Effects of Recent Climate Change on Terrestrial Vertebrate Ranges in California:
The Grinnell Resurvey Project

Kelly Iknayan & Steve Beissinger
Dept. of Environmental Science, Policy & Management and Museum of Vertebrate Zoology, UC Berkeley
Effects of Recent Climate Change on Terrestrial Vertebrate Ranges in California

- Vertebrates == Mammals and Birds
- Range == Elevational Range Dynamics
- In California == the Sierra Nevada
The Grinnell Legacy

Joseph Grinnell
MVZ Director 1908-39
Published transects

Pre-1940 MVZ: Specimen Locality Records
Pre-1940 MVZ:
Field Notes

[Page content]

MUSEUM OF Vertebrate ZOOLOGY

Date: July 2, 1928
Observer: J. M. Currell

Time in field: 7:30 a.m. - 4:00 p.m.
Approximate number of birds: 400

Species	Hours
Aggled Pipit | 2 |
White-Winged Sparrow | 4 |
Western Robin | 3 |
Northern Oriole | 3 |
Cassin's Pewee | 16 |
Canada Warbler | 3 |
Gray-crowned Sparrow | 17 |
Swainson's Thrush | 7 |
Pacific Wren | 5 |
Ruby-crowned Kinglet | 2 |
Pine Siskin | 2 |
Bohemian Waxwing | 3 |
Wilson's Thrush | 1 |
Barred Warbler | 1 |
Henry's Warbler | 1 |

| | | | | |
| | | | | |

TOTALES (hours and species):

[Table contents]
The Grinnell Legacy

“... the greatest purpose of our museum ... will not, however, be realized until the lapse of many years, possibly a century.... And this is that the student of the future will have access to the original record of faunal conditions in California and the west...”

-Grinnell, 1910
The Grinnell Resurvey Project

- Coastal 2009-10
- Lassen 2006-07
- Tahoe 2008
- Yosemite 2004-07
- White/Inyo 2008-13
- Western Deserts 2015-18
- Central Valley 2015-18
- Southern Sierra 2008-10
- San Jacinto (SDMNH) 2009-13

Grinnell's Life Zones:
- Boreal
- Upper Sonoran
- Transition
- Lower Sonoran
- Water
Linking Historic to Modern: Occupancy Models

- Depend on repeated, within-era temporal surveys
- **Probability of a false absence** (P_{fa}):
 - Estimates likelihood an observed absence is a true absence and not a lack of detection
 - Across sites (m) based on repeat (n) surveys:

\[
P_{fa} = \prod_{j=1}^{m} \prod_{i=1}^{n} (1 - p_{ij})
\]

EFFECTS OF CLIMATE CHANGE ON TERRESTRIAL VERTEBRATE RANGES
Effects of Climate Change on Terrestrial Vertebrate Ranges

• Elevational Range Dynamics
 – Are naïve predictions of upward shifts sufficient?
Naïve Range Limit Predictions

Low- & Mid-Elevation Species

Historic: Expand Upper Limit
Modern: Expand Upper Limit

Mid- & High-Elevation Species

Historic: Contract Lower Limit
Modern: Contract Lower Limit
Globally Coherent Fingerprint: Poleward and Upslope

“Mega” Meta-analyses:

• Parmesan and Yohe 2003. Science:
 – N = 434 species (latitude)

• Chen et al. 2011. Science:
 – N = 764 (latitude)
 – N = 1367 (elevation)
The Grinnell Resurvey Project: Yosemite Transect, Small Mammals

Mammal Trapping Data and Occupancy Profiles

Alpine chipmunk
Tamias alpinus

Mammal Trapping Data and Occupancy Profiles

Alpine chipmunk
Tamias alpinus

Mammal Trapping Data and Occupancy Profiles

Alpine chipmunk
Tamias alpinus

Elevational Range Change: 28 Yosemite Small Mammal Species

Elevational Range Change: Range Expansion

Elevational Range Change: Range Contraction

Elevational Range Change: No Change

Elevational Range Change

avg. ↑ 500 m

Range Change Predictors

• Strong:
 – Original elevational range:
 • Low: expand upper limit
 • High: contract lower limit
 \[\text{Consistent with naïve expectations}\]

• Weak:
 – Life history and ecological traits, specifically:
 • Longevity (life span in years): longer, ↓ probability of shift
 • Litters per year: more, ↑ probability of shift

Effects of Climate Change on Terrestrial Vertebrate Ranges

• Elevational Range Dynamics
 – Are naïve predictions of upward shifts sufficient?
 – Dynamics at a broader spatial extent
Dynamics at a Broader Spatial Extent

Northern: Lassen

Central: Yosemite

Southern: S. Sierra
Central

<table>
<thead>
<tr>
<th>Elevation (m)</th>
<th>Low-elevation species</th>
<th>High-elevation species</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Northern

<table>
<thead>
<tr>
<th>Elevation (m)</th>
<th>Low-elevation species</th>
<th>High-elevation species</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Southern

<table>
<thead>
<tr>
<th>Elevation (m)</th>
<th>Low-elevation species</th>
<th>High-elevation species</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rowe et al. 2015 Proc Royal Soc B 282: 20141857

- **expansion**
- **contraction**
Bushy-tailed woodrat
Neotoma cinerea

Rowe et al. 2015 Proc Royal Soc B 282: 20141857
Western gray squirrel
(*Sciurus griseus*)

Rowe et al. 2015 Proc Royal Soc B 282: 20141857
Avian Elevational Range Response

Tingley et al. 2012 Glob Change Biol 18: 3279-3290
Effects of Climate Change on Terrestrial Vertebrate Ranges

• Elevational Range Dynamics
 – Are naïve predictions of upward shifts sufficient?
 – Dynamics at a broader spatial extent
 – The shortcomings of the naïve approach
Climate Change Since Grinnell: Substantial and Highly Variable

The Elevational Push and Pull of Climate Change: Nearest Climatic Neighbor (Temperature and Precipitation)

Tingley et al. 2012 Glob Change Biol 18: 3279-3290
Effects of Climate Change on Terrestrial Vertebrate Ranges

• Elevational Range Dynamics
 – Are naïve predictions of upward shifts sufficient?
 – Dynamics at a broader spatial extent
 – The shortcomings of the naïve approach

• Predictors of Range Change
Effects of Climate Change on Terrestrial Vertebrate Ranges

• Elevational Range Dynamics
 – Are naïve predictions of upward shifts sufficient?
 – Dynamics at a broader spatial extent
 – The shortcomings of the naïve approach

• Predictors of Range Change
 – Climate
Central

Northern

Southern

low-elevation species

high-elevation species

Rowe et al. 2015 Proc Royal Soc B 282: 20141857
Climate Change Predictions: Small Mammal Range Shifts

- **Rowe et al. 2015 Proc Royal Soc B 282: 20141857**

![Graph showing range limit shifts for low- and high-elevation species.](image)
Climate Change Predictions: Small Mammal Range Shifts

Rowe et al. 2015 Proc Royal Soc B 282: 20141857
Climate Change Predictions: Avian Range Shifts

Tingley et al. 2012 Glob Change Biol 18: 3279-3290
Effects of Climate Change on Terrestrial Vertebrate Ranges

• Elevational Range Dynamics
 – Are naïve predictions of upward shifts sufficient?
 – Dynamics at a broader spatial extent
 – The shortcomings of the naïve approach

• Predictors of Range Change
 – Climate
 – Vegetation
Vegetation Change: Yosemite Transect Mammals

Santos et al. 2015 Ecography 38, 556–568
Vegetation Change: Synchronicity in Mammalian Shifts

Santos et al. 2015 Ecography 38, 556–568
Vegetation Change: Synchronicity in Mammalian Shifts

Santos et al. 2015 Ecography 38, 556–568
Vegetation Change: Synchronicity in Mammalian Shifts

Santos et al. 2015 Ecography 38, 556–568
Low-elevation: responding to vegetation change

High-elevation: responding to temperature change

Rowe et al. 2015 Proc Royal Soc B; Santos et al. 2015 Ecography
Effects of Climate Change on Terrestrial Vertebrate Ranges

• Elevational Range Dynamics
 – Are naïve predictions of upward shifts sufficient?
 – Dynamics at a broader spatial extent
 – The shortcomings of the naïve approach

• Predictors of Range Change
 – Climate
 – Vegetation
 – Life-history traits
Life History Traits: Birds

Tingley et al. 2012 Glob Change Biol 18: 3279-3290
Life History Traits: Birds

Tingley et al. 2012 Glob Change Biol 18: 3279-3290
Effects of Climate Change on Terrestrial Vertebrate Ranges

- Elevational Range Dynamics
 - Are naïve predictions of upward shifts sufficient?
 - Dynamics at a broader spatial extent
 - The shortcomings of the naïve approach

- Predictors of Range Change
 - Climate
 - Vegetation
 - Life-history traits
 - Anthropogenic Climate Refugia
Anthropogenic Climate Refugia: Belding’s Ground Squirrel

Anthropogenic Climate Refugia: Belding’s Ground Squirrel

Summary: Elevational Range Dynamics

• Naïve predictions of upward shifts
• The shortcomings of the naïve approach
 – Substantial heterogeneity in temperature/precipitation change
 – Large amounts of heterogeneity in regional species’ range responses
Summary: Predictors of Range Change

• Climate
 – Mammals:
 • High-elevation species: consistent with temperature
 • Low-elevation species: unpredictable by temperature or precipitation
 – Birds:
 • High-elevation species: tracked temperature
 • Low-elevation species: tracked precipitation
 • Intermediate-elevation: tracked both

• Vegetation
 – Mammals:
 • Low-elevation species expansions: synchronous with vegetation expansions
Summary: Predictors of Range Change

• Life-history traits
 – Mammals:
 • Weak support
 – Birds, more likely to shift if:
 • small clutch sizes
 • all-purpose territories
 • year-round residents

• Anthropogenic Climate Refugia
 – Mammals:
 • support low-elevation persistence (n=1)