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At the Tip of an Iceberg: Prenatal Marijuana and
Its Possible Relation to Neuropsychiatric
Outcome in the Offspring
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ABSTRACT
Endocannabinoids regulate brain development via modulating neural proliferation, migration, and the differentiation
of lineage-committed cells. In the fetal nervous system, (endo)cannabinoid-sensing receptors and the enzymatic
machinery of endocannabinoid metabolism exhibit a cellular distribution map different from that in the adult, implying
distinct functions. Notably, cannabinoid receptors serve as molecular targets for the psychotropic plant-derived
cannabis constituent Δ9-tetrahydrocannainol, as well as synthetic derivatives (designer drugs). Over 180 million
people use cannabis for recreational or medical purposes globally. Recreational cannabis is recognized as a niche
drug for adolescents and young adults. This review combines data from human and experimental studies to show
that long-term and heavy cannabis use during pregnancy can impair brain maturation and predispose the offspring to
neurodevelopmental disorders. By discussing the mechanisms of cannabinoid receptor-mediated signaling events at
critical stages of fetal brain development, we organize histopathologic, biochemical, molecular, and behavioral
findings into a logical hypothesis predicting neuronal vulnerability to and attenuated adaptation toward environmental
challenges (stress, drug exposure, medication) in children affected by in utero cannabinoid exposure. Conversely, we
suggest that endocannabinoid signaling can be an appealing druggable target to dampen neuronal activity if pre-
existing pathologies associate with circuit hyperexcitability. Yet, we warn that the lack of critical data from
longitudinal follow-up studies precludes valid conclusions on possible delayed and adverse side effects. Overall, our
conclusion weighs in on the ongoing public debate on cannabis legalization, particularly in medical contexts.
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The developing central nervous system (CNS) relies on a wide
array of signaling mechanisms with their precisely orches-
trated cross-talk shaping a combinatorial code for neuronal
development. This temporally defined procedure is reflected in
the production, differentiation, and migration of neurons and
glial cells (1–3). In addition to genetic predisposition, harmful
environmental agents can potently impact brain development.
These include alcohol and nicotine as unregulated substances
and many types of illicit drugs. Marijuana (Cannabis sativa), its
selectively cultivated subspecies (e.g., skunk), and its syn-
thetic derivatives (designer drugs) are commonly consumed
(4,5). According to the US Substance Abuse and Mental
Health Services Administration, their use peaks between 15
and 30 years of age with a trend for continued consumption by
people aged 30 to 40 years and over (6–8). Due to penal
sanctions for cannabis possession and abuse in several
European countries (9), potent synthetic cannabinoids, mim-
icking or amplifying psychoactive effects of Δ9-tetrahydrocan-
nabinol (THC), are offered as legal alternatives (10). The
prevalence of synthetic cannabinoid use by adolescents is
significantly higher in the United States (7.4%) than in Euro-
pean countries (e.g., .2% and 1.4% in the United Kingdom
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and Spain, respectively) without further increases in recent
years (10). Alarmingly, cannabinoids are the substance
chiefly abused by pregnant women: its prevalence exceeds
10% in the United States (7), while it remains largely unknown
yet with predicted socioeconomic variability (1% to 16%) in
Europe (9). This generation-driven pattern of cannabis use
exposes the brain to THC during at least one critical devel-
opmental period: in utero development of fetus, childhood, or
teenagehood (11).

A growing body of evidence demonstrates that agents that
are generally considered moderately harmful to the mother
when consumed at limited quantities (e.g., alcohol, nicotine,
morphine, or cannabis) may pose severe threats—unrelated to
miscarriage or placental deficits—to the fetus, providing the
foundation of neurobehavioral teratology (12). CNS vulnerabil-
ity is a leading fingerprint of harmful developmental drug
effects and predominantly manifests as functional impairments
in early childhood or adolescence, much less so by birth (13).
These observations fuel the double-hit hypothesis that defines
subthreshold stimuli as triggers of severe malfunction of
sensitized yet nonsymptomatic neuronal circuits with often
considerable delay in postnatal life (14,15). Nevertheless,
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cannabis-induced early prenatal lethality could be underesti-
mated. Rodent and chick experiments show that marijuana
embryotoxicity manifests as neural plate aplasia at early
intrauterine time points, which, when considering their human
equivalents (gestational days 15–19), would likely be clinically
misinterpreted as a lack of embryo implantation (16).

In addition to existing sociopolitical, economical, and
ethical arguments, recent campaigns aimed to decriminalize
cannabis were motivated by current patterns of use and
comparisons to alcohol, tobacco, heroin, and methamphet-
amine citing small-to-moderate adverse public health impact
for cannabis (17). This view is particularly prevalent since this
“soft drug” (18,19) causes seemingly reversible effects on
cognitive abilities after abstinence (20) and leads to psychotic
outcomes without relapse in adults (21). Case-control studies
in the United Kingdom, however, indicate that high-potency
cannabis variants (e.g., skunk) triple the risk (at earlier onset) of
psychosis (22). Conversely, cannabidiol, a nonpsychotropic
cannabis constituent, is reported as being a potent antipsy-
chotic agent and indicated for disease treatment (23,24) since
it appears to reduce the psychotropic action of THC (25).
Magnetic resonance imaging showed that neither volumetric
nor shape-based measures of brain regions driving conscious
behavior are altered by daily marijuana use (26). Moreover, and
for human offspring, prenatal marijuana does not induce gross
anatomical deformities or deficits in vital functions directly by
or after birth (27–29). This lends support to the double-hit
hypothesis of THC-induced neuronal sensitization (but see
embryotoxicity above), which is favored by THC’s efficacious
cross-placental transfer and excretion during lactation (30).
As such, THC concentration of breast milk in humans may be
up to eightfold higher than simultaneously measured maternal
plasma concentrations (31). Therefore, it is plausible that
continued maternal cannabis use during the first months
postpartum could evoke neurological consequences in tod-
dlers by 1 year of age (32) or later.

A more indirect way of cannabinoids to compromise
pregnancy outcome and fetoplacental development is through
their effect on maternal and placental hormone signaling. In
animal models, endocannabinoid release in the magnocellular
hypothalamus modulates glutamatergic and gamma-
aminobutyric acid (GABA)ergic inputs to oxytocin neurons
that tune their burst firing during parturition and lactation
(33). At the periphery, endocannabinoid signaling was placed
as a key node of placental autonomy and a trigger for
trophoblast invasion (34). Likewise, the suckling reflex, one
of the first perinatal functions to ensure the individual’s
survival, is shaped by type 1 cannabinoid receptor (CB1R)-
dependent signaling pathways (35), and its disruption exper-
imentally by CB1R antagonists provokes death.

Neuropsychiatric disorders represent a significant section
of human illnesses in Western societies. The longitudinal
Ottawa Prenatal Prospective Study and the Maternal Health
Practices and Child Development Study showed that children
of both low-risk (Ottawa Prenatal Prospective Study) and high-
risk (Maternal Health Practices and Child Development Study)
pregnant women exhibit signs of neuropsychiatric disturban-
ces at later ages. In this review, we collected scientifi-
cally substantiated information showing that prenatal, perina-
tal, or adolescent cannabis exposure can interfere with brain
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ontogeny, inducing subtle and long-lasting neurofunctional
impairments.
ENDOCANNABINOID SIGNALING IS A SUBSTRATE
OF CANNABIS IN FETAL CNS

Initial understanding about how cannabinoid ligands exert their
cellular actions was based on observations in the adult nervous
system. This cross-correlational landscape has changed
recently, with mechanistic analysis in embryonic brains and
peripheral tissues dissecting the mode of action for THC and
other CB1R receptor ligands (36–38). In fact, by consensus,
CB1R is the major neuronal target of THC in both the adult and
embryonic brain (27,36,39,40). Yet, signaling via type 2 canna-
binoid receptors (CB2R) (41), G-protein coupled receptor 55 (42),
peroxisome proliferator-activated receptors (43), and transient
receptor potential ion and cation channels (TRPM8, TRPA1,
TRPV2, and probably also TRPV1) (44) has also been described
(42,45). In particular, CB2R (46) and TRPV1 (47) signaling may be
relevant for neuronal development for their involvement in the
control of neural progenitor proliferation (40) and neurite out-
growth and directional guidance (Figure 1).

The molecular identification of cannabinoid-sensing receptors
prompted the exploration of endogenous ligands, which are
lipophilic derivatives of arachidonic acid: N-arachidonoy-
lethanolamide (anandamide [AEA]) (48) and 2-arachi-
donoylglycerol (2-AG) (49,50). In the adult brain, presynaptic
CB1Rs (51–54) produce state-dependent, bidirectional modula-
tion of synaptic neurotransmission at both inhibitory and excita-
tory synapses (55). Significantly, endocannabinoids affect both
short-term and long-term synaptic plasticity, and as a general
rule, attenuate presynaptic neurotransmitter release. Disturbance
of CB1R-mediated control of synaptic plasticity is typically seen
upon drug exposure and likely leads to neuronal circuit failures
(56–59). Besides, CB1Rs might also be found along the soma-
todendritic plasma membrane of neurons (60). Yet, the study of
their trafficking, particularly endocytosis, suggests vastly different
constitutive cycling and limited ligand binding.

Cannabis is clearly not THC alone. Instead, the large majority
of plant components, whose relative composition depends on
the plant variety (e.g., selectively cultivated subspecies), do not
directly interact with CB1Rs. Such CB1R-independent, or more
generally receptor independent, actions underpin the importance
of distinguishing between different varieties of cannabis when
describing their psychotropic and medicinal actions. Most plant
cannabinoids investigated so far interact with TRPV1, TRPV2,
TRPM8, and TRPA1 channels (61). The propyl analogue of THC,
Δ9-tetrahydrocannabivarin, a minor cannabinoid, is a neutral
antagonist for CB1R (62) and/or can weakly inhibit 2-AG biosyn-
thesis (61). Similarly, the other most abundant cannabinoid,
cannabidiol, has several non-CB1R targets (63), including its
inhibition of endocannabinoid inactivation (64). This, though
indirectly, can augment CB1R activity.

Understanding the role of endocannabinoid signaling in CNS
ontogeny reached a critical advance when not only cannabinoid
receptors (65) but also key nodes of the enzymatic machinery that
controls endocannabinoid bioavailability were explored in the
developing brain (66–68). Accordingly, α and β isoforms of sn-
1-diacylglycerol lipases and N-acyl-phosphatidylethanolamine-
selective phospholipase D generate 2-AG and AEA, respectively
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Figure 1. Ligands, enzymes, and
receptors of the endocannabinoid
system and their assumed roles in
developmental neurobiology. Ananda-
mide (AEA) inhibits neural progenitor
proliferation by blocking extracellular
signal-regulated kinase (ERK) and dif-
ferentiation through type 1 cannabi-
noid receptors (CB1Rs) (78). In turn,
2-arachidonoylglycerol (2-AG) (188) or
the pharmacologic activation of
CB1Rs (76,189) or type 2 cannabinoid
receptors (CB2Rs) (190) promotes
these actions. Polarization and migra-
tion of neurons involves CB1R signal-
ing and a mixture of autocrine and
paracrine mechanisms. Directional
axonal growth is triggered by TRPV1,
CB1Rs, and CB2Rs. Note that the
molecular architecture of endocanna-
binoid metabolism in developing neu-
rons is different from those in adults
with both synthesis and degrading
activities accumulating in the same

cell yet at distinct subcellular foci (191). DAGL, diacylglycerol lipase; MGL, monoacylglycerol lipase; NP, N-acyl-phosphatidylethanolamine-selective
phospholipase D; PKA, protein kinase A (43); TRPV1, transient receptor potential cation channel subfamily V, member 1.
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(69,70). In contrast, monoacylglycerol lipase and fatty acid amide
hydrolase inactivate 2-AG and AEA, respectively (71–74). In the
adult brain, this enzymatic machinery is linked to mature synaptic
sites to acutely regulate synaptic transmission via the on-demand
synthesis (and degradation) of endocannabinoids (59,75). In the
developing brain, endocannabinoid levels are regulated by a
molecularly similar machinery that contributes to the control of
neural proliferation, survival, linage commitment (40,76–78), and
directional axonal growth (36,71,79,80). Apart from these physio-
logical functions of endocannabinoid signaling (Figure 1) and more
in the direction of neuropsychiatric disorders, research on CB1R
and CB2R soon shifted onto brain territories and receptor systems
that are directly linked to neurological diseases or behavioral
functions. This was a critical step in clinical cannabinoid research:
while basic knowledge about the role of the endocannabinoid
system in neurodevelopment was primarily acquired principally in
the cerebral cortex (40,71,80,81), these focused studies generated
data in circuitries more implicit to specific pathologies.

The series of discoveries collated here involved, besides
some key human studies, elaborate animal experiments. In
most cases, purified THC or potent cannabinoid receptor
agonists/antagonists were applied at doses higher than those
usually taken by humans. We are aware that extrapolation of
experimental data to human pathobiology might raise con-
cerns. Therefore, we only emphasized points that are coinci-
dently supported by both lines of evidence, and contextualized
drug action and outcome bearing in mind differences in dose,
exposure time, gender, and genetic heterogeneity.
DISPARATE OUTPUT OF THE DOPAMINERGIC
MESOLIMBIC SYSTEM UNDERSCORES BEHAVIORAL
ABNORMALITIES, MOOD DISORDERS, AND
DEPRESSION IN THC-EXPOSED OFFSPRING

Brain regions in rodents, primates, and humans responsible
for mood and conscious behaviors are generally referred to as
B

limbic regions. These areas harbor either dopaminergic neu-
rons or their D1, D2 dopamine receptor (D1R/D2R)-containing
efferents and postsynaptic targets, underpinning dopamine-
mediated connectivity. Early animal studies indicated that
prenatal exposure to hashish containing a mixture of THC
(11.8%), cannabinol (5.7%), and cannabidiol (9.7%) (at 20 mg/
kg) throughout gestation gender-dependently affects the
dopaminergic system in the limbic forebrain of the offspring
—weeks after the actual exposure (82): in female rats, a
transient decrease of D1Rs appeared by the second postnatal
week and was accompanied by a decreased level of dopamine
and its metabolites. These changes were transient and
normalized by the end of the first postnatal month. In male
rats, the activity of tyrosine hydroxylase, the rate limiting
enzyme of dopamine synthesis, and dopamine metabolite
levels increased by the end of the first postnatal month,
leaving receptor numbers unaltered (82). Neurotransmitters,
present from early stages of brain development, exert trophic
effects on both target neurons and the maturation of afferent
inputs (e.g., during the last prenatal and first three postnatal
weeks in rodents), producing a critical time window for drug
action (83). THC-induced reorganization of the dopamine
system occurs within this sensitive period and might disrupt
reward circuits by genetic and epigenetic modifications
(84,85). Studying striatal dopamine and opioid-related genes
in human fetal subjects exposed to marijuana and in a possible
corresponding animal model of prenatal THC exposure, the
nucleus accumbens of adult THC-exposed offspring showed
increased 2meH3K9 repressive mark and decreased
3meH3K4 on and RNA polymerase II at the Drd2 locus (coding
for D2R) (85). In adults, acute marijuana exposure induced
alterations in mesolimbic dopaminergic activity that underlie
euphoric, motivational, and emotional imbalances (86). Experi-
ments in rats showed that this effect is due to increased
neuronal firing (87) and heightened tissue dopamine levels
(88). Indeed, adult male rats perinatally exposed to THC
iological Psychiatry ]]], 2015; ]:]]]–]]] www.sobp.org/journal e3
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display [dosage as in (82)] changes in sociosexual approach
behavior, in parallel with an imbalance in dopaminergic neuron
activity. This reflects the importance of a potential marijuana-
induced dopamine imbalance in limbic circuits (89).

Despite early studies being available (90,91), our under-
standing of how THC affects human neuropsychiatric disor-
ders experienced a quantum leap when the presence and
distribution pattern of CB1Rs were identified in the midgesta-
tional fetal human forebrain and found concentrated in the
amygdala and hippocampus (92). Using in situ hybridization to
visualize messenger RNA (mRNA) distribution in human midg-
estational fetuses (weeks 18–22), decreased D2R mRNA
expression was shown in the basal amygdala. This change
correlated with the amount of maternal marijuana intake,
ranging from 0 to ..89 average daily joints during pregnancy.
This change was specific, since no similar alteration was
detected in the hippocampus or striatum, the latter being a
key output target of the dopaminergic nigrostriatal tract (93).
Male, but not female, subjects exhibited significant D2R loss in
human fetuses, which corroborates gender-related differences
in animal studies (82,89). This gender-specific imbalance in
dopaminergic development might underscore that boys
exhibit greater vulnerability when tested for performance in
attention, learning, and memory in association with in utero
marijuana exposure (94–96). Since the structures involved are
critical for the development of behavioral and mood disorders
(97), a shift in dopamine receptor expression could contribute
to depressive symptoms (98) and impaired social behaviors,
as reported in children upon longitudinal follow-up (11,94).

Investigations about the possible incidence of prenatal
marijuana exposure on child depressive symptoms at 10 years
of age showed unexpected results. Based on the Maternal
Health Practices and Child Development Project and using the
Children’s Depression Inventory, a self-report measure of
childhood depression, repeated maternal marijuana use in
the first and third semesters was significantly associated with
the Children’s Depression Inventory score (98). Most women
cease or minimize drug abuse once becoming aware of their
pregnancies (99). Nevertheless, expanded analyses of the
effects by taking individual trimesters of marijuana exposure
as variables revealed that depressive symptoms in children in
fact result from maternal cannabis consumption during the
first trimester (98). The exact cellular and system underpin-
nings of this phenomenon need further clarification since
histochemical and biochemical data from first trimester (early)
fetuses are currently unavailable.

Continued perinatal marijuana exposure affects dopamine
signaling beyond the mesolimbic system. Of note is the
nigrostriatal circuit where decreased tyrosine hydroxylase
activity is coupled with increased receptor numbers in the
striatum, as shown in rat offspring (82). This indicates either
that THC-induced presynaptic hypoactivity triggers an upre-
gulation of postsynaptic D1R/D2Rs or that activation of
presynaptic D2Rs alters neurotransmitter synthesis and
release. Since the striatum is a major subcortical station in
extrapyramidal movement modulation, it is not entirely unex-
pected that motor activity is impaired in a rat model of prenatal
marijuana administration (100,101). Nevertheless, no direct
evidence for a shift in nonmesolimbic dopamine systems
was identified in the human brain. No changes in dopamine
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receptor mRNA expression were shown in the striatum of
human fetuses prenatally exposed to marijuana, either (93).
Moreover, longitudinal human studies do not associate an
increased risk of neurological deficits after maternal cannabis
use with motor impairment, typically Parkinson’s disease. The
indirect involvement of the endocannabinoid system in evok-
ing neurological malfunction in the offspring, nevertheless,
remains plausible since maternal marijuana use impairs opioid
gene expression in the fetal caudate putamen (93). While the
endocannabinoid and opioid systems likely interact (102) (and
below), neither the possibility nor the mechanism of a possible
indirect THC-dependent mechanism has been dissected.

Despite a combination of human and experimental studies
pointing to cannabis-induced deficiencies in the developmen-
tal organization of the dopamine system, critical questions as
to the molecular mechanism of cannabis action remain open.
As such, the presence of CB1Rs—and more so of CB2Rs—on
dopaminergic neurons remains contentious. Selective CB1R
antagonism (by arachidonylcyclopropylamide) limits memory
retention in a D1R-dependent manner in the basolateral
amygdala in male mice (103). Secondly, the firing of midbrain
dopamine neurons in rats is also modulated by CB2R agonists
(104). Thus, understanding receptor identity, temporal control
of expression, and functional significance over critical devel-
opmental time windows will be imperative to dissect key
cellular changes that persist after early cannabis exposure
and contribute to lasting deficits in the organization and
function of the corticolimbic dopamine system.

PRENATAL INTERACTION OF OPIOID AND
ENDOCANNABINOID SYSTEMS: IMPLICATIONS FOR
NEUROPSYCHIATRIC DISORDERS DURING
POSTNATAL LIFE

The opioid system consists of neurons that harbor the
enzymatic pathways to generate endogenous opioid peptides
and/or cognate receptor systems in the central and peripheral
nervous systems. Opioids influence nociception, motor con-
trol, the regulation of emotions, reinforcement, and cognition
(105). Endogenous opioid receptor agonists include enkepha-
lins and endorphins, which trigger reinforcement (the strength-
ening of a subsequent behavior upon a specific stimulus) via
mu and delta opioid receptors. Moreover, dynorphins mediate
aversion (repugnance to a certain previously experienced
stimulus) and dysphoria (profound state of unease) via kappa
opioid receptors (106). These receptors, nevertheless, can be
equally activated by exogenous opiates, which—like cannabis
—are exploited both as medication (morphine, codeine) and as
drugs of abuse (heroin).

Neurons in limbic regions are simultaneously targeted by
the endocannabinoid and opioid systems, giving rise to
coordinated and cross-dependent mechanisms in defining
cellular actions and output (102,107). The interaction between
the endocannabinoid and opioid systems has been elaborated
experimentally and points to the modulation of behavioral
responses linked to drug reinforcement, reward, or relapse
(108,109). Enkephalin and beta-endorphin release is stimu-
lated by endocannabinoids in both the nucleus accumbens
(110) and ventral tegmental area (111), the latter being the
origin of mesocorticolimbic dopamine projections. These

www.sobp.org/journal


Neuropsychiatric Outcome of Developmental Marijuana Use
Biological
Psychiatry
interactions manifest, at the behavioral level in CB1R
2/2 mice

and drug-treated rats, in reduced addictive effects of opiates
(112), failure to self-administer morphine (113), and reduced
heroin seeking upon CB1R antagonism (114).

Human investigations revealed that maternal marijuana use
affects fetal expression of opioid-related genes. Using a
multiple regression paradigm for confounding variables that
included alcohol and cigarette use, prenatal marijuana expo-
sure was shown to significantly alter opioid receptor expres-
sion in the mesolimbic forebrain: increased mu and kappa
receptor levels were found in the amygdala and mediodorsal
thalamic nucleus, respectively (115). These observations are
strengthened by prenatal THC (.15 mg/kg, daily) induced
reduction of preproenkephalin mRNA expression in the rat
nucleus accumbens (84) during early development.

The dependence of opioid-mediated mechanisms on endo-
cannabinoids triggered developmental investigations to test
whether prenatal marijuana exposure could impair the opioid
system in affected offspring and underscore behavioral defi-
cits later in life. Studies in both animals and humans suggest
that these effects can indeed occur. In adult rats prenatally
exposed to THC, preproenkephalin mRNA expression is
elevated in the nucleus accumbens and the central and medial
amygdala (84). The selective alteration of the preproenkephalin
gene is intriguing since enkephalin is well known to modulate
hedonic states (116,117). This neuroanatomical finding is
coupled with behavioral changes in adulthood: while animals
show similar heroin intake in a self-reinforcement paradigm,
they exhibit shorter latency to the first active lever press,
respond more for low heroin doses, and have higher heroin
seeking during mild stress and drug extinction (84). Drug
abstinence, especially during its early phase, is a very stressful
event for drug-dependent subjects. The increase of heroin
seeking in THC-exposed offspring might reflect a behavioral
response to stress, which intensifies the motivation for drug
use. In humans, disrupted limbic organization in marijuana-
exposed fetuses, including opioid receptor and D2R changes
in the mediodorsal thalamus and/or amygdala, respectively,
suggests susceptibility for neuropsychiatric impairments in
later life. Indeed, longitudinal human studies show that pre-
natal marijuana-exposed children and young adults exhibit
deficits in executive function and academic achievement
(11,118) and also frequently suffer from depression, anxiety,
inattention, delinquency, and psychosis (22,96,119).

Besides opioids, marijuana is often co-abused with other
drugs (120), which can either directly impact the same neuro-
transmitter system as cannabis or produce complex outcomes
through actions on additional brain circuits. As such, alcohol
and cocaine are the most frequently co-abused substances
(120,121). Animal studies in adults offer insights at molecular
interactions between cannabinoids and alcohol since chronic
ethanol intake increases limbic endocannabinoid levels (122)
and reduced CB1R gene expression in hippocampus, striatum,
and ventral hypothalamus (123). At the behavioral level,
cannabinoid agonists/antagonists reduce ethanol intake,
self-administration, and seeking (124). For the developing
brain, fetal alcohol syndrome is the most devastating outcome
of chronic alcohol exposure in utero. Through data from fish
and rodent models, we conclude that CB1R expression is
reduced by ethanol, in part by microRNA regulation (125), and
B

perturbed neurodevelopment (126,127) is, in part, due to
defunct signaling at CB1Rs (126,128). Nevertheless, whether
alcohol and marijuana interact during pregnancy remains
controversial. Some human longitudinal studies on Caucasian
and African-American women suggest that prenatal marijuana
and alcohol are independent predictors of academic child
performance (96,118). Yet another study warns that individual
effects of substance use, particularly of subtle ones during
pregnancy, might not be detected in smaller populations,
precluding interaction analysis (129). Similarly, cocaine is co-
abused with marijuana (up to 44% in specific socioeconomic
cohorts) (121), but longitudinal follow-up of affected offspring
is insufficient to justify the interaction of these substances.
SCHIZOPHRENIA: DEVELOPMENTALLY-REGULATED
DYSBALANCE OF EXCITATION AND INHIBITION DUE
TO ALTERED ENDOCANNABINOID SIGNALING?

Schizophrenia is a chronic and devastating mental disorder
that typically presents in early adulthood (130). The terminol-
ogy defines a heterogeneous group of imperfectly understood
brain disorders characterized by alterations in higher functions
related to perception, cognition, communication, planning,
and motivation (131). Cognitive impairments are considered
to be the core feature of the illness and develop upon genetic
predisposition and/or environmental challenges (132).

The complexity of positive (hallucinations, delusions, lack of
insight), negative (poverty of thought, anhedonia, apathy,
reduction in social life, and affective expression), and cognitive
(inability to sustain attention, loss of working/short-term
memory) symptoms are key reflections of disrupted high-
order brain functions, which are typically associated to the
prefrontal cortex. Final development of the prefrontal cortex is
delayed until adolescence, thus being one of the remarkably
late-maturing cortical areas. Although difficulties exist to
delineate its precise time window, adolescence broadly covers
the period between the nonreproductive and reproductive
stages in humans between 11 and 18 years of age (133). For
experimental purposes, a similar developmental window span-
ning postnatal days 36 to 48 was suggested for rodents (134).
A causal role of the prefrontal cortex to gaining ability to plan,
maintain information online (working memory), solve complex
cognitive tasks, and undertake self-regulation is suggested by
the rapid unfolding of these skills during early adulthood (135).

One of the neuroanatomical substrates of the functional
changes in schizophrenia includes the reorganization of the
dopamine system (Figure 2) (133). Animal studies show that
the balance between mesocortical (prefrontal cortex targeting)
and mesolimbic (nucleus accumbens targeting) dopamine
outputs of the substantia nigra and ventral tegmental area
significantly shift toward a greater dominance of cortical
dopamine in early adolescence: tissue dopamine concentra-
tions, as well as afferentation density, increase in the pre-
frontal cortex of adolescent rodents (136) and primates (137).
These changes are paralleled by the ontogenic disappearance
of an early dopamine autoreceptor-like modulation of dop-
amine synthesis, which likely inhibits dopamine synthesis
before adolescence (138), and the pruning (refinement) of
afferent projections (139).
iological Psychiatry ]]], 2015; ]:]]]–]]] www.sobp.org/journal e5
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Figure 2. Major dopaminergic pathways of the brain. In adolescence, mesocortical dopamine (DA) influence peaks in the prefrontal cortex (PFC) but
dopamine activity becomes lower in the nucleus accumbens (Acc). The increased inhibition of PFC pyramidal cells results in a decreased excitatory
glutamatergic output onto the subcortex, further amplifying the increased inhibitory dopaminergic tone on the PFC. Compared with nigrostriatal input,
mesolimbic but especially mesocortical afferents are sensitive to environmental stressors/drug abuse that may escalate the dopamine imbalance between the
cortical and subcortical integration centers in adolescent marijuana abuse. Altered line thickness across the named conditions denotes changes in strength of
expression/effects. Glu, glutamate; SN, substantia nigra; Str, striatum; THC, Δ9-tetrahydrocannabinol; VTA, ventral tegmental area.
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Another important aspect of adolescent brain development is
the rewiring of the prefrontal cortex via the modulation of local
interneurons (Figure 3). Interneurons encompass different sub-
types of inhibitory cells with locally targeting axons, which enable
them to gate circuit output through the entrainment of large
assemblies of glutamatergic (output) neurons (140). Most nota-
bly, parvalbumin-containing and cholecystokinin (CCK)-contain-
ing basket and axo-axonic interneurons typically exert
synchronous population control through perisomatic inhibition
of pyramidal cells (140). In the adolescent prefrontal cortex, new
and subtype-specific GABAergic inputs form on pyramidal cells
(141). Axo-axonic cells display reduced synaptic inputs onto
superficial pyramidal cells, which are more markedly involved in
schizophrenia (both their presynaptic and postsynaptic GABA
markers change significantly compared with deep layer principal
cells) (141). Further, parvalbumin-containing interneurons exhibit
delayed maturation and vulnerability to altered redox states
typical for schizophrenia, enhancing deleterious insults on inhib-
itory circuit establishment (142).

The age-dependent overlap of prefrontal cortex maturation
and the highest prevalence of marijuana consumption in
teenagehood prompt the question whether continued expo-
sure to THC mechanistically underscores the pathogenesis of
schizophrenia. A major driving force behind this hypothesis is
that endocannabinoids are acutely involved in the
depolarization-induced suppression of synaptic activity,
which, if disturbed, could impinge upon activity-driven syn-
apse development. The postulate that THC disrupts the
physiological control of endocannabinoids over glutamate
and GABA release and affects adolescent experience-
dependent maturation of neural circuitries in the prefrontal
cortex (131) is supported by longitudinal prospective studies in
Swedish conscripts and in a New Zealand birth cohort, which
uncovered that adolescent marijuana use increases the like-
lihood of schizophrenic symptoms in adulthood (143), an
effect that is unrelated to pre-existing psychosis (144). There
is a significantly greater risk in early users (,15 years), which
positively correlates with the frequency and potency of
marijuana used in British, Swedish, Dutch, and New Zealand
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cohorts (22,144–146). However, increased risk might rely on
coincident genetic predisposition, e.g., polymorphism of cat-
echol-O-methyltransferase, a major dopamine-degrading
enzyme (147).

Several further studies suggest the late developmental
etiology (including the reduced protective action of the
endocannabinoid system during a vulnerable period), patho-
genesis (impaired neurotransmitter release), and pathophysi-
ology (disrupted network control by altered prefrontal cortex
connectivity) of schizophrenia-like symptoms in subjects with
a history of cannabis consumption during adolescence. Sig-
nificant alterations occur in schizophrenia subjects within
parvalbumin and CCK interneurons: human pathology studies
highlight that both CCK mRNA and protein levels are reduced
in the prefrontal cortex of schizophrenia subjects (148). These
observations are supported experimentally since parvalbumin-
containing interneurons contain less glutamic acid decarbox-
ylase 67 in models of schizophrenia. Accordingly, THC
exposure (doses ranging from 2.5 mg/kg to 10 mg/kg)
between postnatal days 35 and 45 (adolescence) in rodents
reduces glutamic acid decarboxylase 67 expression in both
parvalbumin and CCK-containing interneurons coincident with
decreased basal GABA levels within the prefrontal cortex,
which perpetuate negative symptoms and cognitive signs
(149). Defunct inhibition might lead to runaway excitation as
suggested by increased glutamate content in the prefrontal
cortex (149) and particularly in the anterior cingulate cortex of
adolescent chronic marijuana smokers (150).

A large genome-wide association study identified .100 loci
of single nucleotide polymorphisms associated with schizo-
phrenia (151). Notably, polymorphisms in the gene encoding
the CB1R (Cnr1) but not Faah may confer susceptibility to
hebephrenic schizophrenia (152,153), as well as psychotomi-
metic effects at commencement of cannabis use (154). More-
over, the genotype for Akt1 (v-Akt murine thymoma viral
oncogene homolog 1), a kinase determinant of growth-factor
induced neuronal survival and CB1R-mediated neurite out-
growth (155), was shown to underlie the risk of psychosis in
cannabis users aged 18 to 65 years (156).
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Figure 3. Schema of inhibitory wiring of principal cells and its modifica-
tions in the prefrontal cortex of schizophrenics. (A) Parvalbumin1 and CCK1

interneurons inhibit the activity of pyramidal cells by innervating their
perisomatic and axon initial segments, thus synchronizing population
discharges. (B) In schizophrenia, glutamic acid decarboxylase (GAD)
expression in parvalbumin1 and CCK1 interneurons decreases, dampening
inhibition and, conversely, enhancing excitability and desynchronization of
pyramidal cell assemblies in the prefrontal cortex. ax, axo-axonic cell; bask,
basket cell; CCK, cholecystokinin; GABA, γ-aminobutyric acid; PV,
parvalbumin.
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Even though these data argue for a genetically coded
predominance of the illness, the delayed onset of prefrontal
cortex maturation and its changes in relation to marijuana
render the term “developmental disorder” relative and prenatal
drug effects on delayed disease manifestation largely ambig-
uous and speculative. Although we have seen that prenatal
marijuana exposure leads to significant alterations in the
dopamine system, a causative link or effect to prefrontal
cortex development remains elusive at both the clinical and
experimental levels. It is tempting to speculate that the
dopamine imbalance hypothesis [positive or negative symp-
toms of schizophrenia are related to excessive or low dop-
amine activity, respectively (157)] might be due to changes in
dopamine receptor expression evoked by continued maternal
THC use. Nevertheless, prenatal studies offer mechanistic
insights only on how cannabinoids affect dopamine network
maturation. In contrast, the key question whether THC or other
CB1R agonists displace endocannabinoids to establish cau-
sality to disease manifestation is still unknown. Similarly, and
in cohesion with the neurodevelopmental hypothesis, we can
neither confirm nor exclude that the disturbed migration and
differentiation of GABAergic interneurons due to impaired
endocannabinoid signaling (158) could be a structural sub-
strate of the subtle reorganization of neuronal circuitries, thus
sensitizing the brain to schizophrenia.
B

Collectively, and to the best of our knowledge, longitudinal
or cohort studies that would indicate an increased risk of
schizophrenia related to maternal marijuana use remain elu-
sive, even though marijuana abuse is a predictor for an earlier
onset of schizophrenia in patients with nonfamilial schizophre-
nia, especially in the presence of predisposing genetic factors
(159). Among the different pieces of a manifold puzzle, only
adolescent but not prenatal THC exposure has so far been
identified as environmental predisposition precipitating schiz-
ophrenia (160,161).
EPILEPSY AND THE JANUS-FACED GABA
SIGNALING OF THE DEVELOPING BRAIN

Progression of synchronous population discharges leads to
epileptic activity (Figure 4), which is effectively prevented and
controlled by the recruitment of GABAergic inhibition (162).
Given the efficacious modulation of synaptic neurotransmis-
sion by endocannabinoids, plant-derived cannabinoids
emerge as medically relevant antiepileptic/anticonvulsive com-
pounds (Figure 4) (163–167). Nevertheless, THC and GABA
actions during development largely differ from those in the
adult brain, and their impact cannot be interpreted on prem-
ises specific to the adult nervous system.

While GABA is widely known to be the major inhibitory
neurotransmitter in the adult brain, it is excitatory in most brain
structures during early development (168) and acts in synergy
with glutamate to produce early-life network activity (169).
Later (e.g., neonatal hippocampus) GABA signaling sets the
threshold for circuit excitability (170) and is already sensitive to
CB1R modulation. Using brains from first postnatal week rats,
Bernard et al. (171) showed that interfering with signaling at
CB1Rs results in pathological activity in vitro and in vivo:
abnormal enhancement or impairment of CB1R activity led to
the cessation of neuronal activity or epileptic hyperexcitability,
respectively. Since the first postnatal week in rodents corre-
sponds to the third trimester of gestation in humans in terms
of brain development and physiological activity (172), persis-
tent maternal marijuana use is predicted to be harmful in
human fetuses, as well. Notably, prenatal exposure to the
CB1R agonist WIN55,212-2 accelerates decays in synaptic
plasticity in hippocampal slices and decreases basal and
potassium-evoked extracellular glutamate levels in the hippo-
campus of juvenile and adult rats (173). It must be empha-
sized, however, that while WIN55,212-2 is a full and potent
agonist at CB1Rs, THC is only a partial agonist, and that
animal studies have the tendency to use high to very-high
doses of this and similar compounds. Thus, experimental
research might not mimic accurately the actual intake of
THC during gestation through marijuana use. Notably, how-
ever, cannabidiol is being indicated as a relatively safe
antiepileptic predominantly acting in a CB1R-independent
fashion.

Prenatal drug or toxin exposure can lead to seizures later in
life. Crude toxins, like methyl-mercury, can lead to severe
epilepsy in both animal (174) and human (175) offspring.
Opiates, such as morphine, are frequently abused during
pregnancy (176), particularly in high-risk urban populations
(177), and prenatal morphine exposure enhances seizure
susceptibility in the limbic system of adult male rats (178).
iological Psychiatry ]]], 2015; ]:]]]–]]] www.sobp.org/journal e7
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Figure 4. The possible biological roles of the type 1 cannabinoid receptor
(CB1R)/endocannabinoid system in the control of epileptogenic activity.
Physiologically (A), the retrograde messenger 2-arachidonoylglycerol (2-AG)
controls presynaptic neurotransmitter release via CB1Rs. (B) Blocked or
defunct endocannabinoid signaling enhances presynaptic activity, which
provokes compensatory 2-AG production. (C) Exogenous CB1R agonists
can suppress presynaptic activity, especially at excitatory synapses, which
might dampen seizure severity. DAGL, diacylglycerol lipase; DSE, depolar-
ization-induced suppression of excitation; DSI, depolarization-induced
suppression of inhibition.
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Similarly, in utero exposure to cocaine leads to increased
seizure susceptibility in adult rat offspring (179,180). Although
both opioid and cocaine exposure can influence endocanna-
binoid signaling, we are unaware of any data being available to
confirm cannabinoid receptor involvement in the above men-
tioned mechanisms, even though the selective dopamine
transporter inhibitor 3beta-(4–methylphenyl)-2beta-[3-(4–
chlorophenyl)isoxazol-5-yl]tropane was suggested to block
cocaine-induced locomotor stimulation via the positive allos-
teric modulation of CB1Rs (181). While a direct link between
prenatal or perinatal marijuana exposure and the development
of epilepsy later in life has not been highlighted in previous
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longitudinal human or in experimental animal studies, the use
of cannabidiol-enriched cannabis in children with treatment-
resistant epilepsy led to unexpected results (182). Over 80% of
the parents reported a reduction in their childʼs seizure
frequency while taking cannabidiol-enriched cannabis with
mild side effects including drowsiness and fatigue (182).
Of note, 13 of the included children were diagnosed with
Dravet syndrome, a rare and treatment-resistant form of epilepsy.
The anticonvulsive effects of cannabidiol were also confirmed
in adult patients suffering from refractory secondarily general-
ized epilepsy (183). Cannabidiol’s reported benefits are likely
due to its antioxidant and anti-inflammatory properties, as well
as its enhancement of endocannabinoid retention to dampen
hyperexcitability (25,184). Even though cannabidiol is often co-
administered with THC to protect against THC’s harmful
effects, direct experimental evidence on a molecular pathway
by which cannabidiol counter-regulates THC effects to main-
tain a benign therapeutic window is lacking. Thus, it is
plausible that distinct types of cannabis preparations, often
derived from different varieties of the plant, might impact the
same biological phenomenon (e.g., pathological condition) in a
different manner and to substantially different extents.

CONCLUSIONS

Penetrating any developing neural system with external
stimuli leads to functional alterations. The endocannabinoid
system is an evolutionarily conserved signaling network that
guides critical aspects of brain development (185). In this
review, we highlighted human and rodent data to show that
prenatal exposure to CB1R agonists impacts neuronal devel-
opment, leading to altered neurotransmitter and neuronal
circuit settings. While ensuing neuroanatomical changes and
behavioral consequences in the offspring are evident, the
intriguing question remains why some neuropsychiatric dis-
eases evoked by adult or adolescent marijuana consumption
do not manifest in offspring with prenatal drug exposure. The
quasi-absence of epileptiform activities or schizophrenia
symptoms in children with maternal cannabis use does not
only highlight differences in endocannabinoid function in
adult versus the fetal brain but demonstrates the need for
further mechanistic studies to dissect molecular and cellular
determinants of cannabinoid action.

This review discussed data from basic and clinical neuro-
science in relation to cannabis use and brain development.
Nevertheless, the impact of cannabis use on the dependence/
use of drugs considered more harmful later in life was only
briefly touched upon here. Almost all of those who tried
cocaine and heroin first used alcohol, tobacco, and cannabis
(186), and regular cannabis users are most likely to later use
heroin and cocaine (187) with an earlier age of cannabis use
onset being a further risk factor (186). Thus, social complexity
specifics must be considered when concluding on the actual
danger of cannabis use for the development of neuropsychi-
atric disorders.
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