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DROUGHT
California has become increasingly dry since 1895. Statewide drought conditions by the 
end of the 2021 water year were comparable to those experienced during 2012 to 2016, 
the most severe drought since instrumental records began. The area of California land 
affected by extreme drought during the 2021 water year was larger compared to 2012 to 
2016. 

Figure 1 California Palmer Drought Severity Index  
(monthly, January 1895-October 2021)

Source: NOAA, 2021
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Figure 2. Percentage of California land area in drought (2000 to 2021)*

Source: National Drought Mitigation Center (NDMC), 2021a

*Based on weekly assessments of drought intensity published as the U.S. Drought Monitor. 
Note: Category D0 designates abnormally dry conditions, not actual drought.
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What does the indicator show? 
Droughts refer to periods of unusually dry weather that last long enough to cause a 
shortage of water (IPCC, 2014). Figures 1 and 2 show values for two metrics of drought: 
the Palmer Drought Severity Index (PDSI) and the percentage of the land area 
designated by the U.S. Drought Monitor (USDM) in different drought categories. 
Developed in the 1960s, the PDSI is universally used and measures the relative 
dryness of a region by incorporating readily available temperature, precipitation, and soil 
moisture data (NDMC, 2021b; WMO and GWP, 2016). The newer USDM is a more 
comprehensive percentile-based drought metric that incorporates soil moisture, 
streamflow, and precipitation indicators, along with PDSI and local observations and 
experts’ best judgment (NDMC, 2021a). Both the PDSI and the USDM track drought 
conditions in natural (unmanaged) water systems, and thus directly reflect patterns 
related to a changing climate. In addition, these indices have direct applicability to 
activities that rely on unmanaged water supplies, such as dryland farming and livestock 
grazing.

Figure 1 shows PDSI values since 1895: positive values (blue bars) indicate “wet” 
years; negative values (red bars) are “dry” years. Values at or below -3 represent 
severe drought. Values below -6 represent very extreme drought. From 2012 to 2016, 
California experienced the most severe drought since instrumental records began in 
1895 (AghaKouchak et al., 2014; Diffenbaugh et al., 2015; DWR, 2021a; Harootunian, 
2018; Griffin and Anchukaitis, 2014; Robeson, 2015; Swain et al., 2014; Williams et al., 
2015). It was possibly the most severe for a millennium or more (Griffin and Anchukaitis, 
2014; Robeson, 2015). The 2012-2016 drought in California ended with unusually high 
precipitation in 2017. Drought conditions began developing again in early 2020 and 
remained through the 2021 water year (October 2020 to September 2021); drought 
conditions have continued into the 2022 water year. This coincided with a period of 
anomalously warm temperatures and low precipitation. California’s other major droughts 
occurred from 1929-1934, 1976-1977, and 1987-1992 (DWR, 2015). 

Figure 2 shows the percentage of land area in California impacted by different levels of 
drought severity since 2000 according to the USDM. The index uses five “dryness” 
categories, from least intense (“D0, abnormally dry” but not considered drought) to most 
intense (“D4, exceptional drought”). Geographically, the 2012-2016 drought affected the 
entire state, with more than two-thirds of California experiencing extreme or exceptional 
drought conditions during that time. During the 2021 water year, at least 90 percent of 
the state was under severe drought for 22 weeks, during which at least 85 percent was 
under extreme drought (for 17 consecutive weeks), and at least 45 percent under 
exceptional drought (for 10 weeks). 

The maps in Figure 3 compare the intensity of the drought at the end of the 2021 and 
the 2015 water years (NDMC, 2021a). In September 2021, the entire state was in 
drought, with 88 percent experiencing extreme to exceptional drought. In September 
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2015, 97 percent of the state was experiencing drought, with 71 percent in the 
“extreme” to “exceptional drought” categories. 

Figure 3. Drought intensity in California:  
Comparison of conditions at the end of the Water Year, 2021 vs. 2015

September 28, 2021  September 29, 2015

Source: NDMC, 2021a

Why is this indicator important? 
Droughts have major environmental, social, and economic repercussions, affecting 
water availability for human use, such as urban uses (including drinking water supply 
and industrial uses), agriculture, hydroelectricity generation, and ecosystems (DWR, 
2015). The unprecedented drought of 2012-2016 led to significant and widespread 
impacts across the state, underscoring the need to prepare for drought’s broad and 
devastating effects. These impacts include widespread tree mortality, greater wildfire 
activity, threatened fish populations, and harmful algal blooms in freshwater bodies. In 
addition, drought challenges water management systems by exacerbating drinking 
water shortages, further reducing water deliveries to farmers, and increasing 
groundwater pumping (CNRA, 2021). The impacts of drought on natural systems, 
managed water systems, and human health are discussed below.
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Natural systems
Forests and aquatic ecosystems are especially vulnerable to the impacts of drought. 
The record warmth and low stream flows during the 2012-2016 drought put threatened, 
endangered, and culturally and economically important salmon and steelhead 
populations, already in decline due to other stressors, at risk (CNRA, 2021; Hanak et 
al., 2020). Widespread tree mortality, conversion of forests to shrubland and grassland, 
and changes in habitat range are some ways in which drought has impacted vegetation 
in California (see the Changes in forest and woodlands and Forest tree mortality 
indicators). Dead or dying vegetation increases the risk of wildfires: for example, the 
unusually high tree mortality seen during the 2012-2016 drought, which was caused by 
water stress, created a massive fuel load (see Wildfires indicator).

The drying of riparian habitats threatens species 
dependent on these habitats, including birds such as 
the southwestern willow flycatcher (Empidonax trailii 
extimus; Figure 4). These songbirds were once 
abundant in nearly all shrubby riparian areas 
throughout California but have sharply declined 
statewide over the past several decades. In the 
Sierras, for instance, the number and density of willow 
flycatcher territories declined between 1997 and 2019 
at a local watershed (Loffland et al., 2022). In addition, 
the Pala Band of Mission Indians in Southern 
California reports that these songbirds have not been 
seen on their land since 2013, citing drought stress 
and riparian habitat loss as likely factors of this local 
extirpation (Pala, 2019), with the latter a primary factor 
for the decline of this species statewide. Dams, water 
diversion for agriculture, and groundwater pumping all 

have altered streamflow, affecting riparian vegetation. Aside from drought, other factors 
that have impacted riparian habitats include livestock grazing, off-road vehicle use, 
increased fires, and urban development (NPS, 2016). 

Many of the impacts of drought on California’s ecosystems disproportionately affect 
people who depend on these diverse natural resources. People most reliant on annual 
rainfall usually feel the impacts of drought first. A single dry year can impair activities 
like dryland farming or livestock grazing that depend on unmanaged water supplies 
(DWR, 2015). Drought impacts on local habitats place additional burdens on rural 
populations that depend on them for food, firewood, or their livelihood (Roos, 2018; 
SWRCB, 2021a). Furthermore, the loss of culturally significant animals and plants can 
have profound impacts on Tribes who rely on them for traditional foods, medicine, and 
cultural practices.

Figure 4. Southwestern 
willow flycatcher

Photo: USGS.  
Source: Pala Tribe, 2022
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Drought impacts on plant and animal species important to California Tribes include:

· Reduced deer and Bighorn sheep on Tribal lands, hunted for food (Big Pine Paiute 
and Pala, 2022) 

· Loss of Clear Lake hitch, a ceremonial food source (Big Valley Pomo, 2022)
· Declines in shrubs and reeds like tules, used in traditional ceremonies, for weaving 

and boat building, and as food (Big Valley Pomo, 2022) 
· Declining numbers of trees like sugar pines (provide pitch for medicine, and roots for 

basketry) and coast live oak (source of acorns for food) (Karuk and Pala, 2022) 

Managed water systems
Domestic water supply 
Although drinking water shortages affected many local and regional water suppliers 
during the 2012-2016 drought, many large urban water districts with diversified water 
sources and stored supplies did not suffer major disruptions (Lund et al., 2018). 
Communities that were highly dependent on supply from a single source and had no 
connections with other water utilities experienced severe shortages. These included 
more than 100 small water systems and more than 2,000 domestic wells in some small, 
poor, rural communities, particularly in the Central Valley and the Sierra Nevada 
foothills (PPIC, 2016). These small communities – often communities of color – remain 
vulnerable (PPIC, 2021a).
In addition to water supply, droughts also compromise drinking water quality (Bell et al., 
2018). Saltwater intrusion, for instance, can happen because of drought, sea-level rise, 
and changing water demands (US EPA, 2021). As discussed further below (see 
“Human health impacts”), pathogens in drinking water are another concern. 
Compounding this issue, low-income communities and people of color are 
disproportionately impacted by water quality even during normal (non-drought) years. 
An analysis of drinking water quality, accessibility, and affordability in California found 
that water quality is worse in low-income communities and that small drinking water 
systems face greater affordability challenges compared to larger systems (OEHHA, 
2021a). In the San Joaquin Valley, for example, tens of thousands of people living in 
low-income unincorporated communities often lack access to safe drinking water. Most 
of the Central Valley’s residents who live in low-income unincorporated communities are 
Hispanic (London et al., 2018). 

The rising cost of water services during droughts places an even greater burden on low-
income households (Famiglietti, 2014; Feinstein et al., 2017; PPIC, 2021b). Issues of 
water affordability were exacerbated by the COVID-19 economic recession, when low-
income families, women, African Americans, and Latinos were especially impacted by 
unemployment and underemployment (Bohn et al., 2020). A survey by the California 
Water Boards (December 2020) found that approximately 1.6 million households in 
California had water debt at an average amount of $500 per household. A state 
moratorium on water service shutoffs helped to ensure that homes and small 
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businesses unable to pay their bills continued to have access to water (SWRCB, 
2021b).

California’s water utilities face fiscal challenges during major droughts and recessions 
when revenues decline (PPIC, 2021b). Exacerbating this issue, wildfires worsened by 
droughts can damage water utilities, as seen when the 2018 Camp Fire destroyed the 
water distribution system at Paradise in northern California (Chow et al., 2021).

Hydroelectric power generation
Drought also impacts the generation of hydroelectricity, a major source of power in 
California that depends on snowmelt runoff and rainfall. Reductions in hydroelectricity 
generation during the 2012-2016 drought increased state electricity costs and raised 
California’s carbon footprint until a shift towards different renewable energy sources 
helped to offset the increased emissions (Gleick, 2016; Hardin et al., 2017; Herrera-
Estrada et al., 2018; Szinai et al., 2020; Zohrabian and Sanders, 2018). 

Agricultural water supply 
As the 2012-2016 drought reduced water deliveries for agricultural use, farmers 
compensated by fallowing cropland (leaving cropland idle). More than 500,000 acres, or 
6 percent of irrigated acreage, were fallowed in 2015. Additional economic impacts on 
California’s agricultural sector from the 2012-2016 drought included abandoned 
orchards and vineyards and lost jobs; the livelihoods of many people dependent on 
seasonal farm jobs and agricultural goods and services disappeared (DWR, 2015; 
Howitt et al., 2014 and 2015; Lund et al., 2018; PPIC, 2016; Roos, 2018). 

Along with fallowed land, farmers compensate for water shortages from droughts by 
pumping groundwater (Lund et al., 2018). Most groundwater in California gets used for 
agriculture, and to a lesser degree for urban and domestic supply (some communities 
rely solely on groundwater) and managed wetlands. From 1998 through 2018, 
groundwater levels decreased in approximately 65 percent of wells statewide (DWR, 
2021b).

Overpumping of groundwater in the San Joaquin Valley has depleted the region’s 
groundwater supply. Farmers first started pumping groundwater in the early 1900s. By 
1970, about half of San Joaquin Valley experienced land subsidence (i.e., the land 
surface sinks). Some areas had dropped by as much as 28 feet. Reduced surface 
water availability during 1976-77, 1986-92, 2007-09, and 2012-2015 caused even more 
groundwater pumping. Worsening droughts will make it hard to achieve sustainable 
levels of groundwater by the early 2040s as required by the Sustainable Groundwater 
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Management Act passed in 2014. People in the San Joaquin Valley may need to 
permanently fallow 500,000 acres of land (Hanak et al., 2019). 

Overpumping of groundwater also results in aquifer compaction, reducing its water-
holding capacity, and land subsidence. Some of the most severe recorded land 
subsidence in history occurred in the western San Joaquin Valley near Mendota, where 
the land surface has subsided about 30 feet (NASA, 2016; Sneed et al., 2018). The 
photograph in Figure 5 shows the approximate height of the land surface in 1925 
compared to much lower levels in 1955 and 1977 
because of excessive groundwater pumping in the 
San Joaquin Valley. Surface water deliveries from the 
California Aqueduct replaced reliance on groundwater for 
irrigation, slowing subsidence showed over a large part of 
the affected area (Galloway et al., 1999) Land 
subsidence impacts infrastructure — including water 
conveyance systems, roads, railways, bridges — aquifer 
storage capacity, and land topography (USGS, 2017a 
and 2017b). Moreover, many rivers and wetlands that 
rely on groundwater for some or most of their flow suffer 
from groundwater overdraft that worsens during droughts 
(Hanak et al., 2020; Klausmeyer et al., 2018). Additional 
impacts of groundwater overuse, exacerbated by 
droughts, include dying crops, habitat loss, and species 
extinction (The Nature Conservancy, 2020). 

Human health 
Droughts adversely impact human health in a myriad of 
ways other than through impacts on drinking water (Bell 
et al., 2018). For instance, reduced water quantity during 
periods of drought decreases water flow and promotes 
the production of pathogens that favor warm, stagnant 
environments (Paz, 2015; see the Vector-borne diseases 
indicator). Consumption or contact with water containing 
pathogens, such as Vibrio species, may result in ear, 
eye, wound infections, diarrheal illness, and death (Trtanj 
et al., 2016). Reduced hand and food washing in 
response to the drought increased the risk of 
communicable diseases, such as enteric disease and 
influenza, and exposure to pesticide residues (CDC, 
2016a and 2016b, 2017). 

Drought also increases air pollution from wildfires and 
dust storms (DWR, 2015). Under dry conditions, winds 
tend to transport inhalable soil particles, leading to air 

Figure 5. Land subsidence 
in the San Joaquin Valley

Land surface in the San 
Joaquin Valley subsided ~9 m 
from 1925 to 1977 due to 
aquifer-system compaction. 
Signs on the telephone pole 
indicate the former elevations 
of the land surface in 1925 and 
1955 (Faletti RC, 2022). 
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quality concerns. In the Owens Valley, for example, where the soil is alkaline (Big Pine 
Paiute, 2022), and there has been a rise in the level of PM10 (Bishop Paiute, 2022) the 
Big Pine Paiute Tribe has reported eye, throat, and lung irritation during dust storms. 
The Tribe is concerned over the impacts of wind-blown dust on Paiute Tribal elders with 
lung issues and the growing number of cases of children with asthma and other 
breathing issues. Drought also stresses peoples’ mental and emotional well-being 
(Barreau et al., 2017; CDC, 2016a and 2016b, 2017; Vins et al., 2015). 

A visible surface water quality impact during the 2012-2016 drought came in the form of 
more frequent harmful algal blooms. These blooms appeared in freshwater bodies 
throughout the state, from the Klamath River in the north to Lake Elsinore and the 
Salton Sea in the south (CNRA, 2021). Certain bloom-forming organisms such as 
cyanobacteria, produce toxins that adversely impact people and their pets. In humans, 
exposure to these toxins can lead to a wide array of symptoms including skin rashes, 
blisters, vomiting, and abdominal pain (CWQMC, 2021; OEHHA, 2021b). In pets, 
exposure can be lethal (CNRA, 2021).

Exposures to the toxins can occur through consuming contaminated water and foods 
and by direct contact with water. Communities that rely on recreational water use to 
generate revenue from tourism and those who use freshwater bodies as drinking water 
sources are disproportionately affected. During periods of bloom, certain Tribes are 
unable to carry out cultural traditions or practices that involve immersion in, or other 
contacts with, water bodies. The Karuk’s World Renewal Ceremonies in which the 
medicine man traditionally bathes and drinks Klamath River water overlaps annually 
with the highest levels of toxin in river water (Karuk, 2022). At Clear Lake, members of 
the Big Valley Band of Pomo Indians are prevented from spiritual activities, water 
immersion for ceremonies, using plants for ceremonies and basketry, and the collection 
and consumption of fish and other aquatic organisms when toxin levels are high (Big 
Valley, 2022). In addition, the Tribe has reported that clogged drinking water intakes in 
Clear Lake due to sludge induced by blooms, and that detection of toxins in raw water 
have led to additional operational and water treatment costs.

What factors influence this indicator? 
Droughts are a naturally occurring feature of California’s climate (DWR, 2021c). They 
are naturally influenced by modes of global climate variability such as the El Niño-
Southern Oscillation, regional atmospheric pressure anomalies, and the frequency of 
landfalling “drought-busting” atmospheric rivers (Dettinger, 2013; Griffin and Achukaitis, 
2014). Singular wet years composed of frequent landfalling atmospheric rivers can 
terminate persistent droughts (e.g., Dettinger, 2013; Hatchett et al. 2016). Historically, 
dry winters in California have been associated with a ridge of high atmospheric pressure 
off the west coast, and wet winters have been associated with a trough off the west 
coast and an El Niño event (Seager et al., 2015).



Indicators of Climate Change in California (2022)

Drought Page III-69

Droughts of the 21st century are hotter, longer lasting, and spatially larger than previous 
droughts (Crausbay et al., 2017). A growing body of evidence suggests that 
anthropogenic warming has increased the likelihood of extreme droughts in the state 
(AghaKouchak et al., 2014; Williams et al., 2015; Diffenbaugh et al., 2015; Shukla et al., 
2015; Swain et al., 2014; Griffin and Achukaitis, 2014; Luo et al., 2017; Hatchett et al. 
2016; Harootunian, 2018) and worldwide (Chiang et al., 2021). Atmospheric circulation 
patterns like those observed during California’s most extreme dry and hot years have 
increased during recent decades (Swain et al., 2016). Climate change may be 
increasing the likelihood of the type of rare atmospheric events associated with the 
2012-2016 drought (Swain et al., 2017; Cvijanovic et al., 2017). Notably, this was part of 
a larger drought across the southwestern United States that has been described as a 
“megadrought.” Using a tree-ring reconstruction to extend summer soil moisture records 
back to 800 CE, investigators determined 2000-2021 to be the driest 22-year period in 
the region over this period. About 19 percent and 42 percent of the dryness in 2021 and 
in 2000-2021, respectively, were attributable to anthropogenic climate change (Williams 
et al., 2022). Climate change will continue to make dry and warm years happen more 
often (Diffenbaugh et al., 2015) and drought conditions will worsen (Underwood et al., 
2018; Ullrich et al., 2018). Other ways climate change directly contributes to drought 
conditions include more variable but less frequent precipitation (Gershunov et al., 2019) 
and widespread snowpack decline (Siirla-Woodburn et al., 2021; see the Snow-water 
content indicator). 

As temperatures warm, the atmosphere takes up more water from land through 
evapotranspiration (McEvoy et al. 2020; Pottinger, 2020). “Evaporative demand,” often 
referred to as the “thirst” of the atmosphere, reflects maximum evapotranspiration 
assuming unlimited moisture supply and ambient atmospheric conditions. Almost all the 
western U.S. has seen a rise in the atmosphere’s thirstiness since the 1980s when 
temperatures began to noticeably warm (Pottinger, 2020). During the 2021 summer and 
water year, the evaporative demand over much of California was higher than it had 
been over the last 40 years (NIDIS, 2021). A thirstier atmosphere also means 
California’s big storms will get even bigger because more water will go into the 
atmosphere (see the Precipitation indicator for a discussion on atmospheric rivers, 
which also affect heavy precipitation). Altogether, projections of climate change suggest 
that California will experience a perennial drought for most of the year, interrupted 
periodically by large storms that produce heavy to extreme precipitation (Pottinger, 
2020). 

Regional variations such as geography and local climate patterns also determine the 
extent and severity of droughts. The 2012-2016 drought was more severe in southern 
California, which has displayed greater drying trends over the past century than in 
northern California (Dong et al., 2019). 
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Technical considerations 
Data characteristics
PDSI identifies droughts by incorporating data on temperature, precipitation, and the 
soil’s water-holding capacity. The metric takes into consideration moisture received as 
precipitation and moisture stored in the soil, while also accounting for potential loss of 
water due to temperature. It originally functioned to identify drought affecting agriculture 
but has since been used to identify drought associated with other types of impacts 
(WMO and GWP, 2016). PDSI is used to assess long-term drought patterns (NOAA, 
2017).

The U.S. Drought Monitor provides a big-picture look at drought conditions in the United 
States. As previously mentioned, along with PDSI, metrics used in the U.S. Drought 
Monitor include soil moisture data, streamflow conditions, the standardized precipitation 
index, and blends of various drought indicators.

Strengths and limitations of the data
The PDSI and USDM as used in this report are not intended to gather information about 
water availability or delivery in California.

PDSI is considered a robust index of drought, universally used, and has been employed 
since the 1960s. However, PDSI assumes all precipitation comes as rain (Williams et 
al., 2015) and does not account for frozen precipitation or frozen soils very well (WMO 
and GWP, 2016). PDSI also does not provide information on human water demand, 
streamflow and reservoir storage, or groundwater accessibility (Williams et al., 2015). It 
represents drought conditions in natural (unmanaged) systems only.

The USDM is based on many types of data, including observations from local experts 
across the country, as well as information about reservoir storage. It can be used to 
identify likely areas of drought impacts but should not be used to infer specifics about 
local conditions. 
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