korsak et al., 2000b	1,2,4-TMB	Respiratory/Clinical Chemistry	25 (females)	25 (males)

1909 Abbreviations: LOAEL = lowest observed adverse effects level; NOAEL = no observed adverse

1910 effects level; TMB = trimethylbenzene.

Animals in all studies were Wistar rats, exposed 6 hr/day, 5 days/week to 0, 25, 100 or 250 ppm

1912 TMBs for 90 days.

1913 There are several studies that can be used to develop a POD for the chronic REL. 1914 Korsak and Rydzynski (1996), and Korsak et al. (2000 a,b). Korsak and Rydzynski 1915 (1996) exposed male Wistar rats 6 hours/day, 5 days/week for 90 days to targeted concentrations of 0, 25, 100 or 250 ppm (0, 123, 492, 1230 mg/m³) 1,2,4-TMB or 1,2,3-1916 1917 TMB in a dynamic inhalation chamber. The study authors did not explicitly state that the 1918 reported measures of variance in their data tables were SDs. However, an independent 1919 analysis conducted by USEPA confirmed that the reported measures of variance are 1920 SDs (USEPA, 2016). A decrease in pain sensitivity, measured as an increase in the 1921 latency of the paw-lick response to a hot-plate challenge, was concentration dependent 1922 and statistically significant at 100 and 250 ppm 1,2,4-TMB and 25 and 250 ppm 1,2,3-1923 TMB. Further analysis by USEPA found that the response at the 100 ppm 1,2,3-TMB 1924 concentration was also statistically significant (p < 0.01); thus, the response was 1925 significant at all applied concentrations for the 1,2,3-TMB isomer. Latency of 60 1926 seconds was considered as 100% inhibition of pain sensitivity. Hot-plate behavior was 1927 tested immediately after termination of exposure. Neurotoxicity was also assessed 1928 using the rotarod performance test, which measures neuromuscular function. Rotarod 1929 performance was tested before exposure, weekly during the experiment, and two weeks 1930 after termination of exposure. Exposure to 1,2,4-TMB and 1,2,3-TMB caused 1931 statistically significant effects at concentrations of 100 and 250 ppm 1,2,3-TMB, and at 1932 250 ppm 1,2,4-TMB. No recovery in rotarod performance was observed two weeks 1933 post-exposure. For both endpoints, 1,2,3-TMB was more neurotoxic than 1,2,4-TMB. 1934 Thus, the TMB LOAEL for pain sensitivity (1,2,3-TMB) is 25 ppm (123 mg/m³), the 1935 lowest dose tested, and the NOAEL/LOAEL for rotarod performance is 25 and 100 ppm 1936 $(123 \text{ and } 492 \text{ mg/m}^3)$, respectively (see Table 21, below).

- 1937 In the Korsak et al. (2000a,b) TMB studies, treatment-related effects included 1938 hematological, clinical chemistry, and respiratory changes. A statistically significant 1939 decrease in red blood cell counts and an increase in white blood cell counts was seen in 1940 male rats at the highest concentration in both studies; the trend analysis showed that 1941 changes were concentration dependent (Korsak et al., 2000a,b). Two weeks post-1942 exposure, RBC counts remained low. Other hematological changes included a 1943 decrease in reticulocyte counts in females from all treated groups (changes were 1944 significant at the highest concentration), and decreased clotting time in males and 1945 females of all treated groups (changes were significant at > 492 mg/mg³) (Korsak et al., 1946 2000b).
- 1947 For clinical chemistry parameters like sorbitol dehydrogenase activity (a marker of liver
- 1948 damage), the lowest exposure concentration of 123 mg/m³ (25 ppm) was a LOAEL in
- 1949 males and a NOAEL in females (Korsak et al., 2000b). Significant increases in relative
- 1950 liver weight were seen in male rats exposed to the high concentration of 1,2,3-TMB,

1951 1230 mg/m³ (Korsak et al., 2000a). These effects point towards evidence of
1952 hepatotoxicity.

1953 Histopathological changes were also seen in the lower respiratory system at all three 1954 exposure concentrations (Korsak et al., 2000 a,b). These changes were statistically 1955 significant at the mid- and high-concentrations for the 1,2,4-TMB isomer (Korsak et al., 1956 2000b). Changes included lymphoepithelium formation (loss of bronchial epithelium's 1957 cuboidal character, forming lymphoepithelium) in male rats at the lowest and mid 1958 concentrations, 25 (123 mg/m³) and 100 ppm (492 mg/m³) 1,2,3-TMB, respectively. A 1959 significant increase in the intensity of lung perivascular and interstitial infiltration in male 1960 rats was seen at the highest concentration (Korsak et al., 2000a); trend analysis 1961 showed the changes were related to concentration.

- 1962 Endpoints from several of these studies can be modeled using BMD methodology.
- 1963 Benchmark dose analysis was performed using BMDS version 3.2 (USEPA, 2020). The
- 1964 BMR used was equal to one standard deviation change in the model-estimated control
- mean for neurotoxic effects (BMDL_{1SD}). BMR results from the Korsak and Rydzynski
 (1996) and Korsak et al. (2000a,b) studies are shown in Table 20, below. The Korsak et
 al. (1997) rat study, which identified a LOAEL of 25 ppm (123 mg/m³) for sensory
- 1968irritation, did not report the incidences of pulmonary lesions, but rather the RD_{50} and the196995% CI of the RD_{50} . It was therefore not possible to analyze the pulmonary lesion data
- 1970 using BMR software.
- 1971 The Korsak and Rydzynski (1996) study in rats was chosen for the development of the
- 1972 8-hour REL because it is a 90-day study with a critical effect for TMBs (neurotoxicity)
- 1973 and yields the lowest POD, a BMCL_{1SD} of 46.7 mg/m³ (10 ppm) for 1,2,3-TMB (See 1974 Table 20, below).

1975 **Table 20. BMR Modeling Results for Different Endpoints from Korsak et al.**

1976 Subchronic Trimethylbenzene Studies

Study (TMB Isomer)	Endpoint	BMD Model	CL	BMC _{1SD} (mg/m ³)	BMCL _{1SD} (mg/m ³)	BMCL _{1SD} (ppm)
Korsak and Rydzynski, 1996 (1,2,3- TMB)	Neurotoxicity (pain sensitivity)	Exponential #4	0.95	86.2	46.7	10
Korsak and Rydzynski, 1996 (1,2,4- TMB)	Neurotoxicity (pain sensitivity)	Exponential #4	0.95	161	84	17
Korsak et al., 2000b (1,2,4- TMB)	Hematological Effects (RBC count)	Polynomial	0.95	456	227	46
Korsak et al., 2000a (1,2,3- TMB)	Hepatotoxicity (sorbitol dehydrogenase)	Polynomial	0.95	575	241	49

1977 Abbreviations: BMC_{1SD} = benchmark concentration, 1 SD change from control mean; BMCL_{1SD}

1978 = lower 95% confidence limit on the benchmark concentration, 1 SD change from control mean;

1979 BMD = benchmark dose; BMR = benchmark response; CL = confidence limit; ppm = parts per

1980 million; RBCs = red blood cells; TMB = trimethylbenzene.

BMRs represent continuous data model runs (mean <u>+</u> SD), and one SD change from control
 mean

1983 Table 21, below, shows the exposure effects data used for the dose-response

1984 modeling. According to USEPA (2016), "neurobehavioral changes reported in the

1985 available TMB studies are regarded as adverse and, in particular, decreased pain

1986 sensitivity, measured as an increased latency to paw-lick in hot plate tests, represents

1987 an alteration in neurobehavioral function".

1988	Table 21. Pain Sensitivity (Latency of the Paw-Lick Response) Results from the
1989	Korsak and Rydzynski (1996) Trimethylbenzene Neurotoxicity Study in Rats

TMB	Endpoint	Exposure Concentration ^a			
Isomer		Control	25 ppm (123 mg/m ³)	100 ppm (492 mg/m ³)	250 ppm (1,230 mg/m ³)
1,2,4-	No. of Animals	9	10	9	10
ТМВ	Paw-lick (sec)	15.4 <u>+</u> 5.8	18.2 <u>+</u> 5.7	27.6 <u>+</u> 3.2**	30.1 <u>+</u> 7.9**
1,2,3-	No. of Animals	30	20	10	10
TMB	Paw-lick (sec)	9.7 <u>+</u> 2.1	11.8 <u>+</u> 3.8*	16.3 <u>+</u> 6.3 ^{##}	17.3 <u>+</u> 3.4**

1990 ^a Paw-lick latency values are expressed as mean <u>+</u> 1 SD.

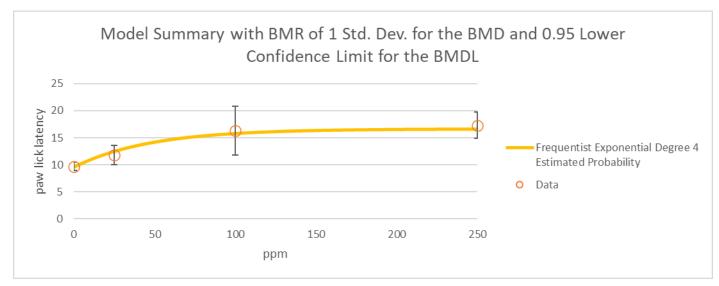
1991 **p* <u><</u>0.05, ** *p* <u><</u>0.01.

- ^{##}Not reported as statistically significant in Table 1 from Korsak and Rydzynski (1996); however,
- 1993 the results of an *ad hoc* t-test (performed by USEPA) indicated significance at *p* <0.01.
- 1994 Abbreviations: ppm = part per million; TMB = trimethylbenzene.
- 1995 For all BMD analyses of the Korsak and Rydzynski (1996) TMB data, a one standard
- 1996 deviation (SD) change in the control mean was used as the benchmark response (BMR)
- 1997 for all endpoints. For each endpoint, BMDS continuous models were fitted to the data
- 1998 using the maximum likelihood method. In cases where the homogeneity of the
- 1999 variances was rejected *(i.e.,* X² *p*-value <0.10), the non-constant variance was modeled.
- 2000 BMD modeling output is shown in Table 22, below.
- 2001 Exponential (model # 4) for the 1,2,3-TMB isomer yields the lowest BMDL_{1SD}, 10 ppm
- 2002 (46.7 mg/m³). BMD model selection is shown in boldface in Table 22, below; the
- accompanying graph is shown in Figure 5. Data were modeled using a non-constant
- 2004 variance model. BMD analysis of the 1,2,4-TMB isomer dataset yields a somewhat
- higher BMDL_{1SD} of 17 ppm (83.6 mg/m³). Data were modeled using a constant variance
- 2006 model. This BMD modeling output is also shown in Table 22.

- 2007 Table 22. Lowest BMDS Model Results for Neurotoxicity (Pain Sensitivity -
- 2008 Latency of the Paw-Lick Response) in Male Rats following 90-day
- 2009 Trimethylbenzene Inhalation Exposure (Korsak and Rydzynski, 1996)

TMB Isomer	BMD Model	Variance Model	BMC₁ _{SD} ppm (mg/m³)	BMCL _{1SD} ppm (mg/m ³)	Goodness- of-fit <i>p</i> - value	AIC	Scaled Residual for Dose Group near BMD
1,2,4- TMB	Exponential #4	Constant	32.76 (161)	17.06 (83.9)	0.38	247.98	-0.62
1,2,3- TMB	Exponential #4	Modeled	17.54 (86.2)	9.5 (46.7)	0.30	370.07	-0.88

2010 Abbreviations: AIC = Akaike Information Criterion; BMC_{1SD} = benchmark concentration, 1 SD


2011 change from control mean; BMCL_{1SD} = lower 95% confidence limit on the benchmark

2012 concentration, 1 SD change from control mean; ppm = parts per million; TMB =

2013 trimethylbenzene.

2014 Note: Bolded text indicates variance model and values used to derive the REL. Results are from

2015 benchmark dose analysis using Benchmark Dose Software (BMDS) version 3.2 (USEPA, 2020).

2016

2017 Figure 5. Exponential 4 Model (BMR_{1SD}) fit to the 90-day 1,2,3-Trimethylbenzene

2018 Korsak and Rydzynski (1996) study for neurotoxicity in male rats, non-constant 2019 variance (concentration in ppm).

For calculation of the Human Equivalent Concentration (HEC), the following equation is used: HEC = Average Exposure Concentration x RDGR. For gases with systemic effects, such as TMBs, the RGDR is assumed to be the ratio of the animal blood:air partition coefficient ($H_{b/g}$)_A to the human blood:air partition coefficient ($H_{b/g}$)_H (OEHHA, 2008). For both the 1,2,4-TMB and 1,2,3-TMB isomers, the rat and human blood:air partition coefficients are similar, and yield an RGDR of 0.98, rounded to 1. (Refer to Table 6 for the blood:air partition coefficients).

The POD of 47 mg/m³ (10 ppm) is then adjusted for a continuous 24-hour exposure
(6/24 hours x 5/7 days per week). This yields an adjusted BMCL_{1SD} of 8 mg/m³ (2 ppm)
1,2,3-TMB.

A total UF of 2000 was then applied to the BMDL_{1SD} (adj) of 8 mg/m³ (2 ppm). A sub

2031 chronic UF of $\sqrt{10}$ was applied because the Korsak and Rydzynski (1996) study is a 13-

2032 week study and therefore considered to be a subchronic study. For interspecies

- 2033 uncertainty, a total overall UF of 6 was used (2 x $\sqrt{10}$); a factor of 2 for residual
- toxicokinetic differences (a HEC approach was used) and $\sqrt{10}$ for the toxicodynamic component of the interspecies UF (UF_{A-d}). For intraspecies uncertainty, a total UF of
- 2036 100 (10 x 10) was used; 10 for the toxicokinetic component of the UF (UF_{H-k}) and 10 for
- 2037 the toxicodynamic component of the UF (UF_{H-d}) (instead of the default $\sqrt{10}$) because
- 2038 TMBs are neurotoxicants, and are likely to impact infants/children disproportionately.
- 2039 This yields a chronic 1,2,4-TMB inhalation REL of 4 μ g/m³ (1 ppb).

2040 US EPA, in its recent development of an inhalation Reference Exposure Concentration 2041 (RfC) for TMBs, also used the Korsak and Rydzynski (1996) 13-week rat neurotoxicity 2042 study as their POD (US EPA, 2016). US EPA used a physiologically-based 2043 pharmacokinetic (PBPK) model for estimating internal blood dose metrics (area under 2044 the curve, AUC) to derive HECs. US EPA based its PBPK model on a modification of 2045 the human PBPK inhalation model developed by Hissink et al. (2007). This included 2046 revising/optimizing several of the original model parameters (such as the Michaelis-2047 Menten constants). The US EPA model also updated values for blood flow and organ volumes consistent with published sources. US EPA concluded that, "the optimized 2048 2049 model produces acceptable simulations of venous blood 1.2.4-TMB for chronic 2050 exposure to < 100ppm (492 mg/m³) for rats or < 30 ppm (147.6 mg/m³) for humans 2051 1,2,4,-TMB by inhalation" (but not for higher concentrations). US EPA did not 2052 parameterize the model for pregnant animals, did not include a fetal compartment, nor 2053 did they attempt to adapt the 1,2,4-TMB model to the other two isomers. Thus, the 2054 model could not be used to account for non-continuous exposures in studies that 2055 investigated effects following subchronic exposures to 1,2,3-TMB or 1,3,5-TMB, or 2056 gestational exposures to 1,2,4-TMB. Instead, USEPA used default HEC conversion 2057 factors for these two chemicals, and duration-adjusted PODs for 2058 maternal/developmental effects.

2059 US EPA made very limited use of the modified PBPK model in its RfC analysis (*i.e.*, 2060 only used for HEC adjustment) for 1,2,4-TMB. In order to avoid the uncertainty around 2061 enzyme induction in rats above 100 ppm 1,2,4-TMB, US EPA relied on external 2062 exposure concentrations as the dose metric in BMDS model runs (as did OEHHA). US 2063 EPA then used the PBPK model to convert the POD (in ppm) to AUC in venous blood in 2064 rats, followed by conversion of the AUC to a continuous exposure in humans. The US 2065 EPA chronic TMB RfC is 0.061 mg/m³. OEHHA opted to use the default HEC 2066 calculations and chose not to use the PBPK approach given the limitations and 2067 uncertainties associated with the US EPA's modified model and paucity of data on the 2068 appropriate dose metrics based on mode of action.

2069 8.3 Trimethylbenzenes 8-hour Reference Exposure Level

Study Study	Korsak and Rydzynski, 1996
Study population	Male Wistar rats (10/group)
Exposure method	Discontinuous whole-body inhalation exposure
	to 0, 123, 492, and 1230 mg/m ³ (0, 25, 100, or
	250 ppm) to 1,2,3-TMB
Exposure continuity	6 hr/day, 5 days/week
Exposure duration	13 weeks
Critical effects	Neurotoxic effects (pain sensitivity behavior and
	rotarod performance)
LOAEL	123 mg/m³ (25 ppm)
NOAEL	Not observed
BMCL1SD	47mg/m³ (10 ppm)
Human equivalent concentration	47 mg/m ³ (10 ppm) (RGDR = 0.98, rounded to1)
Time-adjusted exposure	17 mg/m³ (3 ppm) = 47 mg/m³ x 6/24 x 5/7 x
	20/10)
LOAEL uncertainty factor (UFL)	1 (with use of BMCL1SD)
Subchronic uncertainty factor (UFs)	$\sqrt{10}$ (13 weeks = subchronic in rodent studies)
Interspecies uncertainty factor	
Toxicokinetic (UFA-k)	2
Toxicodynamic (UFA-d)	√10
Intraspecies uncertainty factor	
Toxicokinetic (UFH-k)	10
Toxicodynamic (UFH-d)	10
Cumulative uncertainty factor	2000
Reference Exposure Level	8 μg/m³ (2 ppb)
·	,

2070 The 8-hour REL is based on the same study as the chronic REL (Korsak and 2071 Rydzynski, 1996) and uses the same benchmark dose analysis with a POD of 47 mg/m³ 2072 (10 ppm) 1,2,3-TMB. In this instance the time adjusted exposure reflects conversion 2073 from a continuous to an intermittent exposure: the POD of 47 mg/m³ (10ppm) is 2074 adjusted for a continuous 24-hour exposure (6/24 hours x 5/7 days per week), and then multiplied by 2 (20 m³/10 m³) to represent an active worker breathing half the 24-hour 2075 2076 inspiration volume of air during an 8-hour work day. This yields an adjusted BMCL_{1SD} of 2077 17 mg/m³ (3 ppm) 1,2,3-TMB. The same uncertainty factors apply to give a cumulative UF of 2000 and an 8-hour REL of 8 μ g/m³ (2 ppb). 2078

TSD for Noncancer RELs

2079 **8.4 RELs for the Mixed TMB Isomers**

2080 The acute TMB REL was developed using 1,2,4-TMB isomer data and the chronic and 2081 8-hour RELs using 1.2.3-TMB isomer data because the critical studies in each instance 2082 generated lower REL values using those isomers than did data for the other TMB 2083 isomers. BMDS analyses showed the 1,2,4-TMB and 1,2,3-TMB isomers to be 2084 comparable in their toxicities for the critical endpoint evaluated, neurotoxicity. The three 2085 TMB isomers share multiple similarities regarding their chemical, toxicokinetic, and 2086 toxicological properties that support adopting one isomer's value for the others. Thus, it 2087 is expected that the REL values developed using the 1,2,4- and 1,2,3-TMB isomers 2088 would be adequately health protective for the other TMB isomers. US EPA has adopted 2089 a similar approach in the development of their RfCs for the TMB isomers (US EPA, 2090 2016).

2091 9. Evidence for Differential Sensitivity of Children

2092 Infants and children may be more susceptible to the toxic effects of TMB exposure due 2093 to developmental/physiological differences between children and adults, and also 2094 because of the type of adverse effects (neurotoxic, respiratory) associated with 2095 exposure to TMBs. That is, developing organisms may show greater sensitivity to 2096 neurological and respiratory toxicants than adults. Children have higher rates of 2097 respiration, and greater lung surface area than adults. Infants and children may be more 2098 susceptible to the effects of neurotoxicants and respiratory system toxicants because 2099 their nervous systems are still developing. OEHHA considers substances that cause 2100 either neurotoxicity or respiratory toxicity to disproportionately impact infants and 2101 children (OEHHA, 2001).

- 2102 The activities of the enzyme systems that metabolize TMBs (*i.e.*, the CYT P450s) and
- 2103 render them less toxic (*i.e.*, glucuronic acid, glycine, and sulfates) are reduced in
- 2104 children up to 1 year of age (Ginsberg et al., 2004). Renal clearance in young infants,
- up to 2 months of age, is also decreased in early life (Ginsberg et al., 2004). Potentially,
- at similar exposure levels, blood concentrations of the parent TMBs in infants and
- 2107 young children may be higher than adults, and may persist longer.
- Additionally, individuals with pre-existing respiratory conditions (*e.g.*, asthma, allergies) may be more sensitive to the respiratory effects resulting from exposure to TMBs. One study in France reported a significant association between 1,2,4-TMB concentrations in indoor air and asthma (Billionnet et al., 2011) (see Section 6.1). Prevalence rate statistics indicate that a significantly higher percentage of children have asthma than
- 2113 adults, indicating that chemicals that induce or exacerbate asthma will have a

- disproportional impact on children (OEHHA, 2001). The acute, 8-hour and chronic RELs
- 2115 include UFs to account for these potential differences.

2116 **10. References**

- Adenuga D, Carrillo J-C, McKee, R (2014). The sub-chronic oral toxicity of 1,3,5trimethylbenzene in Sprague-Dawley rats. Reg Toxicol Pharmacol 69: 143-153.
- 2119 AFCEE (1999). Air Force Center for Environmental Excellence. Revised final site ST-04
- 2120 interim remedial action plan, K.I Sawyer Air Force Base, Michigan. Prepared by the
- 2121 Jacobs Engineering Group, Inc.
- Arlien-Soborg P, Hansen L, Ladefoged O, Simonsen L (1992). Report on a conference
 on organic solvents and the nervous system. Neurotoxicol Teratol 14(1): 81-2.
- Ashley D, Prah J (1997). Time dependence of blood concentrations during and after exposure to a mixture of volatile organic compounds. Arch Environ Hlth 52(1): 26.
- 2126 Battig K, Grandjean E, Turrian V (1956). Gesundheitsschaden nach langdauernder 2127 trimethylbenzol – exposition in einer malerwerkstatt. Z Prev Med 1: 389 – 403.
- Battig K, Grandjean D, Rossi L, Rickenbacher J (1958). Toxikologische untersuchungen
 uber trimethylbenzol [Toxicological Studies on Trimethylbenzene]. Arch Gewerbepathol
 Gewerbehyg 16(5): 555-566.
- Berman S, Kuczenski R, McCracken J (ed). (2009). Potential adverse effects of
 amphetamine treatment on brain and behavior: a review. Mol Psychiatry 14(2): 123-42.
- 2133 Billionnet C, Gay E, Kirchner S, Leynaert B, Annesi-Maesano I (2011). Quantitative
- assessments of indoor air pollution and respiratory health in a population-based sample
- of French dwellings. Environ Rsh 111(3):425-434.
- 2136 CARB (1999). Public Workshop Update of Architectural Coatings Suggested Control
- 2137 Measure, June 3, 1999. California Environmental Protection Agency, Air Resources
- 2138 Board, Criteria Pollutants Branch Stationary Source Division.
- 2139 CARB (2013). California Environmental Protection Agency, Air Resources Board
 2140 (ARB). The California Toxics Inventory (CTI). Draft 2010 CTI Summary Table
- 2141 Chang E, Wang W, Zeng L, Chiang H (2010). Health risk assessment of exposure to
- selected volatile organic compounds emitted from an integrated iron and steel plant.
- 2143 Inhalation Toxicol 22(S2): 117-125.
- Chen R, Dick F, Seaton A (1999). Health effects of solvent exposure among dockyardpainters: mortality and neuropsychological symptoms. Occup Environ Med 56: 383-387.

- 2146 Chowdhury S, Brock SL (2001). Indoor air inhalation risk assessment for volatiles
- 2147 emanating from light nonaqueous phase liquids. Soil and Sediment Contamination
- 2148 10(4): 387-403.
- 2149 Cooper S, Burau K, Sweeney A, Robison T, Smith M, Symanski E, Colt J, Laseter J,
- 2150 Zahm S (2001). Prenatal exposure to pesticides: A feasibility study among migrant and 2151 seasonal farm workers. Am J Ind Med 40: 578-85.
- 2152 de Blas M, Navazo M, Alonso L, Durana N, Gomez MC, Iza J (2012). Simultaneous
- indoor and outdoor on-line hourly monitoring of atmospheric volatile organic compounds
 in an urban building. The role of inside and outside sources. Sci Total Environ 426: 327335.
- 2156 Douglas JF, McKee RH, Cagen SZ, Schmitt SL, Beatty PW, Swanson M, Schreiner C,
- 2157 Ulrich C, Cockrell B (1993). A neurotoxicity assessment of high flash aromatic naphtha.
- 2158 Toxicol Ind Health 9(6): 1047-1058.
- 2159 Dowty BJ, Laseter JL, Storer J (1976). The transplacental migration and accumulation 2160 in blood of volatile organic constituents. Pediatr Res 10(7): 696-701.
- 2161 DTSC (2006). Fact Sheet. Beckman Coulter Seeks Renewal of Hazardous Waste
- Permit and Partial Closure. California Environmental Protection Agency. Department ofToxic Substances Control. April 2006.
- DTSC (2012). Community Notice. Draft Corrective Measures Plan for Review. G & K
 Services Facility. California Environmental Protection Agency. Department of Toxic
- 2166 Substances Control.
- Eide I and Zahlsen K (1996). Inhalation experiments with mixtures of hydrocarbons.Arch Toxicol 70: 397-404.
- 2169 El hamid Hassan AA, El Moez Elnagar SA, El Tayeb IM, El Halim Bolbol SA (2013).
- 2170 Health hazards of solvent exposure among workers in paint industry. OJSST 3: 87-95.
- Firth MJ (2008). Derivation of a chronic reference dose and reference concentration for
 trimethylbenzenes and C9 aromatic hydrocarbon solvents. Regul Toxicol Pharmacol
 52(3): 248-56.
- 2174 Frantik E, Hornychova M, Horvath M (1994). Relative acute neurotoxicity of solvents:
- 2175 isoeffective air concentrations of 48 compounds evaluated in rats and mice. Environ
- 2176 Rsh 66: 173-185.

- 2177 Freundt K, Romer K, Federsel R (1989). Decrease of inhaled toluene, ethyl benzene,
- 2178 *m*-xylene, or mesitylene in rat blood after combined exposure to ethyl acetate. Bull
- 2179 Environ Contam Toxicol 42: 495-498.
- 2180 Fukaya Y, Saito I, Matsumoto T, Takeuchi Y, Tokudome S (1994). Determination of
- 2181 3,4,-dimethylhippuric acid as a biological monitoring index for trimethylbenzene
- 2182 exposure in transfer print workers. Int Arch Occup Environ Hlth 65: 295-97.
- 2183 Gaschen A, Lang D, Kalberer M, Savi M, Geiser T, Gazdhar A, Lehr C, Bur M, Dommen
- 2184 J, Baltensperger U, Geiser M (2010). Cellular responses after exposure of lung cell
- 2185 cultures to secondary organic aerosol particles. Env Sci Tech 44(4): 1424-1430.
- 2186 Ginsberg G, Bruckner J, Sonawane B (2004). Incorporating children's toxicokinetics into 2187 a risk framework. Environ Health Perspect 112 (2): 272-283.
- 2188 Gong Y, Kishi R, Kasai S, Katakura Y, Fujiwara K, Umemura T, Kondo T, Sato T, Sata
- 2189 F, Tsukishima E, Tozaki S, Kawai T, Miyama Y (2003). Visual dysfunction in workers
- 2190 exposed to a mixture of organic solvents. Neurotoxicol 24(4-5): 703-710.
- 2191 Gralewicz S, Wiaderna D, Tomas T, Rydzynski K (1997). Behavioral changes following
- 4-week inhalation exposure to pseudocumene (1,2,4-trimethylbenzene) in the rat.
 Neurotox Teratol 19(4): 327-333.
- Gralewicz S, Wiaderna D (2001). Behavioral effects following subacute inhalation
 exposure to m-xylene or trimethylbenzene in the rat. A comparative study. Neurotoxicol
 22(1): 79-89.
- Hissink AM, Krüse J, Kulig BM, Verwei M, Muijser H, Salmon F, Leenheers LH, Owen
 DE, Lammers JH, Freidig AP, McKee RH. (2007). Model studies for evaluating the
 neurobehavioral effects of complex hydrocarbon solvents III. PBPK modeling of white
 spirit constituents as a tool for integrating animal and human test data. Neurotoxicology
 28: 751-760.
- Hodgson A, Daisey J (1991). Sources and source strengths of volatile organic
 compounds in a new office building. J Air Waste Mgmt 41: 1461-1468.
- Hodgson A, Rudd A, Beal D, Chandra S (2000). Volatile organic compound
 concentrations and emission rats in new manufactured and site-built houses. Indoor Air
 10: 178-192.
- Ichiba M, Hama H, Yukitake S, Kubota M, Kawasaki S, Tomokuni K (1992). Urinary
 excretion of 3,4-dimethylhippuric acid in workers exposed to 1,2,4-trimethylbenzene. Int
 Arch Occup Environ Hlth 64: 325-327.

Appendix D1

TSD for Noncancer RELs

- 2210 Jarnberg J, Johanson G (1995). Liquid/Air partition coefficients of the
- trimethylbenzenes. Toxicol Ind Hlth 11(1): 81-88.
- Jarnberg J, Johanson G, Lof A (1996). Toxicokinetics of inhaled trimethylbenzene in man. Toxicol Appl Pharmacol 140: 281-288.
- 2214 Jarnberg J, Stahlborn B, Johanson G, Lof A (1997a). Urinary excretion of
- 2215 dimethylhippuric acids in humans after exposure to trimethylbenzenes. Int Arch Occup 2216 Environ Hlth 69: 491-497.
- Jarnberg J, Johanson G, Lof A, Stahlborn B (1997b). Inhalation toxicokinetics of 1, 2, 4trimethylbenzene in volunteers: comparison between exposure to white spirit and 1, 2,
- 4-trimethylbenzene alone. The Sci Total Environ 199: 65-71.
- Jarnberg J, Johanson G, Lof A, Stahlbom B (1998). Toxicokinetics of 1,2,4-
- trimethylbenzene in humans exposed to vapours of white spirit: comparison with
- exposure to 1,2,4-trimethylbenzene alone. Arch Toxicol 72(8): 483-9.
- Jones AP (1999). Indoor air quality and health. Atmos Environ 33: 4535-4564.
- Jones K, Meldrum M, Baird E, Cottrell S, Kaur P, Plant N, Dyne D, Cocker J (2006).
 Biological monitoring for trimethylbenzene exposure: A human volunteer study and a
 practical example in the workplace. Ann Occup Hyg 50(6): 593-598.
- Kenndler E, Schwer C, Huber J (1989). Determination of 1,2,4-Trimethylbenzene
 (Pseudocumene) in serum of a person exposed to liquid scintillation counting solutions
 by GC/MS. J Anal Technol 13: 211-213.
- Kim Y, Harrad S, Harrison R (2001). Concentrations and sources of volatile organic
 compounds in urban domestic and public microenvironments. Indoor Built Environ 10:
 147-153.
- 2233 Kjaer U, Nielsen P, Vejrup K, Wolkoff P (1996). A method for determination of the sink
- 2234 effect of VOCs from building materials. *In*: Characterizing Sources of Indoor Air
- 2235 Pollution and Related Sink Effects. Bruce A. Tichenor (ed.). American Society for
- 2236 Testing and Materials, pp. 123-33.
- Koch Industries, Inc (1995). 14-day oral gavage toxicity study of 1,3,5-trimethylbenzene
 in rats with a recovery group. IIT Research Institute (contractor), Chicago III. Prepared
 for Koch Industries Inc., Wichita, KS.

- 2240 Korsak Z, Swiercz R, Rydzynski K (1995). Toxic effects of acute inhalation exposure to
- 1,2,4-trimethylbenzene (pseudocumene) in experimental animals. Int J Occup Med
- 2242 Environ Hlth 8(4): 331-337.
- 2243 Korsak Z, Rydzynski K (1996). Neurotoxic effects of acute and subchronic inhalation
- exposure to trimethylbenzene isomers (pseudocumene, mesitylene, hemimellitene) in rats. Int J Occup Med Environ Hlth 9(4): 341-9.
- 2246 Korsak Z, Rydzynski K, Jajte J (1997). Respiratory irritative effects of
- trimethylbenzenes: an experimental animal study. Int J Occup Med Environ Hlth 10(3): 303-311.
- 2249 Korsak Z, Stetkiewicz J, Majcherek W, Stetkiewicz I, Jajte J, Rydzynski K (2000a).
- 2250 Subchronic inhalation toxicity of 1,2,3-trimethylbenzene (hemimellitene) in rats. Intl J 2251 Occup Med Environ Hlth 13(3): 223-232.
- Korsak Z, Stetkiewicz J, Majcherek W, Stetkiewicz I, Jajte J, Rydzynski K (2000b).
 Subchronic inhalation toxicity of 1,2,4-trimethylbenzene (pseudocumene) in rats. Intl J
 Occup Med Environ Hlth 13(2): 155-64.
- Kostrzewski P, Wiaderna-Brycht A, Czerski B (1997). Biological monitoring of
 experimental human exposure to trimethylbenzene. Sci Total Environ 199: 73-81.
- 2257 Laham S, Potvin M (1980). Metabolism of 1,3,5-trimethylbenzene in rabbits. In:
- 2258 Proceedings of the American Industrial Hygiene Conference, Houston, TX. May 20-24.
- 2259 American Industrial Hygiene Association, Akron, OH. Pgs 93-94.
- 2260 Lai H, Kendall M, Ferrier H, Lindup I, Alm S, Hanninen O, Jantunen M, Mathys P,
- Colvile R, Ashmore M, Cullinan P, Nieuwenhuijsen M (2004). Personal exposures and
 microenvironment concentrations of PM_{2.5}, VOC, NO₂ and CO in Oxford, UK. Atmos
 Environ 38: 6399-6410.
- Lam H, Lof A, Ladefoged O (1992). Brain concentrations of white spirit components and
 neurotransmitters following a three week inhalation exposure of rats. Pharmacol Toxicol
 70: 394-396.
- Lawrence S, Corriden R, Nizeh V (2018). The ontogeny of a neutrophil: mechanisms of granulopoiesis and homestasis. Biol Rev 82(1)
- Lee CR, Jeong KS, Kim Y, Yoo C, Lee JH, Choi Y (2005). Neurobehavioral changes of shipyard painters exposed to mixed organic solvents. Ind HIth 43(2): 320-326.

- 2271 Leenheers LH (1996). Determination of liquid/air partition coefficients of n-nonane, n-
- decane, 1,2,4-trimethylbenzene and cyclohexane. TNO final report V96.638. TNONutrition and Food Research Institute, Zeist, The Netherlands.
- Lehotzky K, Szeberenyi J, Tatrai E, Kiss A (1983). Experimental data on the acute and
 subacute toxicity of a new organic solvent aromotal (in Hungarian). Egeszsegiudomany
 2276 27: 322-331.
- Lehotzky K, Szeberenyi J, Ungvary G, Kiss A (1985). Behavioral effects of prenatal exposure to carbon disulphide and to aromatol in rats. Arch Toxicol suppl 8: 442-446.
- Li Y and Wang L (2014). The atmospheric oxidation mechanism of 1,2,4trimethylbenzene initiated by OH radicals. Phys Chem Chem Phys 16: 17908-17917.
- Liu YJ (2006). Thymic stromal lymphopoietin: master switch for allergic inflammation. J Exp Med 203: 269–273.
- 2283 Lutz P, Gralewicz S, Wiaderna D, Swiercz R, Grzelinska Z, Majcherek W (2010).
- Contrasting effects of a 4-week inhalation exposure to pseudocumene or hemimellitene
 on sensitivity to amphetamine and propensity to amphetamine sensitization in the rat.
 Int J Occup Med Environ Hlth 23(1): 85-94.
- McKee R, Wong Z, Schmitt S, Beatty P, Swanson M, Schreiner C, Schardein J (1990).
 The reproductive and developmental toxicity of high flash aromatic naphtha. Toxicol Ind
 Health 6(3-4): 441-60.
- 2290 McKee R, Lammers J, Muijser H, Owen D, Kulig B (2010). Neurobehavioral effects of 2291 acute exposure to aromatic hydrocarbons. Int J Toxicol 29(3): 277-290.
- 2292 McKee R, Adenuga M, Carrillo J (2015). Characterization of the toxicological hazards of 2293 hydrocarbon solvents. Crit Reviews in Toxicol 45(4): 273-365.
- McKenzie LM, Witter R, Newman LS, Adgate J (2012). Human health risk assessment of air emissions from development of unconventional natural gas resources. Sci Total Environ 424: 79-87.
- McKenzie LM, Guo R, Witter R, Savitz D, Newman L, Adgate J (2014). Birth outcomes
 and maternal residential proximity to natural gas development in rural Colorado. Environ
 Hlth Perspect 122(4): 412-417.
- Meininghaus R, Salthammer T, Knoppel H (1999). Interaction of volatile organic
 compounds with indoor materials a small-scale screening method. Atmos Environ 33:
 2302 2395-2401.

Meulenberg C, Vijverberg H (2000). Empirical relations predicting human and rat
tissue:partition coefficients of volatile organic compounds. Toxicol Appl Pharmacol 165:
206-16.

2306 Mikkelsen S, Jorgensen M, Browne E, Gyldensted C (1988). Mixed solvent exposure 2307 and organic brain damage. A study of painters. Acta Neurol Scand Suppl 118: 1-143.

- 2308 Mikulski P, Wiglusz R (1975). The comparative metabolism of mesitylene,
- 2309 pseudocumene and hemimellitene in rats. Toxicol Appl Pharmacol 31: 21-31.
- 2310 Minoia C, Aprea G, Oppezzo M, Magnaghi S, Sciarra G, Barisano A, Fiorentino ML,
- 2311 Berri A, Bellinzona M, Robustelli della Cuna F, Frigerio F, Schiavi A, Di Gregorio L
- 2312 (1996). Environmental and urinary reference values as markers of exposure to
- hydrocarbons in urban areas. The Sci Total Environ 192(2): 163-182.
- 2314 Myhre O, Fonnum F (2001). The effect of aliphatic, napthenic, and aromatic
- 2315 hydrocarbons on production of reactive oxygen species and reactive nitrogen species in
- rat brain synaptosome fraction: the involvement of calcium, nitric oxide synthase,
- 2317 mitochondria, and phospholipase A. Biochem Pharmacol 62: 119-128.
- Nau C, Neal J, Thornton M (1966). C9-C12 fractions obtained from petroleum distillates.Arch Environ Health 12.
- Nong A, McCarver DG, Hines RN, Krishnan K (2006). Modeling interchild differences in
 pharmacokinetics on the basis of subject-specific data on physiology and hepatic
 CYP2E1 levels: a case study with toluene. Toxicol Appl Pharmacol 214(1): 78-87.
- 2323 OEHHA (2001). Prioritization of Toxic Air Contaminants Under the Children's
- 2324 Environmental Health Protection Act. California Environmental Protection Agency
- 2325 (Cal/EPA), Office of Environmental Health Hazard Assessment (OEHHA).
- 2326 OEHHA (2008). Air Toxics Hot Spots Program Risk Assessment Guidelines. Technical
- 2327 Support document for Deriving Noncancer Reference Exposure Levels. Office of
- 2328 Environmental Health Hazard Assessment, California Environmental Protection Agency.
- 2329 May 2009.
- 2330 OEHHA/CARB (2013). Recommendations to the California Public Utilities Commission
- regarding health protective standards for the injection of biomethane into the common
- 2332 carrier pipeline. California Environmental Protection Agency (Cal/EPA), Office of
- 2333 Environmental Health Hazard Assessment (OEHHA) and the California Air Resources
- 2334 Board (CARB). May 15, 2013.

- Petrov EJ, Pereslegina IA, Mineev BA, Maianskaia IV (1999). [The effect of benzene
 derivatives on the body sensitization of children]. Gig Sanit 5: 42-44.
- Pratt H, Karim N, Bleich N, Mittelman N (2000). Short latency visual evoked potentials in
 occupational exposure to organic solvents. Neurophysiol Clin 30: 306-312.
- Pyykko K (1980). Effects of methylbenzenes on microsomal enzymes in rat liver, kidneyand lung. Biochem Biophy Acta 663: 1-9.
- 2341 Retitzig M, Mohr S, Heinzow B, Knoppel H (1998). VOC emissions after building
- renovations: traditional and less common indoor air contaminants, potential sources,and reported health complaints. Indoor Air 8: 91-102.
- Rich A, Grover J, Sattler M (2014). An exploratory study of air emissions associated
- with shale gas development and production in the Barnett shale. J Air WasteManagement Assoc 64(1): 61-72.
- 2347 Romer K, Federsel R, Freundt K (1986). Rise of inhaled toluene, ethyl benzene, m-2348 xylene, or mesitylene in rat blood after treatment with ethanol. Bull Environ Contam
- 2349 Toxicol 37: 874-876.
- Rumchev K, Spickett J, Bulsara M, Phillips M, Stick S (2004). Association of domestic
 exposure to volatile organic compounds with asthma in young children. Thorax 59(9):
 746-751.
- Saillenfait AM, Gallissot F, Sabate JP, Morel G (2005). Developmental toxicity of two
 trimethylbenzene isomers, mesitylene and pseudocumene, in rats following inhalation
 exposure. Food Chem Toxol 43(7): 1055-63.
- Satou N, Ishihara K, Hiratsuka M, Tanaka H, Endo Y, Saito S, Iwakura Y, Leonard W,
 Hirasawa N (2012). Induction of Thymic Stromal Lymphopoietin Production by Xylene
 and Exacerbation of Picryl Chloride-Induced Allergic Inflammation in Mice. Int Arch
 Allergy Immunol 157: 194–201.
- 2360 Schupp T, Bolt H, Jaeckh R Hengstler J (2006). Benzene and its methyl-derivatives:
- 2361 derivation of maximum exposure levels in automobiles. Toxicol Lett 160: 93-104.Silva
 2362 C, Passos M, Camara J (2011). Investigation of urinary volatile organic metabolites as
- 2363 potential cancer biomarkers by solid-phase microextraction in combination with gas
- chromatography-mass spectrometry. Br J Cancer 105: 1894-1904.
- Shi J, Deng H, Bai Z *et al.* (2015). Emission and profile characteristic of volatile organic
 compounds emitted from coke production, iron smelt, heating station and power plant in
 Liaoning Province, China. Sci Total Environ 515-516: 101-108.

Appendix D1

2368 Stefaniak A, Breysse P, Murray P, Rooney B, Schaefer J (2000). An evaluation of

- employee exposure to volatile organic compounds in three photocopy centers. Environ
- 2370 Res 83: 162-173.
- 2371 Sulkowski W, Kowalska S, Matyja W, Guzek W, Wesolowski W, Szymczak W,
- 2372 Kostrewski P (2002). Effects of occupational exposure to a mixture of solvents on the 2373 inner ear: a field study. Int J Occup Med Environ Hlth 15(3): 247-256.
- 2374 Swiercz R, Rydzynski K, Wasowicz W, Majcherek W, Wesolowski W (2002).
- 2375 Toxicokinetics and metabolism of pseudocumene (1,2,4-trimethylbenzene) after
- inhalation exposure in rats. Int J Occup Med Environ HIth 15(1): 37-42.
- 2377 Swiercz R, Wiaderna D, Wasowicz W, Rydzynski K (2003). Pseudocumene in brain,
- 2378 liver, lung and blood of rats after single and repeated inhalation exposure. Intl J Occup
- 2379 Med Environ Hlth 16(1): 61-66.
- Swiercz R, Majcherek W, Wasowicz W (2016). Hemimellitene (1,2,3-trimethylbenzene)
 in the liver, lung, kidney and blood, and dimethylbenzoic acid isomers in the liver, lung,
 kidney and urine of rats after single and repeated inhalation exposure to hemimellitene.
 Int J Occup Med Environ Health 29 (1): 113-28.
- Tomas T, Lutz P, Wiaderna D (1999a). Changes in electrocortical arousal following
 acute trimethylbenzene administration in rats. Intl J Occup Med Environ Hlth 12(4): 6778.
- Tomas T, Wiaderna D, Swiercz R (1999b). Neurotoxicity assessment of selected
 organic solvents based on spontaneous and evoked cortical and hippocampal activity in
 rats. Int J Occup Med Environ Hlth 12(1): 73-84.
- Tomas T, Swiercz R, Wiaderna D (1999c). Effects of acute exposure to aromatic
 hydrocarbons C9 on locomotor activity in rats. Trimethylbenzene isomers. Intl J Occup
- 2392 Med Environ Hlth 12(4): 331-343.
- 2393 Triebig G, Barocka A, Erbguth F, Holl R, Lang C, Rechlin T, Weidenhammer W, Weltle
- D (1992). Neuroptoxicity of solvent mixtures in spray painters. II. Neurologic,
- psychiatric, psychological, and neuroradiologic findings. Int Arch Occup Environ Hlth64(5): 361-72.
- Ungvary G, Tatrai E, Lorincz M, Fittler Z, Bareza G (1983). Study of the embryotoxic
 effect of Aromatol a new aromatic C₉ mixture. Egeszsegtudomany 27: 138-48.

TMBs

2399 Ungvary G and Tatrai E (1985). On the embryotoxic effects of benzene and its alkyl

- 2400 derivatives in mice, rats and rabbits. In: Receptors and Other Targets for Toxic
- 2401 Substances. Arch Toxicol Suppl 8:425-430. Springer-Verlag, 1985.
- 2402 USEPA (1994a). Website

2403 <u>https://sor.epa.gov/sor_internet/registry/substreg/searchandretrieve/substancesearch/se</u>
 2404 arch.do?synId=1487249&displaySynonym

- 2405 USEPA (1994b). U.S. EPA. Methods For Derivation Of Inhalation Reference
- 2406 Concentrations (RfCs) And Application Of Inhalation Dosimetry. U.S.
- 2407 Environmental Protection Agency, Office of Research and Development, Office
- of Health and Environmental Assessment, Washington, DC, EPA/600/8-90/066F.
- 2409 USEPA (1996). Guidelines for Reproductive Toxicity Risk Assessment. United States
- 2410 Environmental Protection Agency, Washington DC.
- 2411 <u>https://www.epa.gov/sites/default/files/2014-11/documents/guidelines_repro_toxicity.pdf</u>
- 2412 USEPA (2012). Study of the potential impacts of hydraulic fracturing on drinking water
- 2413 resources. Progress Report. United States Environmental Protection Agency. Office of
- 2414 Research and Development. EPA 601/R-12/011 <u>www.epa.gov/hfstudy</u>
- 2415 USEPA (2016). IRIS Toxicological Review of Trimethylbenzenes (September 2016).
- 2416 U.S. Environmental Protection Agency, Washington, DC. Office of Research and 2417 Development. EPA/635/R-16/161Fa.
- 2418 https://cfpub.epa.gov/ncea/iris/iris/documents/documents/toxreviews/1037tr.pdf
- 2419 USEPA (2020). Benchmark Dose Software (BMDS), version 3.2.
- 2420 <u>https://www.epa.gov/bmds</u>
- 2421 Wiaderna D, Gralewicz S, Tomas T (1998). Behavioral changes following a four-week
- inhalation exposure to hemimellitene (1,2,3-trimethylbenzene) in rats. Int J Occup Med
 Environ Hlth 11(4): 319-334.
- Wiaderna D, Gralewicz S, Tomas T (2002). Assessment of long-term neurotoxic effects
 of exposure to mesitylene (1,3,5-trimethylbenzene) based on the analysis of selected
- behavioral responses. Int J Occup Med Environ HIth 15(4): 385-391.
- Wiglusz R, Delag G, Mikulski P (1975a). Serum enzymes activity of mesitylene vapour
 treated rats. Bull Inst Marit Trop Med Gdynia 26(3-4): 303-313.
- 2429 Wiglusz R, Kienitz M, Delag G, Galuszko E, Mikulski P (1975b). Peripheral blood of 2430 mesitylene vapour treated rats. Bull Inst Marit Trop Med Gdynia 26(3-4): 315-322.

Wiglusz R, Jarnuszkiewicz I, Delag G (1986). Kinetics of solvents release from paint
coatings. I. Paint coating hardened at +20C temperature. Bull Inst Mar Trop Med
Gydnia 37: 247-253.

- Wu C, Liu J, Liu S *et al.* (2018). Assessment of the health risks and odor concentration
 of volatile compounds from a municipal solid waste landfill in China. Chemosphere 202:
 1-8.
- 2437 Yoshida T, Matsunaga I, Tomioka K, Kumagai S (2006). Interior air pollution in
- 2438 automotive cabins by volatile organic compounds diffusing from interior materials. II.
 - 2439 Influence of manufacturer, specifications and usage status on air pollution, and2440 estimation of air pollution levels in initial phases of delivery as a new car. Indoor Built
- 2440 estimation of all politition levels in linitial 2441 Environ 15: 445-462.
 - 2442 Yoshida T (2010). Estimation of absorption of aromatic hydrocarbons diffusing from
 - 2443 interior materials in automobile cabins by inhalation toxicokinetic analysis in rats. J Appl
 - 2444 Toxicol 30: 525-535.
 - Zahlsen K, Nilsen A, Eide I, Nilsen O (1990). Accumulation and distribution of aliphatic
 - 2446 (n-nonane), aromatic (1,2,4-trimethylbenzene) and naphthenic (1,2,4-
 - trimethylcyclohexane) hydrocarbons in the rat after repeated inhalation. PharmacolToxicol 67: 436-440.
 - Zahlsen K, Eide I, Nislen AM, Nielsen OG (1992). Inhalation kinetics of C6 to C10
 - 2450 aliphatic, aromatic and napththenic hydrocarbons in rat after repeated exposures.
 - 2451 Pharmacol Toxicol 71: 144-149.