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Presentation Outline

• CompTox at UC Berkeley
• Processes and methods: 20+ years of validation• Processes and methods: 20+ years of validation
• >100K chemicals and the data gap issue
• QSARs and the applicability domain• QSARs – and the applicability domain
• Using information from related chemicals
• Structural motifs correlating with biologyStructural motifs correlating with biology
• Carcinogenicity is too complex for single method
• Biological – signaling pathways criticalBiological signaling pathways critical
• Cannot stop with single chemical information or we 

miss products



Computational Toxicology at UC Berkeley

• Undergraduate Molecular Toxicology major
– Computational toxicology is required

• Chemicals in the environment & therapeutics
• ~150 students – over 5 years

– 4 hr credit course – individual projects; independent 
study & honors research

– ~10% of students gain internships at FDAg p
– Unbiased use and critique of software and databases
– Profound innovation by undergraduates

9 d i h bli i 5 d– 9 students with publications, 5 papers presented at 
national meetings, 1 book chapter



UCB Computational Toxicology Definition
• The application of computer technology and mathematical / computational 

models to analyze, model and/or predict potential toxicological effects from:
– Chemical structure (parent compound or metabolites)
– Inference from similar compounds– Inference from similar compounds 
– Exposure, bioaccumulation, persistence 

• Biomonitoring data
• Plasma or tissue concentrations

Differential indicators or patterns related to e pos re– Differential indicators or patterns related to exposure
– Networks of biological pathways affected by the chemical

• To further understand mechanisms of toxicity
– Organism specificg p
– Organ specific
– Disease specific

• To explain why certain individuals are more susceptible 
K th d• Key methods 
– Chemical fragment or structural similarities (structural alerts)
– Categorization or grouping

• Analogs, categories based on mechanism, mode of actiong , g ,
– QSARs
– Biological pathway perturbations



Computational Toxicology had early roots in 
combinatorial chemistry

• Rapid synthesis or computer simulation of a large number of 
different but structurally related molecules or materials (by buildingdifferent but structurally related molecules or materials – (by building 
blocks) 

• Highly parallel or split-pool chemical synthesis, resulting in 
thousands to millions of compounds

• 1000’s of compounds in mixture (liquid state or solid state) 
• De-convolution by: 

– structural similarity categories
rank order elimination algorithms based on targeted screening– rank order elimination algorithms based on targeted screening

• The key lessons:
– Analog identification and categorization crucial for unknownsAnalog identification and categorization crucial for unknowns
– Structural features are related to chemical-biological effects
– SAR & QSAR could be used to fill data gaps with caution
– Huge difference in rank ordering and predicting endpoints

P i hti f d i t it i ti l– Proper weighting of endpoint criteria essential



This lead to Data warehouse model

Prediction in Virtual Drug DiscoveryPrediction in Virtual Drug Discovery
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Adapted from Johnson and Wolfgang, Drug Discov Today 5: 445 (2000) From: DE Johnson, Keystone Conference 2005 

Millions of chemical compounds have been screened 

SARs have been established for multiple targets

Positive and negative “filters” are applied computationallyPositive and negative filters  are applied computationally
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Liebler & Guengerich (2005) Nature Rev. Drug Disc. 4, 410-420





The ~100K Chemical Challenge

• Data gap filling– Specific experimental data is preferred but 
often scarce
– Modeled data is sometimes unreliable (e.g. outside domain of 

applicability)
• Use available “read-across” physical or chemical data from anUse available read across  physical or chemical data from an 

analogous chemical or chemicals (e.g. water solubility)
– Make predictions for missing toxicological and fate data
– Quantitative or qualitativeQuantitative or qualitative

• Enables grouping of chemicals – Separate similar assessments 
or one category assessment

Results partly based on common properties and modes of action– Results partly based on common properties and modes of action
– Increase consistency between assessments– Interpretation of data, 
– Areas of similarity and uncertainty



Methods to fill “data gaps”

• SAR and QSAR
Global models– Global models

– Local models 
– Category specific QSAR models– Category specific QSAR models 
– Transparency of chemistry – no “black box” 

approachpp
– OECD criteria

• a defined end point 
• an unambiguous algorithm, 
• a defined domain of applicability, 
• appropriate measures of goodness of fit• appropriate measures of goodness-of-fit, 

robustness, and predictivity, 
• a mechanistic interpretation, if possible



What is a QSAR model?
Y = β + β X + εYi (est) = β0 + β1 Xi + ε

εi = yi – yi (est) , i = index of  obs.

Yi is the dependent variable. the relevant biological activity
Xi is the independent variable. A descriptive property of  the 

f h l lstructure of  the molecule.
“i” is an index for our observations. So Y1 would be compound 1, Y2 compound 2, etc. 

εi represents the error term, or the deviation of  our observed values of  Y compared to  
predicted values of  Y

β0 is a constant term; it is the intercept of  the line - to what degree, given a change in the 
independent variable (X), will we see a corresponding change in our dependent variable Y. 
In this example, this means that for a one unit change in X, we will see a β1 change in Y.p g β g



Multiple RegressionMultiple Regression
Log(IC50) = β0 + β1log(X1) + β2log(X2) + … + g( 50) β0 β1 g( 1) β2 g( 2)

βnlog(Xn) + ε

Exactly similar to the previous example, only the y p p , y
X’s represent different molecular descriptors. 





Chemical descriptors must be relevant 
to the endpointto the endpoint

Physicochemical interpretation and possible mechanistic 
involvement: examples of two widely used:involvement: examples of two widely used:

• Octanol/water partition coefficient: log Kow• Octanol/water partition coefficient: log Kow
– Hydrophobicity / lipophilicity may influence absorption
– Transport and location in tissuesTransport and location in tissues 
– Binding to active sites and/or receptors
– Bioaccumulation

• Hammett electronic substituent constant (σ)
– Electron-donating or -accepting properties of an aromatic 

substituent in the ortho, meta, or para position
– Model electrophilic or nucleophilic reactivity



Methods to fill “data gaps” (cont.)

• Structural alertsStructural alerts
– ToxTree, and combinations of models

• Analog identificationAnalog identification
– AIM (analog identification methodology –

EPA))
– OECD Toolbox
– CAESAR and Lazy QSAR
– ToxMatch

• Categorizationg



ToxTree Structural alerts: sensitive predictor 
for genotoxicity & related carcinogenicity

204 chemicals 
with + mammary tumors in mice and/or rats (multiple sites)

g y g y

y ( p )
[Rudel R, et al. 2007 Cancer 109(12 Supp): 2635]

315 chemicals: 
107 with + mammary tumors in rats (multiple sites)

30 with + mammary tumors (only site)30 with + mammary tumors (only site)
104 with + carcinogenicity (but not mammary)
104 with no carcinogenicity; 22 with + Ames
[Cunningham A, et al. 2008 Chem Res Toxicol 21:1970]

167 of 204 chemical dataset had structural alerts for genetoxicity and 
carcinogenicity

Nitro-aromatic (41); primary aromatic amine, hydroxyl amine and esters (37); 
polycyclic aromatic hydrocarbons (21); hydrazine (20); alkyl and N-nitroso 
groups (19); aliphatic halogens (15 ); , unsaturated carbonyls (14);groups (19); aliphatic halogens (15 ); , unsaturated carbonyls (14); 
epoxides and aziridines (10)















Non-mutagenic carcinogens more challenging 
– proper categorization essentialp p g

• Co-initiation
– Facilitating original mutagenic changes in stem or progenitor 

cells that start cancer process
– Induction of enzymes activating other chemicals

Promotion• Promotion
– Enhancing growth vs. differentiation/death of initiated clones

• Progression
E h i th li d f l d d l d– Enhancing growth, malignancy, or spread of already developed 
tumors

– Suppression of immune surveillance
– Hormonally mediated growth stimulation for tumors withHormonally mediated growth stimulation for tumors with 

approapriate receptors (eg. estrogen)
• Multi-phase

– Epigenetic silencing of tumor suppressor genesp g g pp g

From: Hattis, et al. Crit Rev Toxicol (2009) 39 (2) 97-138



Methods to fill “data gaps” (cont.)

• ID targets and biological pathwaysID targets and biological pathways 
affected

Genego Metadrug and Metacore– Genego Metadrug and Metacore





Biological pathway analysis: testing large sets of compounds 
to understand molecular targets

3,2'‐Dimethyl‐
4‐aminobiphenyl 

3 3'‐Dimethylbenzidine b hl id3,3 ‐Dimethylbenzidine

7,12‐Dimethylbenze
Anthracene
Chlordane
Chlormadinone acetate
Daunomycin
Diethylstilbestrol
Doxorubicin
Estrone
Ethinylestradiol

Carbon tetrachloride 

Chloroambucil,
Chlormadinone
acetate  

Doxorubicin

Ethynodial diacetate
Griseofulvin
Lynestrenol
Medroxyprogesterone
acetate
Megestrol acetate
Mestranol
Methyleugenol
Norethisterone
Norethynodrel
Norlestrin

Estradiol
Estriol
Carbon tetrachloride
Benzo pyrene
5‐Azacytidine 
7,12‐Dimethylbenze
anthracene
2‐Acetylaminofluorene
17a‐
Hydroxyprogesterone Norlestrin

Ochratoxin A
o‐Toluidine
Phenesterin
Progesterone
Styrene
Testosterone

y yp g
caproate
3‐Methylcholanthrene  

204 compounds were analyzed against Phase I & II metabolizing 
enzymes relevant transporters and multiple genes and networks knownenzymes, relevant transporters, and multiple genes and networks known 
to be associated with breast cancer (~120 models)



25 Breast Carcinogens w/Molecular Targets involved in breast cancer

Breast Carcinogen
# of affected 
breast cancer 

targets
Action 

Breast cancer 
gene/ target 
affected by 

Target (gene) description Source
targets

carcinogen

1
17a‐Hydroxyprogesterone 

caproate
1 transported by ABCB1 ATP‐binding cassette, sub‐family B (MDR/TAP), member 1 QSAR

2 Chlormadinone acetate  2 transported by ABCB1 ATP‐binding cassette, sub‐family B (MDR/TAP), member 1 QSAR
inhibition AR androgen receptor PUBMED

3 D i 1 i hibiti ABCB1 ATP bi di tt b f il B (MDR/TAP) b 1
pubmed & 

3 Daunomycin 1 inhibition ABCB1 ATP‐binding cassette, sub‐family B (MDR/TAP), member 1
p

QSAR

4 Diethylstilbestrol 1 inhibition SLC2A1 solute carrier family 2 (facilitated glucose transporter), member 1 PUBMED

5 Doxorubicin 3 inhibition ABCB1 ATP‐binding cassette, sub‐family B (MDR/TAP), member 1 QSAR

inhibition HIF1A
hypoxia inducible factor 1, alpha subunit (basic helix‐loop‐helix 

transcription factor)
PUBMED

transcription factor)
activation PLAU plasminogen activator, urokinase PUBMED

6 Estradiol‐17b 13 inhbition/ unspecificied AR androgen receptor PUBMED
unspecified CXCR4 chemokine (C‐X‐C motif) receptor 4 PUBMED

inhibition ERBB2
v‐erb‐b2 erythroblastic leukemia viral oncogene homolog 2, 
neuro/glioblastoma derived oncogene homolog (avian)

PUBMED

activation IGF1R insulin like growth factor 1 receptor PUBMEDactivation IGF1R insulin‐like growth factor 1 receptor PUBMED
inhibition IGFBP3 insulin‐like growth factor binding protein 3 PUBMED
inhibition NOTCH3 Notch homolog 3 (Drosophila) PUBMED
inhibition PLAU plasminogen activator, urokinase PUBMED

activation SLC2A1 solute carrier family 2 (facilitated glucose transporter), member 1 PUBMED

i i SOD2 id di 2 i h d i l PUBMEDactivation SOD2 superoxide dismutase 2, mitochondrial PUBMED
activation BCAS3 breast carcinoma amplified sequence 3 PUBMED
activation TFF1 trefoil factor 1 PUBMED
inhibition ABCG2 ATP‐binding cassette, sub‐family G (WHITE), member 2 PUBMED
activation MUC1 mucin 1, cell surface associated PUBMED

7 Estriol 1 activation ERBB2
v‐erb‐b2 erythroblastic leukemia viral oncogene homolog 2, 

PUBMED7 Estriol 1 activation ERBB2
neuro/glioblastoma derived oncogene homolog (avian)

PUBMED

8 Estrone 2 activation ERBB2
v‐erb‐b2 erythroblastic leukemia viral oncogene homolog 2, 
neuro/glioblastoma derived oncogene homolog (avian)

PUBMED

inhibition ABCG2 ATP‐binding cassette, sub‐family G (WHITE), member 2 PUBMED
9 Ethynodial diacetate  1 transported by ABCB1 ATP‐binding cassette, sub‐family B (MDR/TAP), member 1 QSAR



Single Chemical vs. “Products” or mixtures

• Phytochemicals
– The WHO estimates that ~80% of global populationThe WHO estimates that 80% of global population 

relies on traditional herbal medicines as part of 
standard healthcare
In USA 1 in 5 individuals regularly consume dietary– In USA, 1 in 5 individuals regularly consume dietary 
supplements

• Out-of-pocket spending on non-vitamin, non-mineral natural 
products 1/3 of pharmaceuticalsproducts, 1/3 of pharmaceuticals 

• Product information and ratings: GoodGuide
• Industry specific product / chemical usage andIndustry specific product / chemical usage and 

ratings: SciVera maps auto industry



From: Chan, et al. (2010) Curr Opin Drug Disc Devel 13(1) 50-65



Conclusion
• Current developing practices for filling data gaps has long 

history with validation
• Physico-chemical properties accurately predicted
• Databases linking chem-biol interactions are limited in scope 

and sizeand size
– Genotoxicity linked to carcinogenicity generally accurate predictions
– Non-gentoxic carcinogenicity more complex

• QSARs always limited by applicability domain (chemical space)• QSARs always limited by applicability domain (chemical space) 
of the training sets

• Interactions with key biological pathways important to identify 
targets and mechanisms

• Additional screening is mandatory


