Triazole Antifungal Agents

A number of triazoles are broad spectrum antifungal agents used as pesticides and pharmaceuticals. They inhibit the biosynthesis of ergosterol, which is an essential component of fungal membranes. Triazole antifungal agents are extensively used. The general population can be exposed as a result of the use of triazole pharmaceuticals and through consumption of food or water containing triazole pesticide residues. Occupational exposure may occur to workers involved in the manufacture or use of triazole antifungal agents.

Triazole moiety

Triazole antifungal agents (as a chemical group) passed the animal data screen, underwent a preliminary toxicological evaluation, and are being brought to the Carcinogen Identification Committee (CIC) for consultation. This is a compilation of the relevant studies identified during the preliminary toxicological evaluation. The CIC is being asked to advise OEHHA on whether triazole antifungal agents as group, or any individual triazoles, should be brought to the committee for a full evaluation of the carcinogenicity evidence at a future meeting.

Epidemiological data

No cancer epidemiology studies on triazole antifungal agents were identified.

Animal carcinogenicity data

Tables 1 and 2 present animal carcinogenicity data for several triazole antifungal agents. Triazole antifungal agents are hepatotoxic, with many producing liver tumors in mice. Some produce thyroid and other tumors in rats.
Table 1. Tumor findings in dietary carcinogenicity studies of several triazole antifungal agents

<table>
<thead>
<tr>
<th>Chemical (CAS Number)</th>
<th>Structure</th>
<th>Animal data</th>
<th>Reference</th>
</tr>
</thead>
</table>
| Cyproconazole (113096-99-4) | ![Cyproconazole Structure](image) | 88-week study in male and 92-week study in female CD-1 mice
 - *Increases in liver adenoma (by pairwise comparison) and combined adenoma and carcinoma (by pairwise comparison and trend) in males and females*
 Two-year studies in male and female rats
| Difenoconazole (119446-68-3) | ![Difenoconazole Structure](image) | 78-week studies in male and female CD-1 mice
 - *Increases in liver adenoma, carcinoma and combined adenoma and carcinoma (by pairwise comparison and trend) in males and females*
 104-week studies in male and female Sprague-Dawley rats
 - *No treatment-related tumor findings* | U.S. EPA (1994) |
| Etaconazole (60207-93-4) | ![Etaconazole Structure](image) | Two-year studies in male and female mice
 Increases in hepatocellular adenoma, carcinoma and combined adenoma and carcinoma in males and females | U.S. EPA (1998) |
| Fenbuconazole (114369-43-6) | ![Fenbuconazole Structure](image) | 78-week studies in male and female CD-1 mice
 - *Increase in combined liver adenoma and carcinoma (by pairwise comparison) in females*
 104-week studies in male and female Sprague-Dawley rats
 - *Increase in combined benign and malignant thyroid follicular cell tumors (by pairwise comparison) in males* | U.S. EPA (2001a) |
Table 1. Tumor findings in dietary carcinogenicity studies of several triazole antifungal agents (continued)

<table>
<thead>
<tr>
<th>Chemical (CAS Number)</th>
<th>Structure</th>
<th>Animal data</th>
<th>Reference</th>
</tr>
</thead>
</table>
| Flusilazole (85509-19-9) | ![Flusilazole Structure](image1) | 18-month studies in male and female CD-1 mice
- *Increase in combined hepatocellular adenoma and carcinoma (by pairwise comparison and trend) in females*
Two-year studies in male and female Sprague-Dawley rats
- *Increases in combined transitional cell papilloma and carcinoma of the urinary bladder (by pairwise comparison and trend) in males and females*
- *Increase in Leydig cell tumors (by pairwise comparison and trend) in males* | IPCS (1995) |
| Hexaconazole (79983-71-4) | ![Hexaconazole Structure](image2) | Two-year studies in male and female mice
- *Marginal increase in hepatocellular tumors*
Two-year studies in male and female Wistar rats
| Propiconazole (60207-90-1) | ![Propiconazole Structure](image3) | Two-year studies in male and female CD-1 mice
- *Increase in liver adenoma and combined adenoma and carcinoma (by pairwise comparison and trend) and liver carcinoma (by trend) in males*
18-month dietary study in male CD-1 mice
- *Increase in liver adenoma and combined adenoma and carcinoma (by pairwise and trend) in males*
Two-year studies in male and female Sprague-Dawley rats
No treatment-related tumor findings | U.S. EPA (2003, 2006) |
| Tebuconazole (10754-96-3) | ![Tebuconazole Structure](image4) | 21-month studies in male and female NMRI mice
- *Increases in hepatocellular adenoma, carcinoma and combined adenoma and carcinoma (by pairwise comparison) in males and females*
Two-year studies in male and female Wistar rats
Table 1. Tumor findings in dietary carcinogenicity studies of several triazole antifungal agents (continued)

<table>
<thead>
<tr>
<th>Chemical (CAS Number)</th>
<th>Structure</th>
<th>Animal data</th>
<th>Reference</th>
</tr>
</thead>
</table>
| Triadimefon (43121-43-3) | ![Structure](image1.png) | 21-month studies in male and female NMRI mice
- Increases in hepatocellular adenoma (by pairwise comparison) in males and females
Two-year studies in male and female Wistar rats
- Increase in thyroid follicular cell adenoma (by pairwise comparison) in males | U.S. EPA (1998) |
| Triadimenol (55219-65-3) | ![Structure](image2.png) | Two-year studies in male and female mice
- Increase in hepatocellular adenoma (by pairwise comparison) in females
Two-year studies in male and female rats
- No treatment-related tumor findings | U.S. EPA (1998) |
| Uniconazole (83657-22-1) | ![Structure](image3.png) | 78-week studies in male and female mice
- Increase in hepatocellular adenoma, carcinoma and combined adenoma and carcinoma in males
Two-year studies in male and female rats
- No treatment-related tumor findings | U.S. EPA (1998) |

Table 2. Tumor induced by triazole antifungal agent listed as a carcinogen under Proposition 65

<table>
<thead>
<tr>
<th>Chemical (CAS Number)</th>
<th>Structure</th>
<th>Animal data</th>
<th>Year Listed</th>
</tr>
</thead>
</table>
| Epoxiconazole (135319-73-2) (U.S. EPA, 2001b) | ![Structure](image4.png) | Male Mice:
- Liver adenoma and carcinoma
Female Mice:
- Liver adenoma and carcinoma
Male Rats:
- Liver tumors; adrenal cortex tumors
Female Rats:
- Adrenal cortex tumors; liver cholangiomas; ovarian tumors | 2011 |
Other relevant Data

- Genotoxicity: See Table 3

Table 3. Genotoxicity findings for various triazole antifungal agents

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Gene mutation</th>
<th>Chromosomal effects</th>
<th>UDS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Salmonella</td>
<td>Other</td>
<td>Micronucleus</td>
</tr>
<tr>
<td>Cyproconazole (U.S. EPA, 1991; 1992; 2008)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Difenoconazole (U.S. EPA, 1994)</td>
<td>-</td>
<td>-</td>
<td>NA</td>
</tr>
<tr>
<td>Etaconazole (U.S. EPA, 1998; 2000)</td>
<td>-</td>
<td>-</td>
<td>NA</td>
</tr>
<tr>
<td>Fenbuconazole (U.S. EPA, 2001a)</td>
<td>-</td>
<td>-</td>
<td>NA</td>
</tr>
<tr>
<td>Fluconazole (Fucic et al., 2008)</td>
<td>NA</td>
<td>NA</td>
<td>+ (in vivo: mouse)</td>
</tr>
<tr>
<td>Flusilazole (IPCS, 1995)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hexaconazole (U.S. EPA, 2000)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Myclobutanil (Ross et al., 2009)</td>
<td>-</td>
<td>-</td>
<td>NA</td>
</tr>
<tr>
<td>Propioconazole (Ross et al., 2009)</td>
<td>-</td>
<td>+ (in vivo: mouse)</td>
<td>-</td>
</tr>
<tr>
<td>Tebuconazole (U.S. EPA, 2010; CDPR, 2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triadimefon (Ross et al., 2009)</td>
<td>-</td>
<td>+ (in vivo: mouse)</td>
<td>+ (in vivo: rat)</td>
</tr>
<tr>
<td>Triadimenol (U.S. EPA, 1998; CDPR, 2000)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Uniconazole (U.S. EPA, 1998; 2000)</td>
<td>-</td>
<td>-</td>
<td>+ (in vivo: mouse)</td>
</tr>
</tbody>
</table>

UDS = Unscheduled DNA synthesis
NA = Not available

Table 4. Genotoxicity findings for triazole antifungal agent listed as a carcinogen under Proposition 65

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Gene mutation</th>
<th>Chromosomal effects</th>
<th>DNA effects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Salmonella</td>
<td>Other</td>
<td>Micronucleus</td>
</tr>
<tr>
<td>Epoxiconazole (U.S. EPA, 2001b)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Other mechanistic considerations

 Triazole antifungal agents induce and inhibit cytochrome P450 (CYP) enzymes. Transcriptional analysis of liver tissue from genomic studies of triazole antifungal agents suggests these compounds induce constitutive androstane receptor (CAR) and pregnane x receptor (PXR) activation, CYP induction, oxidative stress, dysregulation of cholesterol biosynthesis and alteration in cell signaling, cell growth, cell proliferation and apoptosis pathways (Nesnow et al., 2009; Goetz and Dix, 2009; Nesnow et al., 2011).

References

1 Excerpts or the complete publication have been provided to members of the Carcinogen Identification Committee, in the order in which they are discussed in this document.

